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ABSTRACT
Arterial oxygen saturation has not been assessed
sequentially in conscious mice as a direct consequence
of an in vivo murine model of acute lung injury. Here,
we report daily changes in arterial oxygen saturation
and other cardiopulmonary parameters by using
infrared pulse oximetry following intratracheal
lipopolysaccharide (IT-LPS) for up to 9 days, and
following IT-phosphate buffered saline up to 72 h as a
control. We show that arterial oxygen saturation
decreases, with maximal decline at 96 h post IT-LPS.
Blood oxygen levels negatively correlate with 7 of 10
quantitative markers of murine lung injury, including
neutrophilia and interleukin-6 expression. This
identifies infrared pulse oximetry as a method to non-
invasively monitor arterial oxygen saturation following
direct LPS instillations.

INTRODUCTION
Acute lung injury (ALI) and its most severe
form, acute respiratory distress syndrome
(ARDS), are defined in patients by acute
onset, bilateral pulmonary infiltrations
(reflecting pulmonary oedema) and hypoxe-
mic respiratory failure (P : F ratio less than
300 mm (40 in SI units).1–3 Animal models
are used to replicate pathological, physio-
logical and histological changes in human
ALI/ARDS.4

Lipopolysaccharide (LPS) is a potent activa-
tor of the innate immune system via toll-like
receptor 4 pathways.5 Intratracheal (IT) LPS
is a very reproducible technique which
models many of the features in human ALI,
typified by significant infiltration of neutro-
phils into the alveolar air spaces and expres-
sion of pulmonary inflammatory cytokines.6–8

Neutrophil accumulation post IT-LPS is fol-
lowed by initiation of active resolution path-
ways which are required to inhibit neutrophil
recruitment, and induce cell death and
clearance.
The determination of murine lung injury fol-

lowing LPS typically involves assessment of cel-
lular and cytokine responses which are

correlated with markers of lung injury.
Bronchoalveolar lavage (BAL) markers
common to human and rodent lung injury
include the protein permeability index (PPI;
ratio of lung lavage fluid : plasma or serum
protein levels) and the receptor for advanced
glycation end products (RAGE).9 10 BAL PPI
and RAGE have been extensively used both in
translational/murine studies as soluble markers
of alveolar epithelial damage. However, in
murine lung injury models repeated lung
lavage is not practically feasible or ethically
acceptable (in the UK). There is therefore a
need for a non-invasive marker of lung damage
that can be assessed sequentially in mice.
Pulse oximetry is widely used as an assess-

ment tool for humans with acute and chronic
respiratory conditions. The technical chal-
lenges of pulse oximetry in mice are high due
to low pulse volume and very high heart rates.
Recent advances in probe design and software
analysis now make oximetry feasible as a non-
invasive assessment of lung damage in murine
models of lung injury. Pulse oximetry in
murine studies is therefore increasingly
popular as a technique to monitor the level of
oxygen carried on arterial haemoglobin in
conscious mice, without the use of surgery.11–13

In this study we used a pulse oximetry
system to monitor lung function daily in a
murine model of ALI. Our aims were first, to
measure pulse oximetry in mice over the
course of the inflammatory response follow-
ing IT-LPS or phosphate buffered saline
(PBS) as a control, and second, to compare
oximetry readings to multiple lung injury

KEY MESSAGES

▸ IT-LPS in mice causes a significant reduction in
arterial oxygen saturation.

▸ Arterial oxygen saturation negatively correlates
to markers of lung injury.

▸ Pulse oximetry can be used to define markers of
injury that affect lung function.
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and inflammation markers including PPI, RAGE, pul-
monary neutrophils and local cytokine expression.

