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Abstract A human betaretrovirus resembling mouse mam-
mary tumor virus has been characterized in patients with pri-
mary biliary cirrhosis. The agent triggers a disease-specific
phenotype in vitro with aberrant cell-surface expression of
mitochondrial antigens. The presentation of a usually seques-
tered self-protein is thought to lead to the loss of tolerance and
the production of anti-mitochondrial antibodies associated
with the disease. Similar observations have been made in
mouse models, where mouse mammary tumor virus infection
has been linked with the development of cholangitis and pro-
duction of anti-mitochondrial antibodies. The use of combi-
nation antiretroviral therapy has been shown to impact on
histological and biochemical disease in mouse models of au-
toimmune biliary disease and in clinical trials of patients with
primary biliary cirrhosis. However, the HIV protease inhibi-
tors are not well tolerated in patients with primary biliary
cirrhosis, and more efficacious regimens will be required to
clearly link reduction of viral load with improvement of
cholangitis.

Keywords Autoimmune liver disease - Primary biliary
cirrhosis - Human betaretrovirus - Mouse mammary tumor
virus - Viral pathogenesis - Combination antiretroviral therapy

This article is part of the Topical Collection on Intra-abdominal
Infections, Hepatitis, and Gastroenteritis

D. Sharon + A. L. Mason
Department of Medicine, University of Alberta, Edmonton, AB,
Canada

A. L. Mason (P<)

Division of Gastroenterology and Hepatology, Center of Excellence
in Gastrointestinal Inflammation and Immunity Research, University
of Alberta, 7-142 KGR, Edmonton, AB T6G 2E1, Canada

e-mail: andrew.mason@ualberta.ca

Introduction

Primary biliary cirrhosis (PBC) is a complex autoim-
mune liver disease of unknown etiology [1]. Our team
first characterized a human betaretrovirus resembling
mouse mammary tumor virus (MMTV) in PBC in
2003 [2]. Since then, our research has been directed
towards creating diagnostic virological assays, assessing
the role of MMTV in mouse models of autoimmune
biliary disease and conducting clinical trials using anti-
retroviral therapy. Attention has also been directed to-
wards genome-wide association studies in populations
with PBC [3-6]. Collectively, these studies show that
much of the genetic risk associated with PBC is linked
with the pathogenesis of other immune disorders.
Furthermore, it has been theorized that several polymor-
phisms linked with PBC and related immune disorders
confer a relative state of immunodeficiency, suggesting
diseases may arise because of an inability to combat
specific microbial infections [7, 8]. The shift in empha-
sis towards inadequate immune responses has also been
seen in many of the “spontaneous” immunodeficiency
mouse models for PBC that will be discussed in more
detail in this review [7, 9]. A parallel of autoimmune
phenomena occurring in the setting of immunodeficien-
cy has also been documented in patients with HIV in-
fection. In this setting, autoantibody production occurs
in parallel with progressive lymphopenia and immune
dysregulation [10]. Also, the pathological features of op-
portunistic infections often resemble a phenotype similar to
autoimmune liver disease, such as AIDS-related
cholangiopathy resembling sclerosing cholangitis [11].
Herein, we discuss the circumstantial data linking a human
betaretrovirus with PBC and provide direction for further
studies that may bridge the gap for providing robust data
supporting a causal relationship for microbe and disease.
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Primary Biliary Cirrhosis

PBC is an autoimmune cholestatic liver disease associated
with the progressive immune destruction of intrahepatic bile
ducts and production of anti-mitochondrial antibodies (AMA)
[1]. It is a rare disease occurring in 1:2500 to 1:100,000 world-
wide with an increasing prevalence moving away from the
equator. PBC is 10 times less common in men and observed
in approximately 1 in 500 middle-aged women [1]. The his-
tological disease is characterized by a non-suppurative
cholangitis with granulomatous destruction of 30- to 80-um
interlobular bile ducts. The progressive ductopenia leads to
the accumulation of bile in the liver resulting in fibrosis.
Patients present with fatigue, itching, sicca syndrome, and
occasionally right upper quadrant pain. To make the diagnosis
of PBC, patients require two of three of the following criteria
with cholestatic liver tests, AMA serology, and/or liver histol-
ogy compatible with PBC [1].

