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N E U R O S C I E N C E

Unified epigenomic, transcriptomic, proteomic, 
and metabolomic taxonomy of Alzheimer’s disease 
progression and heterogeneity
Yasser Iturria-Medina1,2,3*, Quadri Adewale1,2,3†, Ahmed F. Khan1,2,3†, Simon Ducharme2,4, 
Pedro Rosa-Neto5, Kieran O’Donnell3,6, Vladislav A. Petyuk7, Serge Gauthier5, Philip L. De Jager8, 
John Breitner9,10, David A. Bennett11,12

Alzheimer’s disease (AD) is a heterogeneous disorder with abnormalities in multiple biological domains. In an 
advanced machine learning analysis of postmortem brain and in vivo blood multi-omics molecular data (N = 1863), 
we integrated epigenomic, transcriptomic, proteomic, and metabolomic profiles into a multilevel biological AD 
taxonomy. We obtained a personalized multilevel molecular index of AD dementia progression that predicts 
severity of neuropathologies, and identified three robust molecular-based subtypes that explain much of the 
pathologic and clinical heterogeneity of AD. These subtypes present distinct patterns of alteration in DNA methyl-
ation, RNA, proteins, and metabolites, identifiable in the brain and subsequently in blood. In addition, the genetic 
variations that predispose to the various AD subtypes in brain predict distinct spatial patterns of alteration in cell 
types, suggesting a unique influence of each putative AD variant on neuropathological mechanisms. These obser-
vations support that an individually tailored multi-omics molecular taxonomy of AD may represent distinct targets 
for preventive or treatment interventions.

INTRODUCTION
The development of increasingly sophisticated high-throughput tools 
to examine genome-wide multilevel omics has led to new approaches 
to define the molecular taxonomy of diseases (1, 2). This trend has 
been most fruitful in cancer, which long ago witnessed the dawn of 
precision medicine (2, 3). In recent years, several large efforts have 
been funded to generate open science, multi-omic, postmortem, and 
in vivo brain and matched blood datasets. These include the Accel-
erating Medicines Partnership–Alzheimer’s Disease (AMP-AD) (4, 5) 
and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (6, 7). 
These large-scale initiatives are shifting the traditional paradigm for 
development of new biologically informed diagnostic tools and thera-
pies for Alzheimer’s disease (AD) (4, 5, 8).

A challenging aspect of working with postmortem brain relates 
to the metric of time. While tumors can be biopsied repeatedly over 
time, including before and after administration of a potential thera-
peutic agent, this is not possible with brain and other central nervous 
system tissues. Instead, brains are typically aligned using actual time, 
e.g., age at death, biologic age such as epigenomic clock, extent of 

neuropathology, or clinical disease severity. Each of these measures 
has its advantages and disadvantages. The concept of disease pseudo- 
time is an alternative approach that infers sequence from cross- 
sectional data (9–11). An early example is the Guttman scale (12), 
which orders cross-sectional data. Pseudo-time has recently been 
applied to omic data from cancer and brain (9–11). This approach 
has recently been explored using RNA sequencing (RNAseq) in several 
AMP-AD projects including the Religious Orders Study (ROS) and 
the Rush Memory and Aging Project (MAP) (13, 14).

A further challenge is posed by the interindividual heterogeneity 
of AD with the implied existence of several possible disease subtypes. 
This heterogeneity suggests that the study and treatment of AD should 
consider not only the timeline of its long-term progression but also 
the possibility of distinct variants. Recent postmortem neuropatho-
logical and in vivo neuroimaging studies have identified several such 
subtypes associated with differences in clinical presentation (15–17). 
Thus, previous work in ROSMAP used cognitive profile mixture 
models to identify latent classes of clinical disease progression, which, 
as expected, are related to extent of neuropathology, as well as latent 
classes of residual cognitive decline after regressing out the effects 
of common neuropathologies (18, 19). At a molecular level, network 
analysis of transcriptome data also revealed distinct RNA-based AD 
subgroups (20), suggesting different combinations of dysregulated 
pathways and subtype-specific genetic drivers that result in a similar 
progressive loss of cognition. Similarly, independent methylome- 
wide association analysis has uncovered both brain- and blood-based 
genes with AD subgroup–specific associations (21). Nevertheless, to 
date, molecular omics analysis of AD variability has typically been 
limited to the study of individual omic layers without multi-omics 
integration.

We recently used ROSMAP and ADNI data to infer a series of 
sequential alterations in gene expression over years of AD progres-
sion (13). This allowed us to align individual brains according to an 
RNA disease index associated with the development of dementia 
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and the severity of AD pathology. However, the diversity of molec-
ular alterations underlying AD progression and heterogeneity goes 
far beyond RNA modifications alone. Here, we extend previous 
molecular characterizations of the AD spectrum in three fundamental 
ways. First, we used a novel machine learning (ML) framework to 
integrate several layers of molecular omics data from brain epigenomic, 
transcriptomic, proteomic, and metabolomic databases. Second, re-
lying on these aggregated data, we developed and cross-validated an 
algorithm that assigns each participant to both a multilevel molecu-
lar estimate of the progression of AD and a putative AD subtype. 
Each of such subtype is associated with a distinct pathologic disease 
pseudo-trajectory, defined as a concatenated subset of cognitively 
impaired and/or AD subjects following a unique pattern in multi- 
omics molecular data integrated space. Third, to examine the gen-
eralizability and utility of our results, we translated this brain-based 
multi-omics algorithm to peripheral blood data. We assessed 
whether the identified multilevel molecular estimate of the AD pro-
gression and subtypes aligned with postmortem neuropathological 
data and in vivo positron emission tomography/magnetic resonance 
imaging (PET/MRI) AD biomarkers. All resulting analytic tools are 
shared with the scientific and clinical community via a user-friendly 
software for further translation and validation of our findings.

RESULTS
Multimodal data origin and unification approach
We obtained DNA methylation (DNAm), RNAseq, proteomic, and/
or metabolomic data; neuropathologic or biomarker data; and clinical 
data from 1863 with a wide range of cognition in two independent 
large-scale studies (see Fig. 1 and the “Dataset 1” and “Dataset 2” 
sections). In dataset 1 (ROSMAP; N = 822), multi-omics molecular 
evaluations were performed on the material from the dorsolateral 
prefrontal cortex (DLPFC) of autopsied brains, with a subset (N = 
168) also having blood monocyte RNA quantification. Assignment 

of no cognitive impairment (NCI), mild cognitive impairment (MCI), 
or AD dementia categories corresponded with most likely clinical 
diagnosis at the time of death. Dataset 2 (ADNI; N = 1041) included 
in vivo blood samples for multi-omics molecular characterization, 
with a subset of 610 also having one or more types of brain imaging 
evaluations including amyloid PET, tau PET, and/or structural MRI 
(table S1). Participants were clinically diagnosed at baseline as NCI, 
early MCI (EMCI), late MCI (LMCI), or probable AD patient.

To identify the multimodal molecular reconfigurations underly-
ing neurodegenerative advance and heterogeneity in late-onset AD, 
we unified, reordered, and stratified the multi-omics patterns as 
shown in Fig. 1 (A and B). To do so, we implemented a novel cross- 
validated ML algorithm for detection of disease-associated multi-
modal data patterns anchored in those with NCI relative to MCI 
and AD dementia (see the “mcTI definition” section; Fig. 1A). Each 
molecular feature/marker was first adjusted for potentially confound-
ing covariates (e.g., age, sex, education, and postmortem time interval). 
The generic algorithm then aggregated the different molecular data 
types while accounting for relevant AD patterns (2). We hypothesized 
that the position of each subject in this aggregated multi-omics space 
would predict individual severity of AD neuropathology and degree 
of relatedness to distinctive emergent disease pseudo-subtrajectories. 
Accordingly, a multi-omics molecular disease progression score 
(multi-omics mDPS) was calculated for each subject, which ranged 
from 0 (which should be NCI) to 1 (which should be late AD de-
mentia) (see the “mcTI definition” section). Relatively low or high 
values indicate lesser or greater distance on the path to develop AD 
dementia (Fig. 1, B and C). In addition, each subject was molecularly 
subtyped according to the maximum probability of “belonging” to 
an identified disease pseudo-subtrajectory in the multimodal mo-
lecular space (see Fig. 1B). Thus, for each participant, a separate 
molecular disease advance score (i.e., multi-omics mDPS) and the 
most likely molecular AD subtype were obtained (Fig. 1, A to C). 
The multi-omics mDPS proved to be valid across the entire AD 

Fig. 1. Schematic approach for multi-omics molecular integration and patient stratification in the late-onset AD dementia spectrum. (A) Postmortem brain 
(N = 822) and in vivo blood (N = 1041) tissues were obtained from previous studies (see the “Data”), including DNAm (from 420,132 to 865,918 CpG islands), RNAseq 
(about 48,000 transcripts), proteins (from 149 to 186 proteins), and metabolite concentrations (from 205 to 430). (B) Integrated multimodal molecular disease space, 
where subjects are stratified by the algorithm (in terms of advance on the path to develop AD dementia and subtrajectories) according to their position (see the “mcTI 
definition” and “Detailed mcTI algorithm” sections). (C) Two trans-omics molecular-based estimates are obtained for each participant, a pseudo-time or disease advance 
score (i.e., multi-omics mDPS) and the most likely molecular AD subtype (corresponding to a distinctive disease subtrajectory in the aggregated molecular space). The 
validity of this approach in providing a useful molecularly defined assessment and classification of the AD spectrum is subsequently explored in terms of capacity to re-
flect severity of neuropathologies and cell type alterations, as well as generalizability across different tissue samples (brain and blood).
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clinical spectrum, without need for subtype-specific variation in its 
calculation.