MATERIALS AND METHODS
Mice and IT instillations
Male 9–12-week-old wild type (WT) C57Bl/6 mice, with
an average body weight of 25 g (±0.7 g) were obtained
from Harlan UK Limited, Oxford, UK and maintained at
BMSU, Birmingham University, UK. All experiments
were performed in accordance with UK laws with
approval of local ethics committees. IT instillations were
performed as previously described.14 Briefly, mice were
anaesthetised using intraperitoneal injections of meteto-
midine (60 mg/kg) and ketamine (10 mg/kg) and a fine
polyethylene catheter (external diameter 0.61 mm and
internal diameter 0.28 mm) passed into the trachea via
the mouth under direct visualisation of the vocal cords.
Fifty micrograms LPS (Source Biosciences, UK) in 50 µL
sterile PBS or PBS alone were instilled. Mice were given
0.1 mL atipamezole to reverse the metetomidine and
hydrated with two 0.5 mL saline subcutaneous injections,
one immediately post IT and another 6 h later.

Infrared pulse oximetry
Following IT instillations, the hair around the neck of
each mouse was removed using Veet (Unilever, UK).
Twenty-four hours post IT instillation and then every 24 h
after that cardiopulmonary health status of each mouse
was measured by MouseOx Plus (Starr Life Sciences
Corp, USA) in accordance with manufacturer’s instruc-
tions, up to and including 96 h (day 4) and also on day
9. Each mouse was very briefly anaesthetised using 5%
isoflurane to facilitate placement of a CollarClip Sensor
and allowed to acclimatise for 5 min. This time point was
sufficient for animals to recover normal activities and
physiological readings. Measurements were then
recorded for 10 min. This time point was used to collect
representative, error-free data due to the motion arte-
fact.15 This was averaged for all parameters.

Assessment of BAL fluid cellular and inflammatory
markers
Mice were sacrificed by exsanguination, serum collected
and BAL performed with two washes of 0.6 mL PBS/
EDTA (2 mM). BAL fluid was centrifuged at 400 g at 4°
C with supernatant aliquoted and either used directly or
stored at −20°C for analysis of cellular and inflammatory
markers. Markers of oedema and endothelial damage—
PPI (BioRad protein assay)—epithelial damage—BAL
RAGE (DuoSet ELISA, R&D systems, UK)—and inflam-
mation—proinflammatory cytokines interleukin (IL)-6,
IL-1β and tumor necrosis factors α (TNFα), neutrophil
chemokines CXCL1/KC and macrophage-inflammatory
protein-2 (MIP-2), and the epithelial repair growth
factor vascular endothelial growth factor (VEGF;
Fluorokine MAP Multiplex, R&D systems, UK)—were
measured. These parameters were chosen because they

are all well-characterised, quantitative markers of
damage and inflammation used in several murine
models of ALI/ARDS. The remaining cell pellets were
analysed directly by flow cytometry.

Flow cytometry
Cells pelleted from BAL fluid were assessed for neutro-
phil inflammation by flow cytometry using fluorophore-
conjugated antibodies (eBioscience). Granulocytes were
enumerated by gating on cells with a high forward and a
high side scatter distribution. Neutrophils were defined
as CD11c negative, CD11b+Gr1hiF4/80− granulocytes.
All flow cytometry data are presented per mL of BAL.

Statistical analysis
All parameters were analysed using Prism 6 (GraphPad
Software Inc, USA). Data were tested for normality and
significance assessed by an ordinary one-way analysis of
variance. Two-tailed Student t tests were also used as
indicated in the text. Linear regression was calculated by
two-tailed Pearson correlations. All data are expressed as
the mean of three experiments, each with at least three
mice/time point (±SE of the mean).

