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Abstract

Drug discovery is an expensive, lengthy, and sometimes dangerous process. The ability to make accurate compu-
tational predictions of drug binding would greatly improve the cost-effectiveness and safety of drug discovery and
development. This study incorporates ensemble docking, the use of multiple protein conformations extracted from a
molecular dynamics trajectory to perform docking calculations, with additional biomedical data sources and machine
learning algorithms to improve the prediction of drug binding. We found that we can greatly increase the classification
accuracy of an active vs a decoy compound using these methods over docking scores alone. The best results seen here
come from having an individual protein conformation that produces binding features that correlate well with the active
vs. decoy classification, in which case we achieve over 99% accuracy. The ability to confidently make accurate pre-
dictions on drug binding would allow for computational polypharamacological networks with insights into side-effect
prediction, drug-repurposing, and drug efficacy.

1 Introduction

Machine learning is currently being used to advance many scientific disciplines, including drug binding predictions,
and shows promise in increasing accuracy enough to make reliable polypharmacological predictions. Chemical drug
features have been combined with molecular docking scores in machine learning models to rescore the interactions
of one candidate drug to multiple proteins [1]. Components of docking scoring functions can be used as features in a
machine learning model to greatly improve the accuracy of identifying active compounds in models specific for one
protein [2]. A study on protein druggability used protein features in machine learning models to predict whether or
not a protein is druggable [3].

Molecular flexibility can contribute to a favorable change in free energy of binding [4, 5, 6]. Protein-ligand complexes
undergo a wide range of motions ranging from small changes in binding site residues to large-scale motions of entire
protein domains. Molecular docking is an efficient (but not highly accurate) computational method that predicts how
and how well a drug will bind to a protein. To keep these calculations efficient in order to investigate large libraries of
chemical compounds, proteins are generally kept static or mostly static in which only a few selected side chains can
rotate. Commonly, a crystal structure of the protein (experimentally resolved 3-dimensional protein structure) is used
in molecular docking in which a ligand was bound for crystallization but removed from the Protein Data Bank (PDB)
[7] file for docking. However, proteins may exist in multiple druggable states, and potentially none of these states are
those favored for crystallization and may differ from those favored by a different bound compound.

Ensemble docking is used here to describe the process of using multiple possible protein conformations in molecular
docking to represent many potentially druggable states. In this case we use molecular dynamics to generate a trajectory
of protein movement and select distinct conformations from the trajectory. Previous studies have shown the usefulness
of this technique to improve molecular docking in general [8]. However, ensemble docking is still not perfect and
there is no way to pick the best conformation used in ensemble docking without prior knowledge on sets of binding
and non-binding compounds. There also still remains deficiencies in the molecular docking scoring functions which
must assume a fixed functional form.

This paper explores the combination of ensemble docking, biomedical data sources, and machine learning algorithms
to greatly increase the accuracy of binding predictions. In this study, we investigate Tyrosine-protein kinase Lck
(LCK) which is implicated as a drug target in many cancers and also known to have toxic effects when unintentionally
targeted. LCK is also the subject of a previous study in our lab that investigates theoretically more accurate binding
calculations than molecular docking[9].
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2 Methods

In this paper we perform ensemble docking by first collecting protein conformations from a molecular dynamics
trajectory and performing molecular docking with these structures. We collect features on our drug set and also
generate features on the protein conformations. We use a random forest regressor method to rate the importance of
features and then investigate several machine learning models using K Nearest Neighbors (Knn) machine learning
algorithm for classification of active (binding) vs decoy compounds (non-binding).

2.1 Data Collection

The various types of features collected are described below and the total number of features collected for each category
is given in Table 1.