Capturing multimodal pathomolecular progression 
in the AD brain
A useful molecularly defined stratification system should predict 
disease severity at the point of data evaluation. First, we investigated 
whether the postmortem brain-based multi-omics mDPS could serve 
as a marker of individual severity of AD-related neuropathologies. 
The ROSMAP-based results (Fig. 2, A  to F) show clear statistical 
associations between the multimodal molecular disease score and 
postmortem neurofibrillary tangles (NFTs), -amyloid neuritic plaques 
(NPs), TDP-43, arteriolosclerosis, neocortical Lewy bodies, and hippo-
campal sclerosis, with higher scores in each case indicating more 
advanced neuropathology. Specifically, differences in molecular disease 
scores across the contiguous neuropathological stages (for NFT, NP, 
TDP-43, arteriolosclerosis, neocortical Lewy bodies, and hippocampal 
sclerosis) were statistically tested via Kruskal-Wallis tests with per-
mutations, previously adjusting for age, sex, and education (see the 
“Statistical analyses” section). We found statistically significant as-
sociations with Braak stages (2 = 47.05, P < 0.0001, Family Wise Error 
corrected [FWE-corrected]; Fig.  2A), CERAD stages (2  =  32.01, 
P < 0.0001, FWE-corrected; Fig. 2B), TDP-43 cytoplasmatic inclusions 
in neurons and glia (2 = 10.27, P < 0.05, FWE-corrected; Fig. 2C), ar-
teriolosclerosis (2 = 14.50, P < 0.005, FWE-corrected; Fig. 2D), pres-
ence of neocortical Lewy bodies (2 = 7.59, P < 0.01, FWE-corrected; 
Fig.  2E), and hippocampal sclerosis in region CA1 (2  =  7.22, 
P < 0.01, FWE-corrected; Fig. 2F).

In addition, the brain-based multi-omics mDPS correlated with 
greater neuropathology in multiple brain areas [q < 0.05, false dis-
covery rate (FDR)–corrected, covariables adjusted]. These findings 
included positive associations with the accumulation of NFT, 
- amyloid, and/or paired helical filament (PHF) tangles in tempo-
ral, hippocampal, cingulate, angular, and entorhinal cortices. How-
ever, regional neuropathological measurements are usually highly 
intercorrelated (22), suggesting the need for further assessing their 
nonoverlapping relationship with the multi-omics mDPS. Thus, we 
proceeded to identify nonredundant neuropathological associations 
with mDPS via LASSO regression, a regularization technique that 
focuses on decoding dependencies among the predictors to enhance 
model prediction and interpretability (23). In the presence of collinear 
regressors, LASSO iteratively detects the least contributing (or re-
dundant) markers, which are assigned a zero or near-zero coefficient. 
Notably, while an association of these regressors with the depen-
dent variable cannot be categorically rejected, their individual con-
tributions are outperformed by other predictors, which define a more 
parsimonious model without compromising prediction accuracy. 
Each regional neuropathological measurement was considered a com-
peting regressor of the multi-omics mDPS in a 10-fold cross-validation 
LASSO analysis, adding age, sex, and educational level as covariables. 
From the 32 initially considered neuropathological measurements 
(text S1), 12 (i.e., 37%) showed nonredundant significant association 
with the multimodal molecular disease score (Fig. 2G). The strongest 
nonredundant significant predictors included the individual levels 
of hippocampal sclerosis, -amyloid in superior frontal, PHF tangles 
in hippocampus, NFT in entorhinal cortex and inferior temporal, vas-
cular infarcts, atherosclerosis, and cerebral amyloid angiopathy. These 
results suggest that, rather than aligning with the advance in a unique 
neuropathological process (e.g., -amyloid burden), the estimated 

molecular-based disease progression score (and its related “timeline”) 
reflects the aggregated effect of multiple brain alterations, notably in-
cluding hippocampus sclerosis, NFT, NP, and PHF accumulation levels 
in commonly affected AD areas (entorhinal, hippocampus, inferior 
temporal, and superior frontal) and cerebrovascular abnormalities.

Next, we identified the top molecular markers contributing to 
the prediction of AD progression. Notably, the multi-omics mDPS 
can provide quantitative mapping of the most influential CpGs, genes, 
proteins, and metabolites during the process of AD trajectory infer-
ence. Specifically, the method’s internal loadings (or weights) reflect 
how much each specific biological marker, in the original high- 
dimensional multi-omics space, contributed to the reduced low- 
dimensional space from which the trajectories were obtained (see 
the “Assessing marker contributions on mDPS” section). We found 
(Fig. 3A and table S2) a varied list of predictors distributed across 
the four omics layers, with most previously associated with AD. For 
instance, at the RNA level, gene HOXC9 is known as a key regulator 
of endothelial cell quiescence and vascular morphogenesis (24) and 
has been identified earlier in AD genome-wide association studies 
(25). Gene PFKP is related with impaired neuronal glucose metabo-
lism observed in AD (26). With an abnormal methylation level here, 
gene DISC1 is commonly associated with schizophrenia, but its ectopic 
(out of place) expression has been suggested to delay the progres-
sion of AD by protecting synaptic plasticity and down-regulating 
BACE1 (27). Protein 77G7 is a monoclonal antibody with the capacity 
to recognize tau filament cores (28). At the metabolomic level, plasma 
concentration of lithocholic acid is significantly associated with clini-
cal deterioration across MCI and AD individuals (29). Therapeutic 
administration of spermidine, with hypothesized cardioprotective 
and neuroprotective effects (30), is suggested to improve cognitive 
performance in subjects with mild and moderate dementia (31). These 
results suggest that the multi-omics mDPS comprises complementary 
information, which coexists across multiple biological scales and is 
traditionally analyzed separately.

Last, the observed strong associations with neuropathologic levels 
(Fig. 2) lead us to question whether the multi-omics mDPS could 
reflect AD dementia beyond the overall neuropathologic burden. To 
further investigate this, we adjusted the individual mDPS by several 
neuropathologic traits (NFT, NP, TDP-43, arteriolosclerosis, Lewy 
bodies, hippocampal sclerosis, amyloid angiopathy, atherosclerosis, 
vascular infarcts, and chronic microinfarcts) and demographics (age, 
sex, and education). Next, we compared the residual multi-omics 
mDPS values among NCI and AD subjects via Kruskal-Wallis tests 
with permutations, still observing a very strong clinical association 
with the residual mDPS (2 = 89.78, P < 0.0001, FWE-corrected). In 
addition, we verified that all together (global and regional neuro-
pathological traits, plus demographics) can only explain about 11% 
of mDPS’s population variance (i.e., R2 = 0.11 in the additive regres-
sion analysis). Both observations support the multi-omics mDPS’s 
capacity to capture deep pathomolecular processes in AD beyond 
the severity of neuropathologic burden, as also reflected by the top 
contributing markers (Fig. 3).

Brain multimodal molecular information reveals distinctive 
AD subtypes
Another desired attribute of a clinically useful biologically defined 
stratification system is an ability to detect distinctive disease subtra-
jectories. We inferred putative AD subtypes by identifying distinc-
tive multimodal molecular pseudo-subtrajectories in the aggregated 



Iturria-Medina et al., Sci. Adv. 8, eabo6764 (2022)     18 November 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

4 of 18

multi-omics disease space. A cross-validated expectation-maximization 
(EM) algorithm was used to detect subgroups of subjects consistently 
aligned to a single disease timeline (see the “mcTI definition” section). 
The Bayesian information criterion (BIC) (32), which allows opti-
mizing the trade-off between data explanation and model complexity, 
was used to identify the optimum number of putative subtypes (from 
a minimum of 1 up to a maximum of 7; see Fig. 4A). Here, we used 
an internal leave-one-out prediction analysis. The algorithm identi-
fied each individual’s most likely subtype configuration in terms of 

predictability of clinical progression and model simplicity. The sta-
bility and significance of each subtype configuration was tested via 
a permutation procedure (20). Specifically, subtype stability was 
defined as the rate at which sample pairs group together into the 
same subtypes upon repeated clustering on random subsets of the 
input data (20).