RESULTS
IT-LPS but not PBS causes a significant decline
in lung function
Following IT-LPS, the general health status of the mice
was assessed daily by measuring weight loss of the
animals. By 96 h (day 4) post-IT instillation, the mice
started to gain weight indicating an improvement in
health status (figure 1A). To control for the effects oper-
ation and LPS challenge a separate group of mice were
instilled with PBS via IT injection. Weight loss was only
observed 24 h post IT-PBS, which is likely due to the use
of intraperitoneal anaesthetic which reduces the
mouse’s water and food intake within the first 24 h
(figure 1B). To monitor the physiological consequence
of causing ALI in mice we used infrared pulse oximetry
on conscious, non-anaesthetised, mice. In mice given
PBS instillation arterial oxygen saturation (SaO2;
p=0.9621), heart rate (p=0.7025) and breath rate
(p=0.9875) did not significantly alter during 72 h post
IT. A reduction in SaO2 was observed from 48 h post
IT-LPS (figure 1C). By 96 h post IT-LPS, mean saturation
had reduced further to 81.1% (±1.6%). Oxygen satur-
ation normalised by day 9, confirming that
IT-LPS-dependent lung injury causes a significant but
recoverable decline in lung function. In contrast, breath
rate dropped only at 24 h post IT-LPS and then returned
to levels similar to PBS controls (figure 1D). This
cardiac suppression observed at 24 h post IT-LPS has
been appreciated for LPS-based mouse models previ-
ously.16 Breath rate of LPS-treated mice did not alter sig-
nificantly during the time course (p=0.0926; figure 1E).
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IT-LPS results in significant cellular inflammation and
local cytokine release
We analysed lung damage, cellular infiltration and
inflammatory cytokine responses of WT mice to IT-LPS
every day for 4 days and at 9 days post IT-LPS. IT-LPS
caused significant lung injury as assessed by PPI and
alveolar epithelial cell damage (BAL RAGE expression;
figure 2A,B, respectively). Both parameters peaked at
72 h post IT-LPS from which they decreased. PPI levels
at day 9 post IT-LPS remained significantly higher com-
pared to preinstillation controls (0.0024±0.0002 vs
0.0047±0.0009, p=0.0030).
IT-LPS results in significant pulmonary granulocyte

infiltration 24 h post IT-LPS which peaked at 48 h
(figure 2C). As expected, cellular infiltration consisted
primarily of neutrophils, with percentage peaking 24 h
post IT-LPS (figure 2D). Although the numbers of BAL
neutrophils are significantly reduced by 96 h post IT,
BAL neutrophilia remained significantly elevated 9 days

post LPS compared to resting levels (109±50 vs 1994
±764, p=0.0009; figure 2E).
Expression of well-characterised inflammatory cytokines

and chemokines was also analysed. Levels in BAL fluid
peaked at either 24 h (CXCL1/KC, VEGF and MIP-2) or
48 h (IL-6, IL-1β and TNFα) post IT-LPS (figure 3A–F).
Some subtle differences were observed during resolution;
while CXCL1/KC, IL-1β and TNFα expression resolved by
96 h (with measured levels below the sensitivity of the
assay), MIP-2 and IL-6 remained elevated (20.1 and
127.3 pg/mL, respectively) at 96 h and only by 9 days
post IT-LPS did levels return to those of resting mice
(figure 3C,D, respectively). Moreover, while VEGF
resolved to pre-IT-LPS levels by around 72 h post IT-LPS
(261.0±12.0 pg/mL), expression continued to fall below
those of resting mice at 96 h (79.8±22.4 pg/mL, p<0.0001)
and by day 9 levels still remained lower than those
observed pre-IT instillations (151.3±32.0 pg/mL,
p=0.0083; figure 3B). These changes in VEGF reflect the

Figure 1 Weight and cardiopulmonary parameter changes in C57Bl/6 mice post IT-LPS or PBS. Weight changes were

assessed in C57Bl/6 instilled via IT route with 50 µg LPS (A) or 50 µL PBS (B). Arterial oxygen saturation (C), heart rate (D) and

breath rate (E) were monitored using infrared pulse oximetry following IT-PBS as a control (white bars) compared to IT-LPS

instilled mice (black bars). IT-LPS, intratracheal lipopolysaccharide; PBS, phosphate buffered saline.
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pattern, albeit with a different time course, seen in human
ALI and have not been reported previously.

IT-PBS induces mild cellular inflammation without
affecting lung permeability
As a control, a second group of mice were instilled with
IT-PBS and indexes of pulmonary damage, cellular infil-
tration and cytokine expression measured for 3 days. No
significant changes in PPI or RAGE expression were
observed at all time points measured following IT-PBS
(data not shown). A small but significant granulocytic
infiltration was observed 24 h post IT-PBS which resolved
within 72 h (figure 4A). Cellular infiltrates contained
neutrophils, however, these were at a much lower pro-
portion than IT-LPS instilled mice (figure 4B,C).

