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Bcl-xL as a poor prognostic biomarker and predictor of response 
to adjuvant chemotherapy specifically in BRAF-mutant stage II 
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ABSTRACT

Purpose: BRAF mutation occurs in 8–15% of colon cancers (CC), and is associated with 
poor prognosis in metastatic disease. Compared to wild-type BRAF (BRAFWT) disease, stage 
II/III CC patients with BRAF mutant (BRAFMT) tumors have shorter overall survival after 
relapse; however, time-to-relapse is not significantly different. The aim of this investigation 
was to identify, and validate, novel predictors of relapse of stage II/III BRAFMT CC. 

Experimental design: We used gene expression data from a cohort of 460 patients 
(GSE39582) to perform a supervised classification analysis based on risk-of-relapse within 
BRAFMT stage II/III CC, to identify transcriptomic biomarkers associated with prognosis 
within this genotype. These findings were validated using immunohistochemistry in 
an independent population-based cohort of Stage II/III CC (n = 691), applying Cox 
proportional hazards analysis to determine associations with survival. 

Results: High gene expression levels of Bcl-xL, a key regulator of apoptosis, were 
associated with increased risk of relapse, specifically in BRAFMT tumors (HR = 8.3, 95% 
CI 1.7–41.7), but not KRASMT/BRAFWT or KRASWT/BRAFWT tumors. High Bcl-xL protein 
expression in BRAFMT, untreated, stage II/III CC was confirmed to be associated with 
an increased risk of death in an independent cohort (HR = 12.13, 95% CI 2.49–59.13). 
Additionally, BRAFMT tumors with high levels of Bcl-xL protein expression appeared to 
benefit from adjuvant chemotherapy (P for interaction = 0.006), indicating the potential 
predictive value of Bcl-xL expression in this setting. 

Conclusions: These findings provide evidence that Bcl-xL gene and/or protein 
expression identifies a poor prognostic subgroup of BRAFMT stage II/III CC patients, 
who may benefit from adjuvant chemotherapy. 
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INTRODUCTION

Signaling through the Epidermal Growth Factor 
Receptor (EGFR) pathway is a common event in cancer 
development [1], with activating mutations in KRAS, NRAS 
and BRAF occurring in approximately 50% of colorectal 
cancer (CRC) patients [2]. Results from a phase III trial 
(MRC COIN trial, n = 1630) in metastatic CRC revealed 
that patients with BRAF mutant (BRAFMT) tumors have 
a significantly worse prognosis compared to patients 
with KRAS mutant (KRASMT) tumors or tumors with 
no detectable mutations in KRAS or BRAF (WT/WT) [3]. 
The use of a BRAFMT specific inhibitor, vemurafenib, 
in advanced melanoma, has improved survival rates for 
patients with this activating mutation [4], and underpinned 
the rationale for a phase Ib study employing vemurafenib in 
BRAFMT CRC [5]. Unfortunately, unlike the encouraging 
results observed in BRAFMT melanoma, the inhibitor did 
not benefit BRAFMT CRC patients in the advanced disease 
setting. Mechanistic studies have indicated that resistance 
to vemurafenib in CRC is due to feedback activation of the 
EGFR pathway [6], further highlighting the key role played 
by EGFR signaling in CRC. 

To examine the role of BRAF in the adjuvant 
stage II/III disease setting, Popovici and colleagues 
performed differential gene expression analysis to identify 
transcriptional differences between BRAFMT and BRAFWT/
KRASWT tumors in a cohort of 688 stage II and III colon 
cancer (CC) clinical trial samples (PETACC-3) [7]. Their 
analysis identified the distinct underlying biology of the 
BRAFMT subgroup. Furthermore, the authors generated 
a 64-gene classifier, which stratified the cohort into two 
subgroups. The first subgroup, which accounted for 27% of 
the cohort, displayed a transcriptional signature similar to 
BRAFMT tumors (termed “pred-BRAFm”) and had a worse 
prognosis in terms of overall survival (OS) and survival-
after-relapse compared to the second subgroup, which had a 
signature similar to that of BRAFWT disease (termed “pred-
BRAFwt”). Critically however, while both BRAF mutation 
and the pred-BRAFm signatures could identify subgroups of 
patients with poorer OS after relapse (i.e. when the patient 
had progressed to stage IV metastatic disease), the rates of 
disease relapse in these subgroups were not significantly 
different to BRAFWT and pred-BRAFwt disease.