Three putative AD subtypes (each corresponding to a distinct sub-
trajectory or concatenation of subjects in the integrated molecular 
space) were identified, showing high internal data homogeneity 

Fig. 2. Integrated multi-omics molecular predictions of progressive cognitive and neuropathological deterioration. (A to F) Postmortem brain-based molecular 
disease progression predictions (ROSMAP data) of tau neurofibrillary tangles (A), neuritic plaques (B), TDP-43 cytoplasmatic inclusions in neurons and glia (C), arteriolosclerosis 
stages (D), presence of neocortical Lewy bodies (E), and hippocampal sclerosis (F). All P values are FWE-corrected via randomized permutation tests. (G) Nonredundant 
associations with neuropathological phenotypes (i.e., LASSO regression results, with 10-fold cross-validation, and adjusted by age, sex, and educational level).
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compared to the whole population and significant subtype stability 
(P < 0.001, FWE-corrected; Fig. 4, B and C). Because the subtypes 
were defined in terms of “continuous” disease pseudo-subtrajectories 
in the integrated molecular space (i.e., each being a concatenation 
of individuals following a coherent data pattern; Materials and 
Methods), they covered the spectrum of the disease from normality 
to AD dementia (Fig. 4D). However, substantial subtype-subtype 
differences were observed for omic layers and neuropathologic 
traits. Specifically, we calculated the proportion of features that dif-
fered between any pair of subtypes for each biological data modality, 
i.e., epigenomic, transcriptomic, proteomic, metabolomic, or neuro-
pathology. As is shown in Fig. 4 (G and H), percent levels of subtype- 
subtype differences are notable across the four studied molecular 
omic levels and the neuropathological features, with difference per-
centages ranging from 9.3 to 72%. In addition, the specific multi-
modal molecular and neuropathological features differentiating the 
subtypes can be seen in Fig. 5. The subtypes did not significantly dif-
fer among themselves by clinical diagnosis (MCI and AD propor-
tions; Fig. 4D), sex (female and male proportions; Fig. 4E), and 
global cognition (Fig. 4F). However, they did significantly differ in 
various cognitive domains (all P < 0.05, FWE-corrected; Fig. 4F). 
AD subtype 1 was significantly more affected than subtype 2 
in episodic memory and decline in perceptual speed over time, 
episodic memory, semantic memory, and global cognition. AD 
subtype 3 was also more significantly affected than subtype 2 in 
episodic memory.

Furthermore, we performed large-scale gene functional analyses 
with the Protein Annotation Through Evolutionary Relationship 
(PANTHER) classification system (33) for each subtype and its dif-
ferentially expressed DNAm CpGs or RNA genes. The three AD sub-
types shared 70 to 78% of epigenetic and 78 to 90% of transcriptomic 
molecular pathways affected, respectively (Fig. 6, B  to D). Across 
subtypes, prominent transcriptomic pathways associated with gen-
eralized cellular and molecular processes, such as general transcrip-
tion regulation (GTR), ubiquitination, transcription regulation by 
bZIP, RNA synthesis by RNA polymerase, cytoskeletal regulation 
by -GTPase (guanosine triphosphatase), oxidative stress response, 
and cellular signaling via the Gs  subunit. Several specialized AD- 
relevant pathways included amyloid secretase, cholinergic M1/M3 
receptor signaling, and metabolic glutamatergic receptors (mGluR III). 
Epigenetic modifications also involved specialized pathways, with 
prominent examples including neurotransmitter receptors (metabolic 
glutamate receptors in subtype 1 and the adrenergic 1 receptor in 
subtype 2), and the corticotropin-releasing factor receptor (CRFR) 
pathway (affecting behavioral, autonomic, endocrinic, and immuno-
logic responses in AD subtype 3).

In addition, the three AD subtypes shared similar alterations in 
protein concentrations (Fig. 5C), including tau 12E8 phosphorylated 
at S262, -amyloid, and nerve growth factor. Nevertheless, each sub-
type presented an additional set of uniquely altered proteins. AD 
subtype 1’s distinctively expressed proteins associated with electron 
transport chain in mitochondria and response to stressful conditions 

Fig. 3. Molecular omics contributions to AD stratification in postmortem brain tissue. (A) Top influential epigenetic, transcriptomic, proteomic, and metabolomic 
markers during the process of AD trajectory inference. Values are percentages, normalized with regard to the maximum (only markers over the 99 percentile are shown; 
for an extended list, see table S2). (B) Modality-specific contributions (in percentages) to the identified AD subtypes. For technical details, see the “Assessing markers 
contributions on mDPS” and “Assessing omics contributions on subtyping” sections.
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Fig. 4. Three distinctive AD subtypes identified with multi-omics molecular data from the brain (ROSMAP). (A) BIC values obtained for each considered number of 
putative subtypes. In statistics, the model with lowest BIC is preferred (here, three subtypes). For analyzing the stability of this selection, the subtyping was repeated 
500 times via bootstrapping with replacement (presented BIC values correspond to the bootstrap average). Note that, across all bootstrap repetitions, the method always 
selected three as the optimum number of subtypes. (B) Cross-validation analysis for identification of the most compelling classification structure in terms of predictability 
of pathological advance (as quantified by the multi-omics mDPS). Note that the deconstruction of the whole population into smaller/stable subtypes brought a signifi-
cant improvement in internal data homogeneity and multi-omics mDPS predictability. (C) Number of samples per subtype and corresponding significance obtained with 
randomization testing (all P < 0.001, few-corrected). (D and E) Subtype-specific clinical diagnoses and sex proportions, respectively. (F) Inter-subtype differences in cog-
nitive domains and their rates of change over time [all P < 0.05, FWE-corrected, based on analysis of variance (ANOVA) tests with permutations]. Only significant differences 
are shown, with values corresponding to explained variance and signs reflecting direction (for slopes, a positive value would indicate stronger cognitive decline for the 
first specified subtype, while a negative value would indicate the contrary). (G and H) Total inter-subgroup molecular and neuropathological differences. For each omics 
data type and comparison with the control population, each matrix element corresponds to the percent of significantly different features (all q < 0.05, FDR-corrected, 
based on ANOVA tests with subtype as grouping variable; see the “Statistical analyses” section). For each AD subtype-subtype matrix element, the reported value rep-
resents the percent of data features that are abnormal for one subtype but not for the other (mismatch level).
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(e.g., heat shock, cold, and ultraviolet light), including ubiquinone 
oxidoreductase subunit A10 (Ndufa10) and heat shock family A 
member 8 (Hspa8) proteins, respectively. AD subtypes 2 and 3 
included greater protein alterations in cardiovascular development 

and lactate-pyruvate catalysis, such as bridging integrator-1 (BIN1) 
and lactate dehydrogenase A (LDHA), respectively. Notably, AD 
subtype 1 presented a larger number of altered metabolites (Fig. 5D), 
involving phosphatidylcholines such as ae-C38:4, aa-C36:0, and 

Fig. 5. Differentially expressed CpG sites, genes, proteins, metabolites, and brain phenotypes in brain-based AD subtypes. (A to E) Only significantly expressed 
features are presented (q < 0.05, FDR-corrected). ANOVA tests with subtype as grouping variable were used (data were previously adjusted by age, sex, educational level, 
and experimental confounders; see the “mcTI definition” section). Color scale corresponds to the explained variance. For DNAm and RNA, only the top 50 most significant 
CpG sites and genes are presented (see table S3 for a complete list).
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ae-C24:0, and basic amino acids such as methionine, histidine, 
ornithine, and citrulline. Although less predominantly, subtypes 2 
and 3 also presented several altered metabolites (Fig. 5D), including 
glutamate (Glu), proline (Pro), threonine (Thr), and valine (Val). 
These particular findings suggest that previously reported metabo-
lomic alterations in AD (34, 35), and the proposed need to account 
for them in therapeutic interventions, may depend on the specific 
AD variant(s) under study. Furthermore, the three subtypes shared 
widespread neuropathologic alterations (Fig. 5E). However, contrary 
to AD subtypes 1 and 3, subtype 2 did not present significantly ab-
normal levels of microglia activation across the evaluated brain 
regions, suggesting that it may be associated with distinct immune 
and neuroinflammatory pathomechanisms.