• Binding Descriptors The conformations of LCK used in this study are those extracted from a molecular dy-
namics simulation used for molecular mechanics and generalized Born and surface area continuum solvation
(MM/GBSA) calculations in a previous study. Details on the ensemble docking method used can be found in
the published work [9]. The conformations are extracted from the molecular dynamics trajectory using a root
mean squared deviation clustering method of all the atoms near the binding site. The results of the clustering
method is distinct conformations in which the first selected conformation has the most similar frames in the
trajectory. Therefore, the first conformation is considered to be the conformation in which the protein is in
most often, with the last conformation being a rare, but potentially important, state. The previous study used
homology modeling to predict more complete structures of different states of LCK and the one used here corre-
sponds to a homology model made using PDB structure 1QCF [10]. This structure is of HCK and chosen based
on sequence identity. This model is of the inactive state. Active and decoy compounds for LCK come from
the Directory of Useful Decoys (DUD-e) [11] and are prepared for docking using modified ADT scripts and a
wrapper script for automation. Docking was performed using VinaMPI [12], which allows the distribution of a
large number of Autodock Vina [13] docking jobs on MPI-enabled high-performance computers. The default
number of models per docking job (predicted bound drug conformations with binding scores) was changed to
collect up to 20 models per docking job which was for the MM/GBSA protocol. The results of the docking jobs
were submitted to Autodock Vina using the “–score-only” option to collect the individual terms calculated in the
scoring function. This includes terms for gauss1, gauss2, repulsion, hydrophobic, and hydrogen interactions.
The values for all the models and averages of each term for all models are kept. There are also features for the
final docking score and a normalized ranking.

• Protein Descriptors Since we are only considering one protein here, but seven different conformations, we
collected features using two different webservers that calculate features using the 3-dimensional structure pro-
vided in a PDB file. These servers include Coach [14, 15] and 2struc [16]. Coach calculates features used for
ligand binding site predictions and 2struc gives information on the actual secondary structure of a 3-dimensional
protein structure (i.e. not predicted secondary structure from amino acid sequence).

• Drug Descriptors There are 28,536 different molecules (drugs) for which we collect features. Drug features
are calculated using the Dragon Software [17]. Dragon can calculate over 5 thousand molecular descriptors,
including the simplest atom types, functional groups and fragment counts, topological and geometrical descrip-
tors, and three-dimensional descriptors. It also includes several property estimations like logP and drug-like
alerts like Lipinski’s alert. There are 1,058 descriptors excluded because their values are constant values, near-
constant values, or standard deviation less than 0.0001. In this study three-dimensional descriptors are also left
out because the input structures for Dragon are the predocking structures and not those predicted by molecular
docking.

• Labels A drug is labeled as the positive class if it is a known active for LCK in DUD-e [11]. The drug is labeled
as the negative class if it comes from the DUD-e decoy set for LCK. Since we do not know the conformation in
which each drug binds, and it could potentially bind to all conformations, the drug is labeled the same for each
conformation.
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Table 1: The total number of features in each category for the base dataset, the best 100 features for the whole dataset,
and the best features for each protein conformation (Conf 1-7).

Category Base Best Conf 1 Conf 2 Conf 3 Conf 4 Conf 5 Conf 6 Conf 7
Drugs 2,792 99 10 54 20 7 5 10 7
Protein 103 0 0 0 0 0 0 0 0
Binding 109 1 0 1 0 8 0 0 8
The total 3004 100 10 55 20 15 5 10 15

2.2 Feature Selection

A random forest regressor method implemented in scikit-learn [18] is used to rate all of the features by importance
when classifying compounds as active vs. decoy. This was done using all conformations at once and also one con-
formation at a time. The dataset was first balanced by randomly selecting the same number of decoy compounds as
actives. We also selected some protein features based on their ability to identify the protein conformation.

2.3 Classification

The classification in this study is done using the scikit-learn [18] Knn implementation. Knn is a fairly simple machine
learning algorithm in which a test object is classified by the majority vote of its K nearest neighbors, thus having the
same class as most of its neighbors. There are many different measures that quantify the closeness of two objects.
Several distance measures, K = 1, 2, 3, 4, and 5 nearest neighbors, and n = 10, 5, and 2 for n-fold cross validation
were evaluated. Since the data is unbalanced (with approximately 50 decoys to every active compound), the dataset
is first balanced by randomly selecting the same number of decoys as actives. We first select all active drugs in the
dataset such that the label = 1, and get the total number of all active drugs as a sampleSize. For ten experiments, we
randomly select a total of sampleSize decoy drugs. The sample() method, which is in pandas.DataFrame(), is used
to randomly select the decoy set. After that, we merge the negative and positive data into one dataset and n-fold cross
validation is performed on this set. To prepare the data for the machine learning, we split the data into X and y such
that X holds all the features except the label and y represents the label column. For each n-fold, we provide indices
(sKf ) to the knn method (where neighbors = k) for testing and training using the StratifiedKFold() method to
ensure a balance of positive and negative classes. Finally, cross val predict() method is used with knn, X , y, and
sKf to predict if the drug is an active or a decoy. The metrics presented in the results is an average over the ten
experiments. The process is given in Algorithm 1.