Consistent with no epithelial cell damage, expression of
inflammatory cytokines was not observed above the
detection threshold of the assays performed again valid-
ating the use of PBS as a non-inflammatory control
substance (data not shown).

SaO2 correlates to indices of lung injury
Having shown that cardiopulmonary parameters can be
measured to assess lung function following IT-LPS we
investigated how these parameters relate to quantitative
markers of lung inflammation and damage. Table 1 dis-
plays the R2 value and p value of each cardiopulmonary
parameter correlated to the lung injury, inflammatory cell
recruitment and cytokine expression data—significant

Figure 2 Markers of lung injury in C57Bl/6 mice post IT-LPS. C57Bl/6 mice were instilled via IT route with 50 µg LPS. Markers

of endothelial barrier permeability (A) and alveolar epithelial cell damage by assessing RAGE expression (B) were assessed

daily. The total number of granulocytes in BAL fluid was also enumerated per mL (C). The percentage (D) and number (E) of

neutrophils were analysed using flow cytometry. ANOVA, analysis of variance; BAL, bronchoalveolar lavage; IT-LPS, intratracheal

lipopolysaccharide; RAGE, receptor for advanced glycation end.
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data are highlighted in bold. SaO2 negatively correlates
with most inflammation markers measured (7 of 10).

DISCUSSION
Recent studies have used the MouseOx Plus for a variety
of reasons including demonstration of hypoxaemia in
transgenic mouse models,17 differential SaO2 following
mechanical ventilation18 and monitoring of oxygen sat-
uration post toxic gas inhalation.19 However, to date, no
study has used this system to monitor arterial blood
oxygen saturation following IT instillations of LPS, a

well-characterised model of ALI/ARDS. This study
demonstrated that infrared pulse oximetry can monitor
the decline in SaO2 following IT-LPS and highlights for
the first time the effect of cumulative neutrophil recruit-
ment over several days, which results in oxygen satur-
ation to decrease to 81.1%. A surprising result was that
the lowest SaO2 levels were observed 96 h post IT-LPS
instillation, a time point when markers of pulmonary
injury and inflammation were returning to normal. This
lag in lung function decline has not been appreciated
before but implies that resolution of lung injury worsens
oxygenation in mice. The mechanisms for this change

Figure 3 Pulmonary cytokine expression in C57Bl/6 mice post IT-LPS. C57Bl/6 mice were instilled via IT route with 50 µg LPS.

BAL fluid was collected daily following IT-LPS and the expression of inflammatory cytokines assessed; CXCL1/KC (A), VEGF

(B), MIP-2 (C), IL-6 (D), IL-1β (E) and TNFα (F). ANOVA, analysis of variance; BAL, bronchoalveolar lavage; IL, interleukin;

IT-LPS, intratracheal lipopolysaccharide; MIP-2, macrophage-inflammatory protein-2; N.D., not detected; TNFα, tumor necrosis

factors α; VEGF, vascular endothelial growth factor.
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are uncertain but may relate to restoration of blood flow
to damaged areas of lung resulting in increased
ventilation-perfusion mismatch.
An important finding of this study is that SaO2 corre-

lates with well-characterised markers of pulmonary
injury and inflammation used to assess the extent of

ALI/ARDS in mice following IT-LPS. Indeed, SaO2 was
the only cardiopulmonary parameter measured by the
MouseOX Plus that correlated with the specific marker
of alveolar epithelial cell damage, BAL RAGE expres-
sion. This may suggest that blood oxygen levels can be
used in future experiments to verify whether quantitative

Figure 4 Granulocytic pulmonary infiltrates in C57Bl/6 mice post IT-PBS. C57Bl/6 mice were instilled via IT route with 50 µL

PBS. BAL fluid was collected daily and pulmonary granulocytic infiltrates (A) and neutrophilia (B and C) assessed. ANOVA,

analysis of variance; BAL, bronchoalveolar lavage; IT, intratracheal; PBS, phosphate buffered saline.