The only licensed therapy for PBC is ursodeoxycholic acid
(UDCA) therapy, which acts as a choleretic agent to eliminate
bile from the liver. However, a third of patients still develop
progressive disease, and as a result, PBC accounts for 10 % of
patients requiring liver transplantation in Canada [1]. Apart
from the study of ursodiol, clinical trials for PBC have been
mainly geared towards investigating immunosuppressive
agents. This is because immunosuppression has proven life
saving for patients with autoimmune hepatitis. However, the
outcomes of similar clinical studies in PBC have been disap-
pointing. Individual treatments have had little impact on halt-
ing the progression of PBC, and specific immunosuppressive
agents have not, therefore, been adopted because of toxicity or
lack of efficacy.

Approximately 95 % of patients with PBC develop AMA
targeting the lipoyl group on a member of the pyruvate dehy-
drogenase complex (PDC)-E2 [12—14]. Interestingly, PDC-
E2-like proteins localize to the surface of biliary epithelial
cells in PBC patient samples both in vivo and in vitro as well
as draining peri-hepatic lymph nodes [15-17]. Of note,
autoreactive CD4+and CD8+ T cells from PBC patients target
the same B cell autoantigen, namely the inner and outer lipoyl
domains of PDC-E2 [18]. The resultant immune response re-
sults in granulomatous destruction of bile ducts, which is
thought to occur through recruitment by cytokines upon the
activation of toll-like receptors (TLR)-3 and TLR-4 in biliary
epithelial cells [19, 20]. However, the role that autoimmunity
plays in disease remains to be resolved. AMA levels have little
bearing on the disease process; AMA-negative patients have
the same prognosis as those with anti-mitochondrial antibod-
ies, and immunosuppression is of limited benefit and only
reserved for a subset of patients [2]. However, there is a gen-
eral agreement that the cell-surface expression of mitochon-
drial proteins in the setting of an active immune response
results in loss of tolerance to PDC-E2 [21].
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Family studies suggest that both genetic and environmental
factors are implicated in the development of PBC. With regard
to an infectious process, unrelated family members can devel-
op disease and PBC clusters geographically in regions, and
migration studies show that the children develop the relative
incidence of PBC in their adopted host country [22-26]. An
infectious disease process is also compatible with observa-
tions from liver transplantation. Histological evidence for re-
current PBC is observed in up to 40 % of patients, and more
potent immunosuppressive regimens with tacrolimus acceler-
ate the onset and severity of recurrent disease [27-31]. In
contrast, cyclosporine A appears to be protective against the
development of recurrent PBC, and as a cyclophylin A inhib-
itor, it has antiviral activity against betaretroviruses, HIV, and
other viral agents [31-33]. Bacteria, viruses, and xenobiotics
have all been implicated as environmental triggers, and each
has been linked in mouse models of disease. However, data is
lacking to firmly link any of these triggers in the development
of PBC [1]. Only the betaretrovirus has been detected in bile
ducts of PBC patients, but these data have not been
reproduced by others.

The pathophysiology of PBC is directly related to the loss
of bile ducts and accumulation of bile acids within the liver
[2]. Accordingly, secondary bile salt, UDCA, is used as a
choleretic to help remove toxic bile [34, 35]. Indeed, there
are data to suggest that PBC patients’ bile may lack protective
factors to counteract the bile acids. For example, PBC pa-
tients’ biliary epithelial cells have increased miR-506 expres-
sion that blocks the translation of anion exchanger 2 protein,
which in turn decreases bicarbonate secretion [36-39]. UDCA
therapy can partially restore the protective effect of the bicar-
bonate “umbrella” to protect against the damage caused by the
acidic bile. UDCA generally ameliorates liver disease in most
PBC patients and has reduced the frequency for transplanta-
tion related to PBC in countries where UDCA treatment is the
standard of care [2]. Nevertheless, approximately a third of
patients do not respond adequately to UDCA, and there is a
need for novel therapeutic approaches to halt PBC.