Algorithm 1
positiveData, sampleSize = Select all drugs such as label = 1
for each experiment ei = 1, 2, ..10 do

negativeData = select sampleSize decoy drugs
merge the negativeData and positiveData into one dataset
split the data into X = all features except label and y = label
for each n=1,2,10 n-fold do

sKf = train/test indices to split data into balanced train/test sets
set up knn with n neighbors = k
get the y − predict by running cross val predict() method with knn, X , y, and sKf

end for
end for

In some cases we want to reduce our feature set to the smallest size that gives the best metrics. In this case, classi-
fication was performed with the top 5 features with the best predicted contributions to the classification and the next
5 most important features are incrementally added. The optimal small feature set is selected based on the AUC as
defined in Table 2.

Some of our analysis did not work with the cross validation method described. In this case we still balanced the data
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as described, tested for the same K values, evaluated testing set sizes of 10%, 20%, and 50% of the data, and averaged
results over ten experiments.

2.4 Evaluation

In this study we compare three different ways of looking at the data using the machine learning algorithm and also
compare the performance to the computed docking score. Docking scores are typically used for ranking compounds
from most likely to least likely to bind and there is no standard that defines an exact docking score that determines
a binding prediction. In order to compare binding predictions from the docking score alone to the machine learning
models, the maximum Youden’s index (or J value) is calculated for each model. The best J value is calculated from
the docking score receiver operator characteristic (ROC) curve and used as a cut-off to define true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) values for the docking results. All the metrics presented in
the Results are defined in Table 2. The three different data models are described below.

• Model 1 In this model, we split the dataset based on the protein conformation number, giving us seven different
datasets. The assumption here is that one of the conformations best represents the druggable state.

• Model 2 In this model, we keep all entries for every drug combined with each conformation. We ensure that all
entries for one drug (seven total - one for each conformation) are entirely in the testing or entirely in the training
set. The assumption here is that the drug may bind to all conformations of the protein at varying rates.

• Model 3 In this model, a consolidated dataset is made by keeping one entry per drug. The entry that is kept is
the one with the best overall docking score. The assumption here is that the conformation with the best docking
score is the preferred conformation for actual binding. This method has shown to improve docking results with
ensemble docking [8].

Table 2: Metrics used in this study

Name Definition Formula

Youden’s index
Performance of dichotomous test. The value 1 indicates a perfect test

and -1 indicates a useless test.
TP

TP+FN + TN
TN+FP + 1

AUC

Area under the curve for the ROC curve. The probability P that a
randomly chosen positive instance ranks higher than a randomly

chosen negative one (X0 and X1 are ranks for negative and positive
instances, respectively).

P (X1 > X0)

Accuracy Percent of correct predictions TP+TN
TP+FP+TN+FN

F1 Harmonic mean of precision and recall 2TP
2TP+FP+FN

Precision Positive predictive value TP
TP+FP

Recall True positive rate TP
TP+FN

3 Results
3.1 Feature Selection

The top 100 features are kept when using the entire dataset for feature selection and also the top 100 features per
protein conformation. The types of features important for classifying the entire dataset are given in Table 1. The total
number of features that gave the best machine learning model AUC per individual conformation and their categories
are given in Table 1 as well. Only conformations 2, 4, and 7 had important binding features. Just over half of the
important features for conformations 4 and 7 are binding features. There are 28 protein features that have a weight
greater than zero when selected for classification of the protein conformation.
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3.2 Youden’s index for docking ROC curves

The maximum Youden’s index (or J value) is calculated for each model. The best J value is used to define TP, FP, TN,
and FN values for each model using docking scores. The best J values and the docking score cut-off for each model
are given in Table 3.

Table 3: Youden’s Index for each models.

Value Model 1 Model 2 Model 3
Conf 1 Conf 2 Conf 3 Conf 4 Conf 5 Conf 6 Conf 7

Docking Score
cut-off -9.2 -8.2 -8.5 -2.8 -8.3 -8 37.4 -8.1 -8.9

Best J Value 0.1600 0.0829 0.0832 0.1052 0.1142 0.2103 0.0125 0.0874 0.1283

Table 4: Model 1. Conf = conformation; MD = molecular docking; ML = machine learning model; Acc. = Accuracy;
Prec. = Precision

All Features
Conf MD AUC ML AUC MD Acc. ML Acc. MD F1 ML F1 MD Prec. ML Prec. MD Recall ML Recall