Table 1 Correlations of markers of lung injury and inflammation, with cardiopulmonary parameters measured in C57Bl/6

mice post IT-LPS and PBS

Lung injury marker

Arterial oxygen
saturation Breath rate Heart rate
R2 p Value R2 p Value R2 p Value

Permeability index −0.154 0.0122 −0.075 0.0916 −0.291 0.0004
RAGE expression −0.219 0.0282 −0.002 0.8247 −0.077 0.1619

Granulocyte count −0.108 0.0408 0.044 0.1792 −0.136 0.0150
Neutrophil count −0.193 0.0073 0.039 0.2129 −0.094 0.0484
CXCL1/KC −0.014 0.5118 0.042 0.2427 −0.019 0.4335

IL-6 −0.411 <0.0001 0.137 0.0285 −0.049 0.2013

MIP-2 0.036 0.2972 0.133 0.0405 <0.001 0.9737

TNFα −0.285 0.0014 0.060 0.1696 −0.021 0.4167

VEGF −0.065 0.1516 <−0.001 0.9176 −0.315 0.0005
IL-1β −0.280 0.0165 0.068 0.2662 <−0.001 0.9972

Significance and R2 values were calculated using a two-tailed Pearson correlation.
IL, interleukin; IT-LPS, intratracheal lipopolysaccharide; LPS; MIP-2, macrophage-inflammatory protein-2; PBS, phosphate buffered saline;
RAGE, receptor for advanced glycation end; TNF α, tumor necrosis factors α; VEGF, vascular endothelial growth factor.
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lung injury markers directly affect lung function.
However, a limitation of this study is that arterial blood
samples were not analysed directly, in tandem to pulse
oximetry to corroborate SaO2 readings. Changes in
arterial PO2 have been shown recently to correlate to
SaO2.

18 In addition, our data suggest that SaO2 readings
continue to drop from 48 to 96 h after IT-LPS even
though heart and breath rate remain unchanged at
these time points (figure 1C–E). Taken together these
data suggest that SaO2 monitored during this study is
reflective of the relative oxygen saturation within the
artery.
Our data also suggest that RAGE expression increased

24 h post IT-LPS even though systemic hypoxaemia as
determined by SaO2 was unchanged compared to
PBS-treated controls. Previous in vitro experiments have
suggested that RAGE expression is regulated by hypoxia
by HIF1α,20 although to date type 1 lung epithelial cells
have not been tested. Therefore, these data may reflect
hypoxia-independent enzymatic cleavage and/or
cytokine-induced RAGE release from epithelial cells or
simply an effect of local tissue hypoxia prior to systemic
hypoxemia.
Refractory expression of BAL VEGF was observed

during the latter stages of lung repair following IT instil-
lation of LPS. VEGF is predominantly expressed by
alveolar type II cells in the lung,21 with contributions
from macrophages and neutrophils during inflammatory
responses.22 In this context, the role of VEGF in the
lung is as a potent stimulus for endothelial and epithe-
lial repair.23 24 The decrease in VEGF observed from
96 h in this model closely resembles the reduced VEGF
levels observed in patients with ALI, which may be asso-
ciated with impaired repair responses or reflect specific
loss of alveolar type II cells following injury.25 Decline in
lung function was also maximal at 96 h. This may
suggest that future experiments using murine IT-LPS as
a model of ALI should monitor this time point in par-
ticular. Although we did not extend our time points
further than 9 days, it would be interesting in future
studies to focus on this phase given that in addition to
reduced VEGF levels, BAL neutrophilia and PPI
remained elevated compared to resting levels at day 9
post IT-LPS. This was observed even though the levels of
inflammatory chemokines associated with leucocyte
chemotaxis such as CXCL1/KC and MIP-2 had returned
to pre-IT-LPS levels. Taken together, these data are sug-
gestive of permanent damage to alveolar-capillary bar-
riers as a result of IT-LPS. A similar observation can be
seen in other experimental models of inflammation
when tissue function recovers but restoration of leuco-
cyte populations do not return to predisease levels.26

Using pulse oximetry, we found the heart rate of our
mice to average around 650–700 bpm (figure 1D). This
mirrors recently published data which also used the
MouseOx Plus system.27 However, resting mice have
been previously shown to average 400–600 bpm.28 29