MMTYV and Breast Cancer

MMTV is endemic in several laboratory mouse strains, where
the virus is transmitted exogenously from mother to weanling
pups through milk [40]. The milk-associated particle travels
from the gut to the spleen where it infects B cells, T cells, and
dendritic cells. B cells infected with MMTYV present the viral-
encoded superantigen, which induces the proliferation of T
cells. These, in turn, promote B cell proliferation, leading to
enhanced MMTYV replication and spread. MMTV has also
been shown to promote B cell activation through binding to
the TLR-4 receptor [41, 42]. Interestingly, after the B cell
bound superantigen stimulates T lymphocyte replication
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through binding to the V3 chain of TCR, the T cells eventu-
ally die off [43]. Accordingly, MMTYV replication is associated
with an increased subset of V3-restricted cells in virally in-
fected tissues as well as a reduced subset of V 3-restricted cells
in peripheral blood.

During infection, circulating lymphocytes carrying MMTV
are passaged to lymphoid tissue, the brain, the liver, and mam-
mary epithelial cells, which deliver multiple viral particles into
milk [44]. MMTV is a slow oncogenic virus that may cause
breast cancer through a variety of mechanisms. The virus is
thought to induce breast cancer mostly through insertional
mutagenesis, where MMTYV integrates upstream and increases
the expression of proto-oncogenes [45]. In addition, MMTV
encodes transforming factors both in the Gag protein and Env
protein that contains an immunoreceptor tyrosine activation
motif [46, 47].

MMTYV also exists as an endogenous virus passed on from
generation to generation due to prior integration into the host
germline DNA [40]. In the C3H breast cancer-prone mouse,
for example, endogenous proviral MMTYV can express exog-
enous virus that results in the development of disease.
However, in most mouse strains, the majority of endogenous
proviral sequences are not infectious due to epigenetic factors,
mutations and deletions within the genome. Similar to exog-
enous virus, endogenous MMTYV strains encode
superantigens that induce the deletion of specific T cells in
utero and therefore prevent infection with exogenous strains
that are restricted to replicating in the deleted subset of T
lymphocytes [43]. Indeed, mice have developed multiple in-
nate and adaptive mechanisms to combat MMTYV infection.
For example, mice that develop robust IL-12/interferon-y re-
sponses limit the spread of MMTYV infection by production of
neutralizing Env antibodies [48]. This observation may be
relevant to the development of PBC because multiple candi-
date genes associated with disease encode variants within the
IL-12 signaling pathway [3—6].

Does MMTYV Infect Humans?

Interest in whether MMTV could infect humans emerged
more than 40 years ago with the detection of betaretrovirus
particles by electron microscopy in milk from breast cancer
patients [49]. Subsequently, viral proteins and nucleic acid
from MMTV were identified in human breast cancer and
non-malignant breast tissues, and evidence for immune re-
sponses to betaretrovirus proteins also emerged. However,
most studies proved difficult to replicate. The virus appeared
at the limits of detection, and concerns were raised about
whether human endogenous retroviruses were being confused
with MMTV. In the 1990s, the “human mammary tumor
virus” was cloned and detected in a proportion of breast can-
cer patient samples by PCR [50]; some groups were able to

replicate the studies while others could not. Accordingly, the
field has not advanced due to an inability to demonstrate de-
finitive proof of infection, such as the demonstration of pro-
viral integration sites in patients [49].

Some of the obstacles against establishing the presence
MMT V-like infection in humans have been resolved however.
For example, Beatrice Pogo’s group has isolated MMT V-like
particles from primary cultures of human breast cancer cells
[51]. Furthermore, it was originally thought that humans could
not be infected by MMTYV because the human transferrin was
unable to act as an MMTYV receptor, whereas the mouse trans-
ferrin receptor could [52—54]. Since then, in vitro studies have
shown that MMTYV can infect and replicate in human cells,
suggesting that other receptors may be expressed on these
cells to allow the entry of MMTV [55-57]. Also, our group
has identified a human betaretrovirus genetically indistin-
guishable from MMTYV in biliary epithelial cells and peri-
hepatic lymph nodes of PBC patient samples [2, 58].