1 0.6189 0.7964 0.5806 0.7964 0.4399 0.8098 0.6625 0.76 0.3294 0.8666
2 0.5448 0.7919 0.5389 0.7919 0.6225 0.8059 0.527 0.7555 0.7603 0.8637
3 0.5397 0.7991 0.5343 0.7991 0.4311 0.812 0.554 0.7633 0.3529 0.8674
4 0.5518 0.7874 0.5496 0.7874 0.6477 0.8017 0.5319 0.7516 0.8279 0.8591
5 0.5739 0.7907 0.5591 0.7907 0.6392 0.8042 0.541 0.7554 0.7809 0.8599
6 0.6477 0.7948 0.6082 0.7948 0.6113 0.8067 0.6066 0.763 0.6162 0.856
7 0.4209 0.7944 0.5063 0.7944 0.6688 0.8124 0.5032 0.7473 0.9971 0.89

Best 100 features of the whole dataset
Conf MD AUC ML AUC MD Acc. ML Acc. MD F1 ML F1 MD Prec. ML Prec. MD Recall ML Recall

1 0.6167 0.8607 0.5785 0.8607 0.4387 0.868 0.6571 0.8253 0.3294 0.9154
2 0.5453 0.8584 0.5388 0.8584 0.6224 0.8651 0.5269 0.8262 0.7603 0.9081
3 0.5385 0.8526 0.5375 0.8526 0.4328 0.8604 0.5595 0.8176 0.3529 0.9081
4 0.555 0.8503 0.5521 0.8503 0.649 0.8579 0.5337 0.8166 0.8279 0.9037
5 0.5713 0.8549 0.5554 0.8549 0.6372 0.8617 0.5383 0.823 0.7809 0.9043
6 0.6401 0.8544 0.6044 0.8544 0.6091 0.8623 0.6022 0.8181 0.6162 0.9118
7 0.4158 0.8613 0.5063 0.8613 0.6688 0.8689 0.5032 0.8241 0.9971 0.919

Best 100 features for conformation
Conf MD AUC ML AUC MD Acc. ML Acc. MD F1 ML F1 MD Prec. ML Prec. MD Recall ML Recall

1 0.6186 0.7275 0.5785 0.7275 0.4387 0.7378 0.6569 0.7112 0.3294 0.7665
2 0.5499 0.8304 0.5415 0.8304 0.6238 0.8372 0.5289 0.8052 0.7603 0.8721
3 0.5425 0.6793 0.536 0.6793 0.432 0.6921 0.5571 0.6656 0.3529 0.721
4 0.5454 0.9795 0.549 0.9795 0.6474 0.9798 0.5315 0.9642 0.8279 0.996
5 0.5679 0.7617 0.5517 0.7617 0.6353 0.7772 0.5356 0.7299 0.7809 0.8312
6 0.6422 0.8814 0.6057 0.8814 0.6099 0.8871 0.6038 0.8463 0.6162 0.9322
7 0.4102 0.9816 0.506 0.9816 0.6687 0.9818 0.503 0.9714 0.9971 0.9925

Best features for conformation
Conf MD AUC ML AUC MD Acc. ML Acc. MD F1 ML F1 MD Prec. ML Prec. MD Recall ML Recall

1 0.6227 0.8959 0.5799 0.8959 0.4396 0.8999 0.661 0.8668 0.3294 0.9356
2 0.5498 0.9031 0.5422 0.9031 0.6242 0.9068 0.5294 0.8736 0.7603 0.9426
3 0.5445 0.9357 0.5379 0.9357 0.433 0.9368 0.5603 0.921 0.3529 0.9532
4 0.5542 0.9928 0.5537 0.9928 0.6498 0.9928 0.5347 0.9893 0.8279 0.9963
5 0.5704 0.914 0.556 0.914 0.6375 0.9164 0.5387 0.8914 0.7809 0.9428
6 0.6444 0.9244 0.6104 0.9244 0.6127 0.9264 0.6094 0.9027 0.6162 0.9515
7 0.4224 0.9949 0.5061 0.9949 0.6687 0.9949 0.5031 0.9918 0.9971 0.9979

3.3 Evaluation

Many metrics are reported here, but with a focus on maximizing the F1 score, this metric is bold in all the tables and
the best models are highlighted in gray. The results for Model 1 are given in Table 4. The results presented here are
for K = 1 nearest neighbors, n = 10 n-fold cross validation, and running in the ‘Auto’ mode (in which the algorithm
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Table 5: Model 2. MD = molecular docking; ML = machine learning model; Acc. = Accuracy; Prec. = Precision