Heart rates of this magnitude were most similar to those

of mice 24 h post IT-LPS. The MouseOx Plus system we
used involved collar clips being placed directly on the
animal and allowing them to wander freely in a cage.
Therefore, we would suggest this to be a more sensitive
reading of cardiac output than older technologies.
As a consequence of lung injury, direct readings

obtained by the MouseOx Plus system became easier to
monitor (more error-free data points) mainly due to the
reduction in the mouse’s activity. At extended time
points, such as day 9, readings were more challenging
not only due to the increased activity of the subject, but
also due to regrowth of the hair around the neck and
shoulders which can retard the infrared signals. These
issues should be considered in future experiments using
the MouseOx Plus system.
In conclusion, this study is the first to measure mul-

tiple quantitative markers of lung injury and inflamma-
tion alongside non-invasive monitoring of
cardiopulmonary parameters during a mouse model of
ALI. Our data revealed that lung function decline is
maximal at 96 h post IT-LPS and that well-characterised
indices of lung injury and inflammation correlate with
SaO2. Pulse oximetry readings are easy to measure, and
can be carried out with minimal stress to the animal,
providing real-time data indicative of lung function as
assessed by SaO2. Therefore this parameter may have
the potential to predict outcome, help ensure humane
endpoints are maintained and reduce animal usage by
identifying points at which lung function differs from
expected results.

Contributors SL participated in experimental conception and design,
acquisition of data with analysis and interpretation and drafting the article.
MRW and MT contributed to experimental design and critically revised the
manuscript for intellectual content. DRT contributed to experimental design
and data analysis, with critical revision of the manuscript for intellectual
content and gave final approval of the version published.

Funding This work was supported by an MRC grant awarded to DRT.

Competing interests None.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement No additional data are available.

Open Access This is an Open Access article distributed in accordance with
the terms of the Creative Commons Attribution (CC BY 3.0) license, which
permits others to distribute, remix, adapt and build upon this work, for
commercial use, provided the original work is properly cited. See: http://
creativecommons.org/licenses/by/3.0/

REFERENCES
1. Matthay MA, Ware LB, Zimmerman GA. The acute respiratory

distress syndrome. J Clin Invest 2012;122:2731–40.
2. Rubenfeld GD, Caldwell E, Peabody E, et al. Incidence and

outcomes of acute lung injury. N Engl J Med 2005;353:1685–93.
3. Parekh D, Dancer RC, Thickett DR. Acute lung injury. Clin Med

2011;11:615–18.4.
4. Matute-Bello G, Frevert CW, Martin TR. Animal models of acute lung

injury. Am J Physiol Lung Cell Mol Physiol 2008;295:L379–99.
5. Tapping RI, Akashi S, Miyake K, et al. Toll-like receptor 4, but not

toll-like receptor 2, is a signaling receptor for escherichia and
salmonella lipopolysaccharides. J Immunol 2000;165:5780–7.

6. Jansson AH, Eriksson C, Wang X. Lung inflammatory responses
and hyperinflation induced by an intratracheal exposure to
lipopolysaccharide in rats. Lung 2004;182:163–71.

Lax S, Wilson MR, Takata M, et al. BMJ Open Resp Res 2014;1:e000014. doi:10.1136/bmjresp-2013-000014 7

Open Access

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


7. Alm A-S, Li K, Yang D, et al. Varying susceptibility of pulmonary
cytokine production to lipopolysaccharide in mice. Cytokine
2010;49:256–63.

8. Perkins GD, Chatterjie S, McAuley DF, et al. Role of nonbronchoscopic
lavage for investigating alveolar inflammation and permeability in acute
respiratory distress syndrome. Crit Care Med 2006;34:57–64.

9. Uchida T, Shirasawa M, Ware LB, et al. Receptor for advanced
glycation end-products is a marker of type I cell injury in acute lung
injury. Am J Respir Crit Care Med 2006;173:1008–15.

10. Su X, Lee JW, Matthay ZA, et al. Activation of the α7 nAChR
reduces acid-induced acute lung injury in mice and rats. Am J
Respir Cell Mol Biol 2007;37:186–92.