Betaretrovirus Infection as a Potential Risk Factor of PBC

The link of retroviral infection with PBC first emerged 15 years
ago, when false positivity to HIV p24 and a retrovirus isolated
from patients with Sjorgen’s syndrome was discovered in a
subgroup of patients [59]. These data were interpreted as se-
rological reactivity to an undefined virus. Subsequently, the
human betaretrovirus was cloned from a biliary epithelium
cDNA library using a non-biased cloning method; the full-
length proviral sequence was then derived from a PBC pa-
tient’s peri-hepatic lymph node [2, 58]. Similar to observations
in mice, we found that human betaretrovirus levels were higher
in peri-hepatic lymph nodes than the liver; three quarters of
patients had detectable betaretrovirus RNA in lymph node
samples but only a third within the liver. The lack of detectable
viral DNA in control subjects was a reassurance against the
sequences representing a false-positive detection of a human
endogenous retrovirus [60, 61].

Taken together, our studies suggested that prior exposure to
MMTV-like agent might have a role in the development of
PBC. Indeed, the sequence homology of the human
betaretrovirus and MMTV suggested a zoonosis from mice
to humans, as previously observed with the human mammary
tumor virus sequences found in breast cancer patients. Similar
to studies in patients with breast cancer, the human
betaretrovirus was at the limits of detection, and therefore,
we required the use of a nested PCR to detect viral DNA.
As a result, others were unable to replicate our findings. A
North American lab could not find any evidence of hepatic
betaretrovirus using a single round of PCR [62], whereas a
second study from Australia identified betaretrovirus se-
quences in a small number of liver samples but without any
disease specificity for PBC [63]. Collectively, these studies
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questioned the relevance of betaretrovirus infection in PBC
patients, as the virus could not be detected within the liver.
Of note, betaretrovirus infection in peri-hepatic lymph nodes
was not investigated by other laboratories. Furthermore, there
were several inherent problems with PCR studies, not the least
of which was that they may lack sensitivity and the ever-
present concern with PCR carryover causing contamination.

The isolation of virus from the site of disease and detection
of proviral integration sites in the human genome are consid-
ered a gold standard for demonstrating retroviral infection.
Accordingly, we embarked on using this virological approach
to linking human betaretrovirus infection with PBC. In the
first instance, PBC patients’ peri-hepatic lymph nodes were
co-cultured with Hs578T cells to amplify and isolate the virus.
Furthermore, we investigated the presence of betaretrovirus
integrations in total DNA extracted from the liver, lymph
nodes, and biliary epithelium cells extracted from liver trans-
plant recipients. Using ligation-mediated PCR and next-
generation sequencing, we obtained more than 1500 novel
integration sites from PBC patients, as well as patients with
autoimmune hepatitis, but rarely in control subjects. Of inter-
est, betaretroviral integrations were seldom detected in whole
liver DNA but were regularly identified in the majority of
PBC patients’ biliary epithelium and lymph nodes [64].
While these studies provided firm evidence for infection at
the site of disease, it remains to be determined how a barely
detectable viral load can be associated with disease. Moreover,
these data need to be reproduced by others to gain traction in
the scientific community. Finally, the findings merely suggest
a link of infection with disease, and additional studies are
clearly required to provide evidence for a causal association
of betaretrovirus infection and PBC.

Betaretrovirus Infection Triggers the PBC-Specific
Phenotype

The characterization of a human betaretrovirus in patients
with PBC 10 years ago was unexpected because most inves-
tigators were working on the hypothesis that bacteria triggered
autoimmunity by the process of microbial molecular mimicry.
Indeed, anti-mitochondrial antibodies have been shown to re-
act with many bacteria that share antigenic determinants with
human PDC-E2 and other highly conserved oxo-acid dehy-
drogenase proteins. In case-control studies, however, no bac-
terial candidate has been convincingly found in PBC patients’
liver or bile duct samples [21].