There is currently a lack of understanding of the 
biology that drives disease relapse specifically within 
stage II/III BRAFMT disease, resolution of which could 
ultimately inform treatment of a clinically-definable 
subgroup of BRAFMT patients, who have the worst 
prognosis when they progress to stage IV, but who still 
may be potentially curable in stage II/III. Therefore, we 
aimed to identify novel predictors of relapse for stage 
II/III BRAFMT CC, employing transcriptomic datasets 
for in silico discovery/initial corroboration, followed by 
subsequent validation of promising lead candidate(s) 
from bioinformatics analyses by immunohistochemistry 

analysis within a large population-based stage II/III 
BRAFMT CC study.

RESULTS

Study outline and rationale for risk stratification 
in BRAFMT CC

We analyzed available transcriptional data from 
the well-characterized dataset, GSE39582, as outlined 
in Supplementary Figure 1. Compared to KRASMT and 
WT/WT patients, BRAFMT patients were significantly 
more likely to be older (p < 0.001), have proximal tumors 
(p < 0.001) that exhibited microsatellite instability (MSI, 
p < 0.001) and to be assigned as Consensus Molecular 
Subtype 1 (CMS1, p < 0.001) (Table 1). Additionally, 
patients with BRAFMT tumors were significantly more 
likely to be female (p = 0.04 and p = 0.001) and to receive 
no adjuvant chemotherapy (p = 0.001 and p = 0.006) 
compared to KRASMT and WT/WT respectively (Table 1). 
Finally, BRAFMT patients were significantly more likely 
to have later stage disease (stage II v III) compared to WT/
WT patients (p = 0.04) (Table 1). Using the 64 gene BRAF 
classifier identified by Popovici et al. [7] we performed 
semi-supervised hierarchical clustering of the gene 
expression profiles of the entire stage II/III patient cohort. 
We identified a subgroup accounting for 28% (n = 127) of 
the tumor profiles using this method of clustering, which 
displayed an expression pattern similar to the pred-BRAFm 
profile (Supplementary Figure 2A). We found no difference 
in relapse rates between the pred-BRAFm and the pred-
BRAFwt populations in this cohort (Supplementary  
Figure 2A; HR = 0.95 (95% CI 0.65–1.39)). 

Gene expression associated with risk of relapse 
in BRAFMT CC

Gene Set enrichment analysis (GSEA) of the 
discovery subset indicated increased myogenesis, 
epithelial-to-mesenchymal transition (EMT) and hypoxia 
pathways in the BRAFMT tumors with the highest-risk of 
disease relapse (Supplementary Figure 2B). Additionally, 
using the Microenvironment Cell Populations-counter 
(MCP), we identified a non-significant trend for increased 
fibroblasts in high-risk BRAFMT tumors (Supplementary 
Figure 2C). Using differential gene expression analysis 
contrasting profiles from high-risk or low-risk BRAFMT 
tumors in the discovery subset (Supplementary Figure 
1), we identified 83 probesets (Supplementary Table 1) 
corresponding to 67 annotated genes that are prognostic 
for relapse risk in BRAFMT tumors; high expression of 
43 genes were associated with increased risk of relapse, 
and high expression of 24 genes with decreased risk of 
relapse (Table 2). Increased expression of endoplasmic 
reticulum stress-induced transcripts such as PPP1R15A 
(GADD34), heat shock proteins HSPA6 and DNAJB1, 
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and the stress-related transcription factor DDIT3 were 
observed in BRAFMT tumours with the highest-risk of  
disease relapse. 

While the majority of the 67 genes are represented 
by a single probeset, BCL2L1 (encoding Bcl-xL) and 
NCRNA00275 (which transcribes ZFAS1) are both 
represented by 3 different probesets (of the 4 total 
probesets for each gene), reducing the probability of the 
single genes themselves being false positives, which could 
potentially confound the validity of genes identified by 
a single probeset only (Supplementary Table 1). Gene 
expression levels of Bcl-xL were increased between 
1.76–1.97 fold (Figure 1A) and ZFAS1 by 1.83–1.90 
fold (Supplementary Table 1) in the high-risk group 
compared to the low risk group. Importantly, the 67 
BRAFMT prognostic gene list is distinct from the pred-
BRAFm classifier reported by Popovici, as only one gene, 

(Kallikrein-Related Peptidase 10 (KLK10)), overlaps 
between these 2 gene lists (Supplementary Figure 2D).