Together, the multilevel (molecular and macroscopic) differen-
tial analysis of the identified AD subtypes (Figs. 4, G and H, 5, and 6) 
revealed that AD subtype 1 is mainly characterized by widespread 

metabolic alterations (about 41% of its molecular alterations). Con-
trary, subtypes 2 and 3 are distinctively associated with extensive RNA 
and epigenetic alterations, covering about 50 and 39% of their multi-
layer molecular alterations, respectively. The three AD subtypes 
presented similar widespread proportions of proteomic and neuro-
pathological alterations.

Last, we aimed to investigate the extent to which the observed 
subtype-specific multi-omics alterations would survive statistical ad-
justment for individual neuropathologies. For each molecular marker, 
analysis of variance (ANOVA) tests with subtype as the grouping 
variable were used while adjusting by several AD-associated neuro-
pathologic traits (NFT, NP, TDP-43, arteriolosclerosis, Lewy bodies, 
hippocampal sclerosis, amyloid angiopathy, atherosclerosis, vascu-
lar infarcts, and chronic microinfarcts; molecular data were pre-
viously adjusted by age, sex, educational level, and experimental 
confounders; Materials and Methods). Again, we found a large set of 

Fig. 6. Top subtype-specific molecular pathways associated with differentially methylated or expressed genes. (A and C) Radial plots for methylation- or RNA-
based pathways, respectively. The radio represents the presence level (as a percentage) of pathways in each tissue-specific AD subtype. The full molecular pathway names 
are listed in table S4. (B and D) Molecular-based similarity (overlapping) across brain-based (ROSMAP) and blood-based (ADNI) AD subtypes. Each pairwise value was 
calculated as the percentage of common number of differentially expressed pathways relative to the total.
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significant epigenetic (748 CpGs), transcriptomic (417 genes), pro-
teomic (19 proteins), and metabolomic (28 metabolites) alterations 
spread across the three AD subtypes (all q < 0.05, FDR-corrected). 
Note, however, that this analysis is, to some extent, statistically cir-
cular and is only performed here for exploratory purposes. Neuro-
pathology levels partly correlate with AD dementia, and statistically 
removing them can mask (or attenuate) relevant clinical components 
that biologically defined AD subtypes should be reflecting. Although 
often used in the literature, current “statistical adjustment” techniques 
do not account for causal mechanisms, and “controlling” effects from 
specific factors is not entirely accurate and requires deeper causal 
analyses (36, 37). Furthermore, neuropathological alterations may be 
collinear with many molecular changes, without necessarily causing 
them (and vice versa), an effect difficult to account by using tradi-
tional statistical perspectives.

AD subtypes associated with distinct cell type patterns
Next, we hypothesized that AD subtypes corresponding to different 
disease subtrajectories would be associated with distinct cell type 
differences. Therefore, we performed cell type deconvolution with 
Enrichr software and the Allen Brain Atlas 10x scRNA 2021 on the 
subtype-specific differentially expressed genes (38). For each AD 
subtype, a ranked list of about 200 potentially down- or up-regulated 
brain cells was obtained, with a z score value per cell indicating 
the statistical likelihood of being enriched compared to a random 
background (see the “Brain cell type analysis” section). A subsequent 
multiple-comparison analysis of these z scores revealed 34 different 
cell types potentially altered (q < 0.05, FDR-corrected) for the three 
subtypes (Fig. 7A). All AD subtypes presented a varied pattern of 
down- and up-regulated genes at excitatory and inhibitory neurons 
in all cortical layers. Subtype 2 also presented up-regulated genes at 
astrocytes and endothelial cells, while subtype 3 presented up-regulated 
alterations in vascular and leptomeningeal cells. Next, we quanti-
fied the subtypes’ dissimilarity regarding their cellular patterns. As 
shown in Fig. 7B, each pair of subtypes had a high level (75 to 93%) 
of mismatch in terms of unique down-/up-regulated cell types. These 
results suggest a distinct pattern of cellular vulnerability across the 
AD subtrajectories, which may be associated with different under-
lying pathological mechanisms, and to some extent may explain 
the observed multilevel (molecular and macroscopic) differences 
(Figs. 4, G and H,5, and 6).

Postmortem brain-based AD stratification is translatable 
to in vivo peripheral data
We next aimed to examine the generalizability and potential clinical 
utility in living persons of the pseudo-time subtrajectories using 
data from in vivo blood samples from ROSMAP and ADNI data. 
First, we explored whether the brain-based classification could yield 
characteristic molecular patterns in the periphery of the same studied 
subjects. A subset (N = 168) of the ROSMAP subjects had under-
gone blood monocyte RNA quantification. By comparing these persons’ 
identified AD subtypes, we confirmed that they also presented dis-
tinct patterns of monocyte RNA alteration (all q < 0.05, FDR-corrected; 
Fig. 8). Together, the subtypes accounted for 1110 differentially ex-
pressed monocyte transcripts of 28,923 (3.83%; Fig. 8A and table S5). 
Furthermore, each AD subtype had a high proportion of uniquely 
affected monocyte features, with all three possible pairs of subtypes 
sharing fewer than 3% of all their corresponding differentially ex-
pressed genes (Fig. 8B). The identification of strong subtype-specific 

monocyte signal alterations supports the notion that a biologically 
defined classification of the AD spectrum may be feasible based solely 
on peripheral multimodal molecular data.

We subsequently applied the multi-omics contrastive trajectory 
inference (mcTI) algorithm to whole-blood multi-omics molecular 
data from the ADNI cohort (N = 1041). The results (Fig. 9, A to C) 
confirmed that the in vivo multimodal molecular disease score sig-
nificantly predicts memory, executive function, and language per-
formance (all P < 0.0001). In addition, we observed (Fig. 9D) strong 
correlations (all P < 0.01, Bonferroni-corrected, adjusted by age, sex, 
and educational level) with MRI, amyloid PET, and tau PET. In line 
with our postmortem brain data, the blood-based multi-omics mDPS 
associated negatively with the volume of hippocampus, entorhinal, 
inferior temporal, middle temporal, fusiform, and parahippocampal 
cortices, while it associated positively with amyloid and tau in several 
brain areas, including hippocampus, entorhinal, frontal, temporal, 
and cingulate cortices, among others.

Also aligned with results for the postmortem brain data, the top 
molecular features contributing to the blood-derived multi-omics 
DPS covered the four omics layers (fig. S1A and table S2), with most 
previously associated with AD. Top transcriptomic, proteomic, and 
metabolomic contributing factors related to metabolism (proteins 
insulin and leptin and gene HMG20A), immune cell infiltration 
(protein MCP-2), immune response and inflammation (protein PARC), 
antioxidant signaling (gene KIAA0319 and metabolite -tocopherol), 
and protein cleavage (metabolite asparagine). Several epigenetic and 
transcriptomic factors representing generalized cellular and molecu-
lar processes were also identified as relevant mDPS contributors, 
including cell growth and proliferation (OAZ3), posttranscriptional 
regulation of gene expression (MIR548H4), signal transduction and 
protein phosphorylation (HUNK), Wnt signaling (RSPO2), gene 
expression regulation and cytoskeletal structural organization (LMO3), 
and cellular signal transduction (TENM1).

In addition, on the basis of our mcTI’s cross-validated EM algo-
rithm, three statistically consistent AD subtypes were identified in 
the ADNI population (fig. S2). The BIC (32) was used to select the 
number of putative subtypes (up to a maximum of seven), and the 
statistical stability and significance of the subtypes were confirmed 
via permutation tests (all P < 0.001, FWE-corrected; see the “mcTI 
definition” section). Similar to the postmortem brain data, the in vivo 
blood-based subtypes differed at the multimodal molecular and 
neuropathological level, each showing a distinctive pattern of blood 
DNAm, RNA, proteomic, metabolomic, and molecular pathway alter-
ations, along with unique brain phenotypic (PET/MRI) changes 
(see Fig. 6 and figs. S2, F and G, and S3, A to E). Like brain-derived 
subtypes, the blood subtypes did not significantly differ by propor-
tions of clinical diagnosis (MCI and AD; fig. S2C) and sex (fig. S2D), 
while they did significantly differ in various cognitive domains (all 
P < 0.05, FWE-corrected; fig. S2F). AD subtype 2 was significantly 
more affected than subtype 1 in memory performance and overall 
cognitive function. AD subtype 3 was more significantly affected 
than subtype 1 in long-term decline in memory performance.