In contrast, betaretroviruses have been shown to trigger
aberrant PDC-E2 expression suggesting a straightforward in-
fectious disease model for the generation of loss of tolerance
to self [21]. In preliminary studies, co-cultivation of homoge-
nized lymph nodes from PBC patients with biliary epithelium
resulted in an increased expression of PDC-E2-like antigens
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reactive to AMA on the cell surface, whereas control lymph
nodes had no such effect [65]. Follow-up studies showed that
the transmissible agent could be passaged in serial culture and
the effect was abrogated by y-irradiation. This agent was sub-
sequently characterized as a human betaretrovirus resembling
MMTV. Pure isolates of MMTYV and the human betaretrovirus
were shown to trigger the increased AMA reactivity to PDC-
E2 in normal biliary epithelial cells [2, 64]. Notably, the
in vitro cell culture model neatly paralleled in vivo observa-
tions in PBC patients and mouse models. In studies using PBC
patients’ peri-hepatic lymph nodes, for example, cells with
demonstrable betaretrovirus proteins also displayed aberrant
AMA reactivity [2]. Similarly in mouse models of autoim-
mune biliary disease with spontaneous AMA production,
MMTV proteins and increased PDC-E2 cell-surface expres-
sion were observed in lymphoid tissues and biliary epithelium

[].

MMTYV and Cholangitis Mouse Models

Specific criteria loosely based on Koch’s postulates have been
proposed to demonstrate the central role of specific antigens in
autoimmune disease [66]. These Witebsky’s postulates pro-
pose that an autoimmune disease ought to be reproduced in
animals challenged with the disease-specific autoantigen co-
administered with adjuvant. However, the first attempts to
create a PBC mouse model by administering combinations
of PDC-E2 with adjuvant to healthy strains of mice failed to
trigger anti-mitochondrial antibody production and biliary dis-
ease [67-69]. More recently, several mouse models of auto-
immune biliary disease have been described that spontaneous-
ly produce anti-mitochondrial antibodies and develop liver
disease [70]. It is significant that most of these models are
immune deficient and some succumb as a result of diffuse
inflammatory disease [7].

The model most studied for MMTV involvement in the
generation of autoimmune biliary disease is the NOD.c3c4
congenic mouse [9, 71]. This line was originally modified to
identify genes involved in type-1 diabetes in the non-obese
diabetic (NOD) mouse [72, 73]. While NOD.c3c4 mice were
protected against the development of diabetes, they developed
granulomatous cholangitis, biliary cysts (atypical for PBC), as
well as anti-mitochondrial and antinuclear antibodies. Similar
to observations in the parental NOD strain, the disease could
be transferred to healthy NOD.c3c4-scid mice through injec-
tion of splenocytes, as well as isolated CD4+ T cells, from
diseased mice [74]. Interestingly, the NOD.c3c4.Igp—/— mice
lacking B-lymphocytes were found to have reduced inflam-
matory disease and cholangitis [75]. These studies demon-
strate an essential role for both T- and B-lymphocytes in the
development of autoimmune biliary disease in this model.
Other immune-deficient models were also described that
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develop spontaneous anti-mitochondrial antibody production
and succumbed from multi-organ inflammation, such as the T
cell TGF-f3 receptor I dominant-negative mouse [76], the IL-
2 receptor x-deficient mouse [77], and the Scurfy mouse lack-
ing T regulatory cells [78].

Since MMTV is prevalent in laboratory mice, our group
tested the hypothesis that the anti-mitochondrial antibody pro-
duction occurred as a result of MMTYV expression being linked
with aberrant expression of PDC-E2 in the NOD.c3c4, the
NOD parental strain, the T cell TGF-f3 receptor II dominant-
negative mouse, and the IL-2 receptor o«-deficient mouse,
using appropriate controls [9]. It is well established that en-
dogenous retroviruses can recombine in mice with specific
immune defects to mediate disease [79]. Whereas healthy
C57BL/6 mice encode three full-length endogenous MMTV
proviruses within the genome but do not express infectious
virus. While our studies showed that the C57BL/6 control
mice displayed little evidence of MMTYV, we noted high ex-
pression of MMTV RNA and proteins in the T-cell TGF-f3
receptor I dominant-negative mice and the IL-2 receptor o-
deficient mice, both of which were derived on the C57BL/6
background. Similarly, both the NOD.c3c4 and NOD parental
strain demonstrated high MMTYV levels. Furthermore, all the
AMA -producing mice also had evidence of aberrant expres-
sion of PDC-E2 in cells expressing MMTYV proteins, such as
lymphoid tissues and bile ducts [9].