Best 100 features of the whole dataset
MD AUC ML AUC MD Acc. ML Acc. MD F1 ML F1 MD Prec. ML Prec. MD Recall ML Recall

0.5534 0.8688 0.5479 0.8712 0.5243 0.8815 0.5814 0.8474 0.4781 0.9202
Best 100 features of the whole dataset + 2 best protein features

MD AUC ML AUC MD Acc. ML Acc. MD F1 ML F1 MD Prec. ML Prec. MD Recall ML Recall
0.5437 0.8556 0.5388 0.8588 0.5106 0.8687 0.5735 0.8357 0.4618 0.9056

Best 100 features of the whole dataset + 28 informative protein features
MD AUC ML AUC MD Acc. ML Acc. MD F1 ML F1 MD Prec. ML Prec. MD Recall ML Recall

0.5396 0.8499 0.5403 0.8484 0.5002 0.8508 0.5261 0.8078 0.4778 0.9007

Table 6: Model 2 and 3 using best 100 features

Model AUC Accuracy F1 Precision Recall
2 0.8688 0.8712 0.8815 0.8474 0.9202
3 0.8665 0.8662 0.8687 0.8305 0.9116

Table 7: Model 3. MD = molecular docking; ML = machine learning model; Acc. = Accuracy; Prec. = Precision

All Features
MD AUC ML AUC MD Acc. ML Acc. MD F1 ML F1 MD Prec. ML Prec. MD Recall ML Recall

0.5862 0.7985 0.5552 0.7985 0.6198 0.811 0.5413 0.7641 0.725 0.8643
Best 100 Features of the whole dataset

MD AUC ML AUC MD Acc. ML Acc. MD F1 ML F1 MD Prec. ML Prec. MD Recall ML Recall
0.5894 0.8543 0.5561 0.8543 0.6203 0.8614 0.5421 0.8217 0.725 0.9051

Best 100 Features of the wholeset plus the 12 docking features
MD AUC ML AUC MD Acc. ML Acc. MD F1 ML F1 MD Prec. ML Prec. MD Recall ML Recall

0.5859 0.8227 0.554 0.8227 0.6192 0.8321 0.5403 0.7906 0.725 0.8784
Best 100 Features of the whole dataset plus all docking features

MD AUC ML AUC MD Acc. ML Acc. MD F1 ML F1 MD Prec. ML Prec. MD Recall ML Recall
0.5841 0.7241 0.5529 0.7241 0.6186 0.7441 0.5394 0.6941 0.725 0.8019

Docking features alone
MD AUC ML AUC MD Acc. ML Acc. MD F1 ML F1 MD Prec. ML Prec. MD Recall ML Recall

0.5881 0.6624 0.5543 0.6624 0.6193 0.6819 0.5405 0.6449 0.725 0.7235
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attempts to choose the best metric to define the nearness of neighbors). These values usually give the best results with
not a lot of variation. We evaluate Model 1 using all the features, the best 100 features from feature selection on the
entire dataset, the best 100 features when doing feature selection on each individual conformation, and a subset of the
last feature set that gives the best result. Interestingly, conformation 7 always performs the best by machine learning
F1 even though it is the worst in many docking metrics. Since we saw a decrease in metric values when going from
features selected on the entire dataset to conformations, we did a further analysis on the best subset of features and
picked the subset that gave the best machine learning AUC. All conformations perform better with their smaller subset
than any conformation using the best 100 features obtained using the entire dataset (the best again is conformation 7
and highlighted in yellow).

The results for Model 2 are given in Table 5. Since we had to ensure drugs were always in the testing or training set
in this model we could not run Model 2 with the same cross validation method used for Model 1. The results here
are for a 90:10 training/testing split and metrics are averages of running the analysis 10 times with a different random
set of decoys. We wanted to test the inclusion of protein conformation features. We tested this by using a base model
of the best 100 features selected using the whole dataset and then adding the 2 protein features most important when
classifying the conformation and also all 28 with a non-zero importance. We see a decline in performance at each step.

We wanted to run Model 3 with cross validation but also wanted to directly compare Model 2 and Model 3. Therefore,
Table 6 gives a comparison of both models using the same protocol as used for Model 2. They both have very similar
metrics, with the average of Model 2 slightly higher, but some of the individual runs of each performing better than
the other. Table 7 gives the results of Model 3 using cross validation. Here we compare the models using the entire
feature set, the best 100 features, the best 100 features plus the base docking features (for the best predicted docking
model, averages of all, the final docking score, and a ranking), the best 100 features plus all docking features (includes
up to 20 docked models), and the docking features alone. The best 100 features performs the best, but all still have
an improvement over docking alone. Using only docking features in the machine learning model actually has a slight
decrease for recall compared to the docking calculation (highlighted in yellow), but the better precision with the
machine learning model gives it a better F1.