Ideally, AD subtypes should be comparable when obtained from 
different tissues and cohorts. Hence, we tested the portability of the 
identified putative AD subtypes across the two studied populations. 
For this, we used 16 neuropathologic traits available in both ROSMAP 
and ADNI to (i) extrapolate the postmortem brain-based subtypes 
to the in vivo population and (ii) evaluate the mutual information 
among the two independently obtained stratifications. On the basis 

https://maayanlab.cloud/Enrichr/enrich
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of autopsied neuropathological evaluations or PET/MRI acquisi-
tions, both ROSMAP and ADNI datasets included amyloid in the 
angular gyrus and calcarine, cingulate, entorhinal, hippocampal, 
inferior temporal, mesial temporal, midfrontal and superior frontal 
cortices, and tangles in the angular gyrus, calcarine, cingulate, ento-
rhinal, hippocampal, inferior temporal, and mesial temporal cortices. 
The person-specific similarity of ADNI to ROSMAP was calculated as 
the Pearson correlation with the 16 corresponding values (Fig. 9, E and F). 
Next, each ADNI participant was assigned the brain-based AD sub-
type of the most neuropathologically correlated ROSMAP subject 
(Fig.  9G). This provided a second stratification/subtype for each 
ADNI participant.

We then determined whether the two independently obtained 
stratifications in ADNI would share common or complementary 
information. For this, we compared both classifications via the nor-
malized mutual information (nMI; a measure of mutual dependence 
between the two classification configurations) and the variation of 
information (VI; amount of information lost and gained) (39). The 
significances of the nMI and VI values were tested via a randomized 

permutation procedure (i.e., comparing to the null distributions de-
fined by randomly permuting the individual subtypes, with 10,000 
repetitions). We observed (Fig. 9H) nonrandom convergent infor-
mation (P = 0.0015, FWE-corrected) from the stratification of the 
two samples, confirming the portability of our multimodal molecular- 
defined AD classification system not only across different tissue samples 
(brain and blood) but also in independent cohorts.

Last, a comparison of altered molecular pathways in different sub-
types indicated a considerable across-tissue overlapping (Fig. 6, B and D). 
Blood-derived AD subtype 2 showed the most consistent multi-omics 
similarity with brain-derived subtypes (with 44 to 53% epigenetic 
and 47 to 49% transcriptomic shared pathways). In addition, blood-
based AD subtype 1 and brain-based subtype 3 shared over 57% of 
their altered RNA molecular pathways. In both tissues, the immuno-
logical interleukin signaling, the gastric cholecystokinin receptor (CCKR), 
and the Wnt signal transduction pathways were epigenetically altered 
in the identified AD subtypes (Fig. 6A). Common to brain-derived 
subtypes, prominent transcriptomic pathways in blood (Fig. 6C) re-
flected generalized cellular and molecular processes, such as GTR, 

Fig. 7. Altered cell type patterns in brain-based multimodal molecular AD subtypes. (A) Significantly enriched cell types (q < 0.05, FDR-corrected) across the three 
brain-based AD subtypes (values correspond to enrichment z scores). Included cell types are excitatory neuron (Exc), inhibitory neuron (Inh), endothelial cell (Endo), 
vascular and leptomeningeal cell (VLMC), and astrocyte cell (Astro). Each cell entry includes the affected cortical layers (L), a broad marker gene, and a subclass-specific 
marker gene. (B) Subtype-subtype mismatch matrix (element i,j represents the percent of uncommon altered cell types among subtypes i and j).
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ubiquitination, transcription regulation by bZIP, RNA synthesis by 
RNA polymerase, cytoskeletal regulation by -GTPase, oxidative 
stress response, and cellular signaling via the Gs  subunit. The find-
ing of these common pathways (see table S4 for a complete list 
across subtypes) evidences the direct relationship between the 
central nervous system and the body, and further supports the 
portability of our AD classification system.

DISCUSSION
We proposed a novel multimodal molecular taxonomy for the as-
sessment and classification of AD progression. Efforts to develop a 
comprehensive multi-omics characterization of AD’s substantial 
heterogeneity are in their infancy. We started from a multilayer 
characterization of heterogeneity in the postmortem brain with 
NCI as the biological reference, and we extended our analyses to 
independent peripheral samples from living participants. We found 
that our approach (i) predicted the person-specific severity of AD 
pathology as quantified by the molecular pseudo-time score; (ii) de-
tected distinct, biologically differentiable, and statistically stable AD 
subtrajectories/subtypes, each associated with a unique pattern of 
multilevel molecular, neuropathological, cell type, and cognitive al-
terations; and for potential clinical utility (iii) was applicable to pe-
ripheral blood samples from living patients from a different cohort.

Our results are in accord with a previously reported RNA-based 
AD classification (20). Expectedly, given the notable complexity of 
AD dementia, we observed that AD heterogeneity cannot be entirely 
explained by neuropathological patterns, clinical severity, or differ-
ences in age or sex. RNA provides additional information, but we 
show here that consideration of other molecular information includ-
ing epigenomics, proteomics, and metabolomics can offer sub-
stantial complementary information over RNA alone. Consistent 

results support that our identified multi-omics molecular AD pro-
gression index, subtypes, and associated multi-omics differences 
cannot be assumed to be a mere reflection of neuropathology severity. 
This should not be surprising. Although consideration of neuro-
pathologies is crucial for understanding and potentially preventing 
and treating AD, recent studies have evidenced their limited capacity 
to explain the clinical decline observed in neurodegeneration (22). 
In a complementary analysis, we also verified that our multi-omics 
molecular AD subtypes cannot be replaced (and vice versa) by the 
neuropathology-derived Murray-Dickson AD subtypes based on brain 
NFT distributions (15, 40), with no significant convergent informa-
tion among both classifications (see fig. S4; see the “Comparative 
analysis with neuropathological subtypes” section). This result 
strengthens the importance of further considering complementary 
disease processes across different biological scales. Even with the 
remarkable recent advances in AD marker detection using biofluids 
(41, 42), a fast and accurate multilevel classification of the entire AD 
spectrum should offer substantial advances in AD research and thera-
peutics such as facilitating the identification of subtype-specific thera-
peutic targets when population-based targets do not generalize well 
from subtype to subtype. Our cross-validated extension from brain 
to blood multi-omics data and identification of robust subtypes are 
a promising step toward minimally invasive multilevel patient pro-
filing in the clinical setting and in clinical trials.

In addition to simultaneously uncovering disease dynamics and 
heterogeneity, the mcTI approach overcomes many of the traditional 
limitations of ML to enable the identification of the most informa-
tive molecular substrates including CpGs, genes, proteins, and 
metabolites (Fig. 3A and fig. S4A). This approach deals with high- 
dimensional data by including an intrinsic contrastive dimensionality 
reduction technique (43). This technique allows detection of disease- 
associated patterns in populations of interest while it adjusts for 

Fig. 8. Distinctively expressed genes in blood monocyte cells across putative AD subtypes (ROSMAP). (A) Top 50 differentially expressed genes (all q < 0.05, 
FDR-corrected; for the complete list, see table S5). Results are based in ANOVA tests with subtype as grouping variable, adjusting by age, sex, and educational level. The 
radio represents the explained variance (as a percentage, covering the scale [0, 14%]). (B) Subtype-subtype mismatch matrix (element i,j represents the percent of uncom-
mon altered monocyte genes among subtypes i and j).
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confounding components in the background control population 
(e.g., concurrent aging or experimental effects). We have previously 
observed (13) that, in the context of disease trajectory inference, this 
technique [contrastive principal components analysis (cPCA) (43)] 
is more sensitive for detection of pathological progression than other 
popular methods of dimensionality reduction [e.g., PCA and Uniform 
Manifold Approximation and Projection (UMAP)]. mcTI can be applied 
to any sort of neuroscience data including molecular, histopathologi-
cal, neuroimaging, electrophysiological, and clinical data (37). Fur-
thermore, while this method predicts neuropathology severity, no 
model training is performed to fit the neuropathological data. Con-
trary, other recently proposed ML techniques (44) focus on the super-
vised identification of molecular predictors of AD neuropathology. 
A comparison of both families of methods (without and with model 
training) is not straightforward and depends on the related scientific 
question or target application. However, mcTI and other unsupervised 
approaches for studying both disease progression and heterogeneity 

(14, 37) allow the molecular-based discovery of putative disease sub-
types, which are typically not uncovered by the supervised models.