We next tested whether MMTYV inhibition would have an
effect on cholangitis development in the NOD.c3c4 model
using antiretroviral therapy. Eight-week-old mice were treated
for 12 weeks with lamivudine and zidovudine (AZT/3TC) or
tenofovir and emtricitabine (TDF/FTC), with or without
lopinavir boosted with ritonavir (LPR/r). Response to therapy
was determined biochemically and histologically. A pro-
nounced reduction in cholangitis was observed in mice treated
with TDF/FTC and LPR/r in comparison to the other groups,
including AZT/3TC and LPR/t. Interestingly, a proportion of
NOD.c3c4 mice treated with AZT/3TC developed markedly
elevated levels of MMTYV in the liver, suggesting viral resis-
tance to therapy [71]. Subsequently, mutational analyses of the
MMTV pol gene showed variants (M188V) similar to those
observed with lamivudine resistance in patients with HBV and
HIV infection. Taken together, the studies suggest the possi-
bility that the NOD.c3c4 mouse model of autoimmune biliary
disease may also be an infectious disease model.

Clinical Experience with Antiretroviral Therapy
in Patients with PBC

Several clinical trials have been conducted to assess whether
inhibition of betaretrovirus infection can impact on the disease
process in patients with PBC. In open-label studies, PBC pa-
tients on maintenance ursodeoxycholic acid therapy received

treatment with the reverse transcriptase inhibitors, 3TC, or
combination AZT/3TC for 12 months [80]. The study
showed that while 3TC had little effect on liver dam-
age, AZT/3TC had an impact both biochemically and histo-
logically with improvement in bile duct injury, ductopenia,
and necroinflammatory score. The return of bile ducts is im-
portant as no other therapy has reversed ductopenia in PBC
patients [80]. Of interest, biochemical breakthrough occurred
with both lamivudine and AZT/3TC therapy consistent with
observations of po/ mutations in the mouse model [81].
Subsequent randomized control study of AZT/3TC therapy
for PBC patients was disappointing as patients on therapy
did not achieve the stringent endpoints of normalizing alkaline
phosphatase levels [82]. Nevertheless, AZT/3TC treatment
was associated with significant improvements in hepatic bio-
chemistry (Fig. 1).

Combination antiretroviral therapy with TDF/FTC and
LPR/r has shown efficacy in the NOD.c3c4 mouse model
and was successfully used in clinical practice to normalize
hepatic biochemistry in a newly diagnosed PBC patient co-
infected with HIV and human betaretrovirus [83]. We have
also treated a young PBC patient with severe recurrent disease
following liver transplantation with TDF/FTC and LPR/t. The
patient had an excellent clinical and biochemical response,
and two repeat liver biopsies in 2013 and 2014 showed dimin-
ished histological disease. With this knowledge, we embarked
on a randomized controlled trial to test the efficacy and toler-
ability of TDF/FTC and LPR/r for PBC patients on mainte-
nance ursodeoxycholic acid therapy.

The trial was constructed as a double-blind randomized
controlled crossover study of a 6-month duration using stan-
dard dose TDF/FTC 300/200 mg and LPR/r 440/100 mg BID
versus placebo in PBC patients treated with standard UDCA
(http://www.clinicaltrials.gov/ct2/show/NCT01614405). The
study had limited enrollment because the majority of
patients with PBC were unable to tolerate LPR/r. Indeed,
over two thirds of patients discontinued LPR/r due to nausea,
vomiting, diarrhea, abdominal pain, weight loss, and/or inabil-
ity to swallow the tablets. The frequency of experiencing the
gastrointestinal side effects was two to three times higher than
those reported for patients with HIV. It remains to be resolved
why this is the case. Indeed, abdominal complaints are not
usually associated with PBC unless patients have concurrent
celiac or inflammatory bowel disease. Therefore, pharmaco-
logical studies maybe warranted to investigate whether pa-
tients with PBC have a different ability to metabolize LPR/r
because of ductopenia. Such studies may be important, as we
have observed that some of the newer HIV protease inhibitors
have superior antiviral activity to the betaretrovirus protease
in vitro.