11. Kutscher HL, Gao D, Li S, et al. Toxicodynamics of rigid polystyrene
microparticles on pulmonary gas exchange in mice: implications for
microemboli-based drug delivery systems. Toxicol Appl Pharmacol
2013;266:214–23.

12. Li Y, Cai M, Sun Q, et al. Hyperoxia and transforming growth factor β1
signaling in the post-ischemic mouse heart. Life Sci 2013;92:547–54.

13. Mou Y, Wilgenburg BJ, Lee Y-J, et al. A method for
hypothermia-induction and maintenance allows precise body
and brain temperature control in mice. J Neurosci Methods
2013;213:1–5.

14. Wilson MR, O’Dea KP, Dorr AD, et al. Efficacy and safety of inhaled
carbon monoxide during pulmonary inflammation in mice. PLoS
ONE 2010;5:e11565.

15. DeMeulenaere S. Pulse oximetry: uses and limitations. J Nurse
Pract 2007;3:312–17.

16. Kuida H, Hinshaw LB, Gilbert RP, et al. Effect of Gram-negative
endotoxin on pulmonary circulation. Am J Physiol 1958;192:335–44.

17. Weng T, Karmouty-Quintana H, Garcia-Morales LJ, et al.
Hypoxia-induced deoxycytidine kinase expression contributes to
apoptosis in chronic lung disease. FASEB J 2013;27:2013–26.

18. Davis RTI, Bruells CS, Stabley JN, et al. Mechanical ventilation
reduces rat diaphragm blood flow and impairs oxygen delivery and
uptake. Crit Care Med 2012;40:2858–66.

19. Rancourt RC, Veress LA, Ahmad A, et al. Tissue factor pathway
inhibitor prevents airway obstruction, respiratory failure and death
due to sulfur mustard analog inhalation. Toxicol Appl Pharmacol
2013;272:86–95.

20. Pichiule P, Chavez JC, Schmidt AM, et al. Hypoxia-inducible
factor-1 mediates neuronal expression of the receptor for advanced
glycation end products following hypoxia/ischemia. J Biol Chem
2007;282:36330–40.

21. Kaner RJ, Crystal RG. Compartmentalization of vascular endothelial
growth factor to the epithelial surface of the human lung. Mol Med
2001;7:240–6.

22. Mura M, dos Santos CC, Stewart D, et al. Vascular endothelial
growth factor and related molecules in acute lung injury. J Appl
Physiol 2004;97:1605–17.

23. Thickett DR, Armstrong L, Christie SJ, et al. Vascular endothelial
growth factor may contribute to increased vascular permeability in
acute respiratory distress syndrome. Am J Respir Crit Care Med
2001;164:1601–5.

24. Roberts JR, Perkins GD, Fujisawa T, et al. Vascular endothelial
growth factor promotes physical wound repair and is anti-apoptotic in
primary distal lung epithelial and A549 cells. Crit Care Med
2007;35:2164–70.

25. Thickett DR, Armstrong L, Millar AB. A role for vascular endothelial
growth factor in acute and resolving lung injury. Am J Respir Crit
Care Med 2002;166:1332–7.

26. Kerr EC, Raveney BJE, Copland DA, et al. Analysis of retinal
cellular infiltrate in experimental autoimmune uveoretinitis reveals
multiple regulatory cell populations. J Autoimmun 2008;31:354–61.

27. Early MA, Lishnevsky M, Gilchrist JM, et al. Non-invasive diagnosis
of early pulmonary disease in PECAM-deficient mice using infrared
pulse oximetry. Exp Mol Pathol 2009;87:152–8.

28. Chu V, Otero J, Lopez O, et al. Method for non-invasively recording
electrocardiograms in conscious mice. BMC Physiol 2001;1:6.

29. Mitchell GF, Jeron A, Koren G. Measurement of heart rate and Q-T
interval in the conscious mouse. Am J Physiol 1998;274:H747–51.

8 Lax S, Wilson MR, Takata M, et al. BMJ Open Resp Res 2014;1:e000014. doi:10.1136/bmjresp-2013-000014

Open Access