Our study also has a number of limitations. We used the first 
generation of large-scale multi-omics data from autopsied AD brains 
(ROSMAP) (45). However, these data come from a unique brain 
region (DLPFC). This choice of regional source is logical given that 
it is a neocortical hub of cognitive circuitry, with a central function 
of controlling executive functions (e.g., working memory and cog-
nitive flexibility) (46). Furthermore, a growing body of evidence 
supports a key role of the DLPFC in AD progression, as it can present 
several molecular and phenotypic alterations related to clinical de-
terioration (45). Our findings from postmortem data are limited to 
the present investigation of ROSMAP data. To date, no other study 
in AMP-AD or similar data repository presents all four types of 
molecular information used in this study, hindering replication in 
independent postmortem samples. However, given the significant 
mutual sharing of our observations with the blood-based subtypes 

Fig. 9. Generalizability analysis of brain-based stratification to in vivo blood samples. (A to D) Integrated blood-based multi-omics molecular predictions of cogni-
tive performance (A to C) and neuropathological biomarkers (D) in ADNI subjects (N = 1041). (E) Neuropathological similarity between ROSMAP and ADNI subjects (based 
on 16 common brain regional amyloid and tau deposition measurements). (F) Maximum similarity projection for ADNI subjects (note that, on average, ADNI subjects 
strongly correlate with at least one ROSMAP subject). (G) Distribution of extrapolated brain-based AD subtypes from the postmortem population to the alive participants 
(i.e., from ROSMAP to ADNI). (H) Portability test comparing mutual information between the two independently obtained AD stratifications.
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(ADNI data), the DLPFC may suffice to represent brain-body hetero-
geneity in AD. We urge caution, nonetheless, because of the regional 
restriction of postmortem multi-omics data currently available and 
because our method of testing the validation of extrapolation across 
cohorts relied on information from only 16 regional values for am-
yloid and tau. Furthermore, while our combined use of (epi)genetic, 
proteomic, and metabolomic data for subject profiling represents a 
significant extension of earlier work, we have used only a limited 
portion of data potentially available from the last two modalities. 
Specifically, the remaining technical limitations in screening have also 
resulted in significantly less information for metabolites/proteins 
(149 to 430 analytes) than for (epi)genetic features (48,000 to 
865,918 potentially usable). However, for both the brain and the blood 
multi-omics data, a quantitative analysis of each modality’s contri-
bution to the obtained AD subtypes revealed similar across-omics 
influence (Fig. 3B and fig. S4B; see the “Assessing omics contribu-
tions on subtyping” section). Notably, data from the proteome and 
metabolome implicate several proteins linking AD with metabolic 
disorders and immune response. These results suggest that all in-
cluded molecular layers may be containing relevant and comple-
mentary biological information, without any specific modality 
dominating the multi-omics AD stratification. However, we ex-
pect that our disproportionate reliance on (epi)genetic markers 
will be successively improved in the near future with the accessi-
bility to new proteomic and metabolomic quantification techniques/
data (47). Similarly, although the study of single-cell molecular data 
in AD is still at the small-scale population level (48, 49), the in-
creasing collection and accessibility to such data modalities in the 
near future should facilitate a deeper multilevel characterization of 
the disease.

Our study also had many strengths. Both ROS and MAP have 
extraordinarily high follow-up and autopsy rates, ensuring excellent 
internal validity. We leveraged multilevel omic data from hundreds 
of cases with each layer, far more than all other studies of which we 
are aware. The studies are unbiased by selection of cases and con-
trols or pathology, allowing inferences to older persons in general. 
We also obtained the same omics modalities from blood samples 
(ADNI data) and corresponding multimodal brain imaging evalua-
tions (molecular PET and MRI) for cross-validation with in vivo 
data. Application of a novel ML method to these independent data-
sets (N = 1863) allowed us to examine the disease’s marked multi-
level molecular complexity and heterogeneity. Furthermore, we are 
encouraged by recent developments in cancer research that have been 
characterized by the successful integration of multiple omics tech-
nologies and their subsequent application in precision medicine 
(2, 3, 50). As similar advances have improved the detection and treat-
ment of cancer (2), we hope that our fused molecular information 
can lead to a refined representation and understanding of neuro-
degeneration, thereby facilitating the identification of individual 
disease mechanisms and therapeutic requirements. We note that the 
analytic tools described here have been made freely available as part 
of the user-friendly cross-platform Neuroinformatics for Personalized 
Medicine software [NeuroPM-box (37); neuropm-lab.com/neuropm- 
box.html]. This multi-tool computational application allows for 
advanced analytical modeling for molecular, histopathological, brain 
imaging, and/or clinical evaluations, allowing the characterization 
of multiscale and multifactorial neuropathological mechanisms. 
We would be gratified if the molecularly informed AD stratification 
framework described here paves the way for deeper multidimensional 

profiling of patients in clinical research, and still more pleased if our 
methods can someday be used as a clinical tool. In this last context, we 
note that these methods, developed for research into AD, should also 
be readily adaptable to the study of many other neurological and 
neuropsychiatric conditions.

MATERIALS AND METHODS
Data
Ethics statement
ROSMAP was approved by an Institutional Review Board (IRB) of 
the Rush University Medical Center. All participants signed an in-
formed consent and Anatomical Gift Act; in addition, they signed a 
repository consent allowing their data to be shared. Data documen-
tation and sharing documents can be obtained at www.radc.rush.edu. 
The study was conducted according to Good Clinical Practice guide-
lines, the Declaration of Helsinki, and IRBs (adni.loni.usc.edu). Study 
subjects (table S1) and/or authorized representatives gave written 
informed consent at the time of enrollment for sample collection 
and completed questionnaires approved by each participating site 
IRB. The authors obtained approval from the ADNI Data Sharing 
and Publications Committee for data use and publication; see docu-
ments http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/
ADNI_Data_Use_Agreement.pdf and http://adni.loni.usc.edu/
wp-content/uploads/how_to_apply/ADNI_Manuscript_Citations.
pdf, respectively.

This study used multi-omics molecular data (Ntotal = 1863) from 
two large-scale databases (see table S1 for demographic characteristics). 
Each dataset was processed and analyzed independently.
Dataset 1
Dataset 1 includes multimodal molecular, neuropathological, and/
or clinical data from a total of 822 participants (table S1) enrolled in 
ROS (51) or MAP (52). The multi-omics data contain RNA expres-
sion, DNAm, proteins, and metabolomics concentration from DLPFC 
of subsets of 489, 708, 111, and 1225 autopsied subjects, respectively. 
All these data were generated in previous studies as described in 
(35, 45, 53–56) and downloaded from the AMP-AD knowledge portal 
(www.synapse.org), using the following Synapse IDs: syn3157275 
(for epigenomic data), syn3800853 (transcriptomic), syn10468856 
(proteomic), and syn10235595 and syn10235594 (metabolomic). Only 
participants with at least two molecular data modalities were con-
sidered. The metabolomic data were generated by the Alzheimer’s 
Disease Metabolomics Consortium (ADMC; see also Acknowledg-
ments). Blood monocyte RNA data for a subset of 615 subjects were 
also included here (syn22024496). Annual administration of cogni-
tive tests was incorporated into summary measures of five domains 
of cognitive function [episodic memory, visuospatial ability, perceptual 
speed, semantic memory, and working memory (57)] and a global 
cognition measure computed by averaging the five summary scores. 
For each cognitive measure, the person-specific random slope was 
estimated as the rate of change in the variable over time. It comes a 
from linear mixed-effects model with annual variable as the longi-
tudinal outcome. The model controls for age at baseline, sex, and 
years of education (58). Assignment of NCI, MCI, or AD dementia 
categories was performed in correspondence with most likely clini-
cal diagnosis at the time of death. All available clinical data were 
reviewed by a neurologist with expertise in dementia, and a summary 
diagnostic opinion was rendered regarding the most likely clinical 
diagnosis. Case conferences including one or more neurologists and 