The preliminary 6-month data of placebo versus controls
prior to crossover showed biochemical improvement from
baseline with TDF/FTC and LPR/r therapy (Fig. 1), which

@ Springer


http://www.clinicaltrials.gov/ct2/show/NCT01614405

4 Page60f10

Curr Infect Dis Rep (2015) 17: 4

50 - 3TC, AZT
-~ Placebo

6 months

*k

Reduction of alkaline phosphatase 1U/ml from baseline
o
6]

Fig. 1 Incremental improvement of hepatic biochemistry observed in
PBC patients maintained on UDCA receiving combination
antiretroviral therapy with a protease inhibitor. Patients treated with
daily lamivudine 150 mg (3TC) and zidovudine 300 mg (AZT) devel-
oped a 66 IU/mL mean reduction in ALP, whereas those receiving daily

was nearly double of previously observed in the AZT/3TC
study [84]. However, the patients unable to tolerate the 6-
month therapy were offered the opportunity to continue on
TDF/FTC alone. All patients benefitting from therapy were
then invited to enter an extended open-label phase of a further
18-month therapy to assess long-term efficacy and tolerability.
While the long-term extension study is still ongoing, it is
notable that patients able to continue with LPR/r have main-
tained a superior reduction in alkaline phosphatase levels than
those on TDF/FTC alone. While we await the completion of
the extended open-label study with collection of histological
and clinical data, it is highly unlikely that LPRr treatment will
be used for patients with PBC. In this regard, ongoing labora-
tory investigations indicate that other HIV protease and
integrase antagonists have demonstrable activity against
MMTV in vitro and in mouse models. The latter are being
studied with view to finding superior combinations to treat
patients with PBC in clinical trials.

Future Studies to Determine a Causational Relationship
Between Betaretrovirus and PBC

While a human betaretrovirus infection has been linked with
PBC, a causal relationship has yet to be established. Several
criteria have previously been suggested for proving causation,
such as Koch’s postulates and Hill’s criteria [85]. While
Koch’s postulates are difficult to obtain for complex diseases
mediated by chronic infections on a specific genetic back-
ground, several of the postulates have been met in patients
and in vitro (Table 1). Similarly, a few of the Bradford Hill
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tenofovir/emtricitabine 300/200 mg (TDF, FTC) and lopinavir/ritonavir
800/200 mg (LPRr) for 6 months (n=13) experienced a mean ALP re-
duction of 114 TU/mL [two-way ANOVA, *P<0.001, **P<0.05; adapted
from ref. 84 with permission]

criteria have been met, but better diagnostic assays will be
required for large-scale epidemiological studies (Table 2).
Studies in mice to further determine the role of MMTV in
triggering cholangitis and anti-mitochondrial antibody pro-
duction could enhance our understanding of the role of
betaretrovirus infection in PBC. For example, while TDF/
FTC and LPR/r were found to attenuate MMTYV replication
and liver disease in the NOD.c3c¢4 model [71], these inhibitors
may target other retroviruses in humans and mice. Further

Table 1  Use of Koch’s postulates to support a causal association of
human betaretrovirus infection with PBC

Evidence for viral infection is found
not only in ~70 % of patient
samples depending on the
method used but also 5 to10 % of
control subjects.

Virus has been isolated in Hs578T
cells co-cultured with peri-
hepatic lymph node homogenates
from PBC patients.

. The microorganism must be
found in abundance in all
organisms suffering from the
disease, but should not be found
in healthy animals.

2. The microorganism must be
isolated from a diseased
organism and grown in pure
culture.

w

. The cultured microorganism
should cause disease when
introduced into a healthy
organism.
4. The microorganism must be re-isolated
from the inoculated,
diseased experimental host and
identified as being identical to
the original specific causative
agent.

Virus induces the disease-specific
phenotype in vitro with
increased and aberrant PDC-E2
expression.

MMTV is associated
with a similar disease in mice.

Mouse models with known genetic
risk factors associated with PBC
should be tested with the putative
virus.

Note that these postulates were originally created for acute bacterial in-
fections with a high penetrance of disease. Koch’s postulates are too
stringent to prove causal association with a prevalent agent in a chronic
disease process, which is limited to susceptible individuals
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Table 2

Support for a causal association of human betaretrovirus infection with PBC using Bradford Hill criteria

1. Strength

A larger association is more likely to show causality.