4 Discussion

The best Model 1 is obtained using conformation 7 and the small subset of features obtained doing feature selection on
just that conformation’s subset of data and only taking the number of features that gives the best AUC. Conformation
7 performs the worst according to docking AUC, however the docking recall is nearly as high as the machine learning
recall. This is because the best J-value is actually quite low and the docking cut-off is one that you would not expect to
signify an active compound (+37.4, when the most negative scores are best). Because of this cut-off there are a large
number of false positives driving down the docking precision. We believe the success of conformation 7 for machine
learning is the fact that it has so many binding features that correlate with the active vs decoy classification (8 of the
15 most important features). We see the same trend in the next best Model 1 which is obtained using conformation
4 and its subset of important features, which also has 8 out of 15 as binding features. You can see from the docking
cut-off value for classification that conformation 4 and 7 actually have the worst docking values. However, when
using the individual components in the machine learning algorithm this information can classify active vs. decoy
with great precision and recall. This shows the importance of the terms calculated for a docking scoring functions
but the deficiencies in the scoring functions themselves. Since the length of the trajectory used to capture different
conformations is only 200 ns, there is not a huge structural variation in the conformations. However, upon visualization
it appears that conformation 7 may have a slightly smaller binding pocket which may allow more favorable interactions
with the active compounds.

Model 2 looks at keeping all entries in the dataset. Model 2 performs better with the best 100 features than any single
conformation by F1 metrics. We did not get any improvement in any metrics by adding protein features. This could
be because there is not enough variation in these values to help with predictions. Including such features when there
are larger differences may provide further insight. Information on which conformation drugs bind to and which they
do not (so drugs could be marked as active to one conformation and decoy to another) could make these features
more useful as well. However, creating that dataset would be difficult if not impossible and is discussed further in
the limitations. Even though we were not successful using protein features in this study, we include them here for
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thoroughness. We are also interested in models that incorporate multiple proteins and conformations obtained from
longer trajectories, therefore we are still interested in the usefulness of these features. We can see from the Model
3 results that although the binding features play a significant role in good classification when they correlate with the
classification, forcing all the binding features to be in the model does not help.

We found in this study that we can successfully use machine learning to increase the prediction of drug binding and
using drug features calculated from protein conformations selected from molecular dynamics trajectories increases the
predictability of the models. Lessons learned in this study will be used to build models of different proteins to be used
in drug discovery applications. In fact, we are already developing an “all kinase” model to predict drug repurposing
and potential side-effects.

4.1 Limitations

There are several limitations of this study that warrant further investigation. We are likely overfitting the data, as
feature selection was performed on the same data used in the validation. We have omitted a large number of the
decoy compounds from feature selection to balance the data. However, in this initial study, we wanted to have a large
number of active compounds in the selection to better understand the features that drive the classification. We plan to
increase the size of our dataset to enable the omission of a large number of actives for validation in the future. This
study utilizes DUD-e, in which the decoys are only assumed non-binders. However, in this study we are using the
enhanced version of the dataset that has a reduced number of false decoys by having a more stringent filtering process
and experimental validation when available. Another limitation is the fact that active drugs from the DUD-e dataset
are labeled as active for all the possible conformations assessed in this study. However, if we only use protein-drug
complexes with experimentally resolved conformations we are setting ourselves up for further limitations as they may
not relate to how the drug binds to the protein when not in the experimental conditions used to resolve the structures.

4.2 Future Work

Some potential future directions of this research include, (1) testing other machine learning algorithms, (2) incorpo-
rating data on multiple possible binding sites, (3) having a strict validation set not used in feature selection, and (4)
applying models to novel drug discovery applications.

5 Conclusion

We successfully incorporated ensemble docking, biomedical and biological data sources, and machine learning to
improve binding predictions. The addition of protein features did not help this model but it may in cases where
there is more variation (such as if multiple proteins are in the dataset). The best results seen here come from having
an individual conformation that produces binding features that correlate well with the active vs decoy classification,
giving models with over 99% accuracy. We also see that every way we examine the data using machine learning gives
improvement over molecular docking alone.
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