https://www.neuropm-lab.com/neuropm-box.html
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a neuropsychologist were used for consensus (59). All subjects 
underwent postmortem neuropathologic evaluations, including 
uniform structured assessment of AD pathology, cerebral infarcts, 
Lewy body disease, TDP-43 cytoplasmatic inclusions in neurons 
and glia, and other pathologies common in aging and dementia. 
Brain regional and average data can be requested at www.radc.rush.
edu/requests.htm. The pathologic diagnosis of AD uses NIA-Reagan 
and modified CERAD criteria, and the staging of neurofibrillary pa-
thology uses Braak staging (60).
Dataset 2
Blood-based multi-omics molecular screening, multimodal brain 
imaging, and/or clinical data from 1041 alive participants (table S1) 
were obtained from ADNI (adni.loni.usc.edu). Molecular data in-
cluded blood RNA expression, DNAm, proteins, and metabolomics 
concentration of subsets of 658, 595, 635, and 551 subjects, respec-
tively. Only participants with at least two molecular data modalities 
were included. ADNI was launched in 2003 as a public-private part-
nership, led by principal investigator M. W. Weiner. The primary 
goal of ADNI has been to test whether serial MRI, PET, other bio-
logical markers, and clinical and neuropsychological assessments 
can be combined to measure the progression of CI and AD. All 
the participants were also characterized cognitively, including the 
mini-mental state examination (MMSE) and composite scores of 
executive function (EF) and memory integrity (MEM) (61). In ad-
dition, they were clinically diagnosed at baseline as healthy control 
(NCI), EMCI, LMCI, or probable AD patient. Gene expression pro-
filing used the Affymetrix Human Genome U219 Array (www.
affymetrix.com), with quality-controlled gene expression data in-
cluding activity levels for 49,293 transcripts. The Illumina Infinium 
HumanMethylationEPIC BeadChip Array (www.illumina.com) was 
used for methylation profiling, covering about 866,000 CpGs. DNAm 
IDAT files were read into R v3.5.1 (R Core Team, 2018) using the 
minfi package and annotated with the Infinium MethylationEPIC 
v1.0 B5 Manifest File (https://support.illumina.com/downloads.html). 
Normalized DNAm was measured using a bivariate gamma distri-
bution method (62), which has been shown to outperform the tra-
ditional beta and M value regression algorithm. Bile acids, lipidomic, 
and/or purine metabolites data were generated by ADMC (see 
Acknowledgments), as extensively described in (35, 55, 56). Differ-
ent sets of previously quantified proteins were combined, including 
the 190-analyte multiplex immunoassay panel developed on the 
Luminex xMAP platform (ADNI data file “Biomarkers Consortium 
Plasma Proteomics Data Primer 02Aug2013 FINAL”), the tau pro-
tein phosphorylated at threonine-181 (P-tau181; ADNI data file 
“University of Gothenburg Longitudinal plasma P-tau181”), the 
axonal protein tau (ADNI data file “Blennow Lab – ADNI-1 – Plasma 
tau”), and the plasma neurofilament light [NFL; ADNI data file 
“Blennow Lab ADNI1-2 Plasma neurofilament light (NFL) longi-
tudinal”]. Last, molecular PET and MRI images quantifying three 
different biological properties were mapped in vivo using the 
following techniques: structural MRI (for structural tissular proper-
ties), florbetapir PET (for A deposition), and 18F-AV-1451 PET 
(for tau deposition). For both A and tau, corresponding mean 
standardized uptake value ratio values were extracted for 34 gray 
matter regions of interest defined by Freesurfer v7.1.1 (see ADNI 
data files “UC Berkeley - AV45 Analysis [ADNI1,G–,2,3]” and “UC 
Berkeley - AV1451 Analysis [ADNI1,GO,2,3],” respectively). MRI-based 
regional volumes were also quantified with Freesurfer. See table S1 
for the corresponding demographic and data characteristics.

Methods
Data preprocessing
Before applying the mcTI approach, each molecular feature’s quality- 
controlled values (gene abundance, CpG site methylation level, and 
metabolite or protein concentration) was adjusted for relevant co-
variates using robust additive linear models. Covariables included 
age, sex, and educational level for both in vivo and postmortem data, 
plus postmortem interval in hours, sample pH, RNA integrity number, 
and batch number when applicable.
mcTI definition
Given a set of multiple “omic” data types, this method provides two 
estimations for each participant (see detailed algorithm below): (i) a 
personalized multi-omics mDPS, reflecting how close (in terms of 
multilevel molecular alterations) each participant is to developing 
AD dementia, and (ii) a putative disease subtype, corresponding to 
a distinctive disease trajectory that the participant may be developing. 
Initially, each data modality’s high number of features/biomarkers 
is reduced by identifying the low-dimensional pattern enriched in 
subjects diagnosed with AD dementia relative to subjects with NCI.  
For this, cPCA (43) is performed, reducing each data modality to a 
few components capturing the AD-associated patterns (13). Next, 
all the molecular data modalities’ disease-enriched components are 
aggregated by similarity network fusion (SNF) (2), an ML algorithm 
that combines diverse types of measurements, here, DNAm, RNA 
expression, metabolites, and protein concentrations. SNF constructs 
a robust fused subject-subject similarity network for different data 
scales, collection bias, and measurement error. This network con-
stitutes the integrated data space where the population stratification 
is performed for disease progression and subtrajectories. Essentially, 
each subject’s pseudo-time value represents a personalized multi- 
omics mDPS calculated as the distance over the network to the NCI 
subjects (i.e., for each subject, adding the network links through any 
intermediary AD or MCI participant until reaching the NCI subgroup). 
A continuous standardized value between 0 and 1 is obtained for 
each participant, reflecting the proximity to the cognitively healthy 
state. Next, participants are assigned to distinct molecular subtypes/
subtrajectories, which are identified via an EM algorithm that maxi-
mizes the alignment of the subjects within each specific subtype based 
on their molecular data [i.e., each subtype corresponds to a subtra-
jectory defined as a concatenated subset of cognitively affected subjects 
(MCI and AD) following a similar pattern in the multi-omics data’s 
integrated space; see Fig. 1B]. Last, a statistical subtypes’ stability and 
significance analysis is performed via randomized permutations. Each 
disease subtype’s stability (20) is calculated as the rate at which pairs 
of subjects group together into the same cluster upon repeated clus-
tering on random subsets of the input data. The comparison of each 
subtype’s intrinsic stability with a generated null distribution allows 
testing its significance.
Detailed mcTI algorithm
The inference of multi-omics contrastive pseudo-temporal subtra-
jectories/subtypes consisted of six main steps (see simplified defini-
tion above):

1) Optional initial selection of features most likely to be involved 
in a trajectory across the entire diseased population. We only applied 
this step for the transcriptomic and epigenomic data (with consider-
ably higher dimensionality than the population’s sample size and 
the metabolomic/proteomic data). For each of these two data types, 
only the top 1000 differentially expressed features (transcripts or 
CpGs) were selected for the subsequent analyses [for this, a T score 

http://www.radc.rush.edu/requests.htm
http://www.radc.rush.edu/requests.htm
http://www.adni.loni.usc.edu
http://www.affymetrix.com
http://www.affymetrix.com
http://www.illumina.com
https://support.illumina.com/downloads.html
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value per feature was preliminarily calculated, reflecting its likeli-
hood to be altered in the cognitively affected subpopulation (MCI 
or AD) in comparison with the subjects with NCI].

2) For each molecular data type, data exploration and visualiza-
tion were performed via cPCA (43). This technique identified low- 
dimensional patterns that are enriched in the target dataset (here, 
the subjects with AD dementia) relative to a comparison background 
dataset (the NCI). By controlling the effects of characteristic pat-
terns in the background, cPCA allows the visualization of specific 
data structures missed by standard data exploration and visualiza-
tion methods (e.g., traditional PCA and Kernel PCA). Specifically, if 
Ctarget and Cbackground are the covariance matrices of the target and 
background data, the directions returned by cPCA are the singular 
vectors of the weighted difference of the covariance matrices: Ctarget – 
·Cbackground. The contrast parameter  represents the trade-off be-
tween having high target variance and low background variance. 
Multiple values of  are used (i.e., 100 logarithmically equally spaced 
points between 10−2 and 102). Instead of choosing a single , the 
resulting subspaces for all the – values are clustered [based on their 
proximity in terms of the principal angle and spectral clustering (63)] 
in a few subspaces. The data are then projected onto each of these 
few subspaces, revealing different trends within the target data. While 
the original cPCA algorithm (43) selects the final subspace via visual 
examination, we automatically select the subspace that maximizes 
the clustering tendency in the projected target data, relative to the 
clustering tendency in the background population.

3) Aggregation of the different dimensionally reduced molecular 
data modalities via SNF (2). The well-known SNF algorithm, origi-
nally proposed in the context of cancer research (2), allows us to 
combine diverse types of measurements (here, DNAm, RNA ex-
pression, and metabolite and protein concentrations) for a given 
population. It first creates a sample similarity network for each of 
the data types (here, each of the four dimensionally reduced omics 
data) and then iteratively integrates these networks into a fused subject- 
subject similarity network (FN). SNF is robust to different data scales, 
collection bias, and noise in different measurement types. Here, this 
nonlinear data fusion algorithm allowed the utilization of common 
and complementary information in the different molecular data types.

4) Individual multi-omics mDPS calculation according to the 
distance over the network (FN) to the background NCI subpopula-
tion [i.e., for each cognitively affected subject (MCI or AD), adding 
the network links through any intermediary participant until reach-
ing the NCI subgroup]. For this, we first calculated the minimum 
spanning tree of the FN (FN-MST). The FN-MST is then used to 
calculate the shortest path from any participant to the background 
subjects. Each shortest path is defined as the concatenation of rela-
tively similar subjects in the integrated multimodal molecular space 
that minimizes the distance to the background. The position of each 
subject in her/his corresponding shortest path reflects the individu-
al distance to the NCI subpopulation and, if analyzed in the inverse 
direction, to advanced disease state (AD dementia). Thus, to quan-
tify the distance to these two extremes (NCI or AD dementia), the 
individual multi-omics mDPS is calculated as the shortest distance 
value to the background’s centroid, relative to the maximum popu-
lation value (i.e., values are standardized between 0 and 1). Relative-
ly low or high values indicate greater or lesser distance on the path 
to develop AD dementia (Fig. 1, B and C).