Virus was detected in 70 % of PBC patient samples using immunohistochemistry, in situ hybridization, RT-

PCR, and ligation-mediated PCR (to detect proviral integration) but only in small
sample sets of <30 patients. Studies with a larger sample size are required to
enhance causal strength.

N

. Consistency

Consistent findings strengthen the likelihood of causality.

w

. Specificity
The more specific an association between a factor and an
effect is, the bigger the probability of causality.

Data should be independently confirmed by external sources.

Viral infection is not specific for PBC since evidence for viral infection is found in 5—
10 % of control subjects. Infection may only cause disease in patients with specific

genetic backgrounds. Nevertheless, antiretroviral therapy impacts on disease

progression. Further studies are required to correlate virus levels and clinical

improvement.

S~

. Temporality

The effect has to occur following the cause.

Large epidemiological studies as well as the development of enhanced serological

diagnostic assays are required.

W

. Biological gradient

Greater exposure should generally lead to greater incidence Large epidemiological studies as well as better understanding of MMTYV zoonosis are

of the effect. still required.

(=)

. Plausibility

A plausible mechanism between cause and effect should be In vitro experiments show that the disease-specific phenotype with AMA reactivity is

proposed.

enhanced in biliary epithelial cells following infection with the virus and may

subsequently cause loss of tolerance.

2

. Coherence

Coherence between epidemiological and laboratory findings Marked female preponderance of PBC might be due to expression of female hormones

increases the likelihood of a causal relationship.

o]

. Experiment

Experimental evidence will increase the possibility of
causality,

O

. Analogy

The effect of similar factors may be considered.

that stimulate betaretrovirus long terminal repeat and increase viral replication.

Purified virus was found to trigger disease-specific phenotype in vitro. Furthermore,
antiretroviral therapy reduced disease progression in mouse models and in patients.

Similar viruses that cause cholangitis and autoantibodies have not been identified.

Note that the Bradford Hill criteria have insufficient applicability to prove causal association with a prevalent microbial infection and a chronic disease
linked with a strong genetic component; large epidemiological studies using diagnostic tests with near 100 % sensitivity for both the genetic and

microbial factors would be required

studies on the NOD.c3c4 model are required that specifically
inhibit MMTYV replication, for example, through the use of
MMT V-specific shRNAs and neutralizing anti-MMTYV anti-
bodies. Additionally, cross-fostering experiments could be
performed on NOD.c3c4 offspring using mothers of different
backgrounds that are MMTV free to determine whether
cholangitis development in the NOD.c3c4 model is mediated
by exogenous MMTV.

Sequencing of exogenous MMTV from NOD.c3c4 milk
should help to characterize the specific replicative strain of
MMTYV, which would help to further implicate the virus in
the disease process. For example, the MMTV-specific
superantigen stimulates a cognate V{3 population of T cells,
and if this subset is found in the liver, the observation can
directly link the virus with the immune response [43].
Interestingly, studies with NOD mice have shown that V[33+
T cells are localized to the pancreas early in the disease,

implicating MMTYV in disease [86, 87]. This is somewhat
surprising because the majority of V33+ T cells should have
been deleted by endogenous mtv-3 superantigen. Since
NOD.c3c4 mice encode mtv-3 [9], identifying the T cell rep-
ertoire in the liver and resident lymph nodes at different stages
of the disease could potentially link viral infection with the
VB3+ T cells in the development of cholangitis.

Prospectus

Similar to the role of MMTYV in human breast cancer devel-
opment, the association of a human betaretrovirus with PBC
remains controversial. Further research is needed to clearly
implicate betaretroviral infection in mouse models and in pa-
tients. Better serological and quantifiable nucleic acid tests
will be required to perform large epidemiological studies

@ Springer
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and monitor virological response to antiretroviral treatment.
The viral hypothesis of PBC will likely receive traction once
clinical improvement can be directly associated with viral in-
hibition. Studies such as these can directly follow the lead of
Barry Marshall who convinced his critiques that H. pylori
caused peptic ulcer disease by using the therapeutic approach
of eradicating bacterial infection and curing disease.
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