5) Subtyping via EM. This step focuses on detecting subgroups 
of cognitively affected subjects aligned to distinctive molecular 

subtrajectories in the integrated multi-omics space. Preliminarily, 
spectral clustering (63) is performed over the FN and provided as 
initial solution to the EM subtyping. In addition, using multidimen-
sional scaling [MDS; Matlab function mdscale (64)], the multimodal 
molecular information contained in the FN is translated to an ab-
stract Cartesian space (here, on FN-MDS) where each subject is 
represented by a set of coordinate values. Note that the FN-MDS space 
preserves the distances/similarities between all the subjects in the 
FN, providing a numerical representation of the integrated mo-
lecular information at the whole population level. The FN-MDS’s 
optimum number of dimensions was automatically determined 
using BIC (32). Next, the EM is applied by repeating two steps: (i) 
leave-one-out predictions of each subject’s multi-omics mDPS 
(obtained in step 4). Training independent subtype-specific models 
with the individual FN-MDS coordinates as predicting variables, 
each subject receives as many mDPS predictions as the number of 
available subtypes, always keeping the subject outside of the train-
ing step. For each subject i and subtype j, this provides a prediction 
error, reflecting how well the subject i aligns with the subtype j’s 
internal multimodal molecular data. (ii) The subjects’ subtypes are 
updated according to the obtained prediction errors (i.e., each sub-
ject is reassigned now to the subtype that better predicted its molecu-
lar disease progression index). Steps (i) and (ii) are repeated until 
the subtypes’ configurations reach a small level of variation, providing 
potentially stable subtypes.

6) Last, subtype stability and significance evaluation via random-
ized permutations. Following the method proposed in (20), subtype 
stability was defined as the rate at which pairs of subjects group 
together into the same subtypes upon repeated clustering on ran-
dom subsets of the input data. Extended to the multilevel molecular 
information, the reasoning behind this method (20) is that if true 
subtypes are reflected in the data, then a robust subtyping method 
should provide the same set of clustered samples on repeated re-
evaluation using fewer samples or molecular features. Contrarily, if 
no distinctive signature is reflected in the data and/or the method is 
not robust, then different sets of subtyped samples will result from 
repeated reclustering. In practice, we calculated the rate at which 
each pair of subjects shared the same subtype across all 50 boot-
strapping and the resulting average pairwise sample reclustering rate 
for all pairs of samples within the sample subtypes. Similarly, a null 
distribution of average pairwise sample reclustering rates per sub-
type was calculated across 5000 randomized permutations. We then 
calculated the empirical likelihood that the subtype stability rate and 
the null stability rate are the same (for each subtype, defining a sig-
nificance P value as one minus the proportion of cases in which the 
observed stability rate was higher than the null distribution values).
Assessing marker contributions on mDPS
For each dataset and molecular omics modality, the total contri-
bution Ci of each modality-specific marker i to the obtained reduced 
representation space (and the multi-omics mDPS) was quantified  
as (13)

    C  i   = 100 ∙  ∑ j=1   N  cPC      (     j  norm  ∙   
  i,j  2  
 ─ 

 ∑ k=1   N  features        i,j  2  
   )     (1)

where    j  norm  = (   j   − min_ ) /  ∑ k=1   N  total     (   k   − min_)  is the normalized 
eigenvalue of the contrasted principal component j, min_ is the 
minimum obtained eigenvalue, Ntotal is the original number of 
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contrasted principal components, NcPC is the number of contrasted 
principal components with    j  norm   over a predefined cutoff value (i.e., 
0.025), i, j is the loading/weight of the marker i on the component 
j, and Nfeatures is the total number of modality-specific markers con-
sidered in the dimensionality reduction analysis (step 2 in mcTI 
algorithm). For comparison across datasets/modalities, obtained 
values were normalized by the maximum and expressed as percent-
ages (Fig. 3A and fig. S4A).
Assessing omics contributions on subtyping
For each molecular omics modality i (epigenome, transcriptome, 
proteome, or metabolome), its contribution to the obtained sub-
types was calculated as:

1) i was removed from the mcTI algorithm’s input data, and a new 
AD classification was obtained (i.e., without any information from i).

2) An index reflecting the level of dependence in modality i for 
obtaining the original AD classification was calculated as: 1 − nMI, 
where nMI is the normalized mutual information between the two 
obtained AD classification configurations (i.e., with and without 
considering modality i). Note that a value of 1 would imply a high 
level of dependency in modality i, and 0 otherwise.

The indexes were normalized to express percentages across the 
four molecular modalities (Fig. 3B and fig. S4B).
Brain cell type analysis
Brain-based subtype-specific differentially expressed genes (from the 
original no-preselected transcripts, dataset 1) were used to perform 
a cell type identification analysis with the Enrichr software (38) and 
the Allen Brain Atlas 10x scRNA 2021. For each putative subtype, a 
ranked list of about 200 potentially down- or up-regulated brain 
cells was obtained, with a z score value per cell indicating the statis-
tical likelihood to be enriched in comparison with a random back-
ground. An FDR multiple-comparison analysis of these z scores was 
performed to identify highly likely altered cell types. Subtype-subtype 
dissimilarity regarding their significantly altered cells was calculated 
as the relative mismatch (in percent) regarding unique down-/
up-regulated cell types.
Comparative analysis with neuropathological subtypes
Similar to (40), criteria for three neuropathological AD subtypes 
were adapted from Murray et al. (15). On the basis of the cortical 
and hippocampal density and distribution of NFT in postmortem 
brains, the Murray-Dickson AD classification consists of three sub-
types: typical AD (tAD), limbic predominant (LP), and hippocam-
pal sparing (HpSp). In dataset 1, a subset of participants (N = 131) 
satisfied inclusion criteria (i.e., AD confirmed, Braak stage V or VI, 
and no hippocampal sclerosis). NFT counts for the subiculum and 
CA1 regions of the hippocampus were considered together as a single 
region rather than separated and averaged (40). Four cortical regions 
with NFT were considered (inferior temporal, angular, calcarine, 
and cingulate cortices). From all participants, 98 (74.81%) met the 
three required criteria for tAD: (i) the ratio of the hippocampal NFT 
counts to the average cortical NFT to be less than the 25th percentile 
of all AD cases, (ii) the hippocampal NFT counts to be less than the 
population’s median value, and (iii) at least three of the cortical 
NFT count values to be greater than or equal to the median values. 
Nineteen subjects (14.50%) met the three criteria for LP: (i) the ratio 
of the hippocampal NFT counts to the average cortical NFT to be 
greater than the 75th percentile of all AD cases, (ii) the hippocampal 
NFT counts to be greater than the population’s median value, and 
(iii) at least three of the cortical NFT count values to be less than or 
equal to the median values. Fourteen subjects (10.69%) satisfied the 

criteria for HpSp: AD participants not classified as tAD or LP. Last, 
these Murray-Dickson AD subtypes were quantitatively compared 
with our multi-omics molecular AD subtypes via the nMI (a mea-
sure of mutual dependence between the two classification configu-
rations) and the VI (amount of information lost and gained) (39). 
The significances of the obtained nMI and VI values were tested via 
a randomized permutation procedure (i.e., comparing to the ran-
domized subtype distributions, with 10,000 repetitions; fig. S4).
Statistical analyses
Multi-omics mDPS associations with selected neuropathological 
staging variables (e.g., Braak, CERAD, and TDP-43) were tested via 
Kruskal-Wallis tests, previously adjusting the pseudo-time for age, 
sex, and educational level. For each neuropathological staging variable, 
a randomized permutation procedure (5000 repetitions) was used 
to construct a robust null distribution and obtain associated FWE- 
corrected Kruskal-Wallis significance values. In addition, all statistical 
subtype-subtype comparisons were performed via ANOVA tests, 
with subtype as the grouping variable (age, sex, and educational level 
were included as covariables when the data were not already adjusted 
for these confounding factors, e.g., for neuropathological features). The 
resulting ANOVA P values underwent FDR correction (with signifi-
cance cutoff q < 0.05) (65). Analyses were performed in MATLAB 
version R2019b.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abo6764

View/request a protocol for this paper from Bio-protocol.
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