Probesets associated with risk in BRAFMT 
tumors represent distinct novel prognostic 
biology

As BRAF and KRAS are both key components of 
the EGFR/MAPK pathway, we performed a similar risk 
association analysis in KRASMT tumors and identified 139 
probesets associated with risk-of-relapse in this genetic 
subgroup (Supplementary Table 2). We found no overlap 
between the probesets associated with risk-of-relapse in 
the KRASMT subgroup and the probesets identified in the 
BRAFMT analyses (Supplementary Figure 2E), indicating 
that distinct biologies determine prognosis in these two 
subgroups, at least in stage II/III disease. 

Table 1: Characteristics of colon cancer patients and tumors according to BRAF and KRAS status.

Characteristic BRAF MT
n = 41

KRAS MT
n = 166 p-value WT/WT

n = 210 p-value

Age, years, mean (SD) 76.0 (7.3) 67.7 (13.5) <0.001 65.6 (12.6) <0.001
Sex, n (%)
 Male
 Female

 
14 (34.1)
27 (65.9)

 
86 (51.8)
80 (48.2)

 
 

0.04

 
130 (61.9)
80 (38.1)

 
 

0.001
Tumour stage, n (%)
 II
 III

 
20 (48.8)
21 (51.2)

 
86 (51.8)
80 (48.2)

 
 

0.73

 
138 (65.7)
72 (34.3)

 
 

0.04
Tumour location, n (%)
 Proximal
 Distal

 
37 (90.2)
4 (9.8)

 
86 (51.8)
80 (48.2)

 
 

<0.001

 
49 (23.3)
161 (76.1)

 
 

<0.001
Adjuvant treatment* receipt, n (%)
 No
 Yes

 
33 (80.5)
8 (19.5)

 
86 (51.8)
80 (48.2)

 
 

0.001

 
121 (57.6)
89 (42.4)

 
 

0.006
MSI status
 MSI
 MSS
 Unknown

 
27 (65.9)
8 (19.5)
6 (14.6)

 
15 (9.0)

138 (83.1)
13 (7.8)

 
 
 

<0.001

 
15 (7.1)

170 (81.0)
25 (11.9)

 
 
 

<0.001
Consensus Molecular Subtype, n (%)
 CMS 1
 CMS 2
 CMS 3
 CMS 4
 Unknown

 
32 (78.1)
0 (0.0)
3 (7.3)
3 (7.3)
3 (7.3)

 
17 (10.2)
53 (31.9)
35 (21.1)
45 (27.1)
16 (9.6)

 
 
 
 
 

<0.001

 
26 (12.4)
120 (57.1)

9 (4.3)
40 (19.1)
15 (7.1)

 
 
 
 
 

<0.001
Characteristics of colon cancer patients and tumours according to BRAF and KRAS status.
MSI: Microsatellite instability; MSS: Microsatellite stable; MT: Mutant; WT/WT: BRAF and KRAS wild-type. *Adjuvant 
chemotherapy treatment receipt.
Of the 460 tumor profiles within our cohort, 417 have KRAS and BRAF mutational analysis data. Comparative analysis 
was performed for age, sex, stage, location, treatment, MSI and Consensus Molecular Subtype (CMS). MSI: Microsatellite 
instability; MSS: Microsatellite stable; MT: Mutant; WT/WT: BRAF and KRAS wild-type. *Adjuvant chemotherapy 
treatment received.
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Table 2: Gene list associated with relapse in BRAFMT tumors
Symbol Entrez Gene Name Symbol Entrez Gene Name
AEBP1 AE binding protein 1 AGR2 anterior gradient 2, protein disulphide isomerase family 

member
ALPP alkaline phosphatase, placental C2orf72 chromosome 2 open reading frame 72
ANGPTL1 angiopoietin-like 1 C3orf70 chromosome 3 open reading frame 70
BCL2L1 BCL2-like 1 COBL cordon-bleu WH2 repeat protein
CCDC71L coiled-coil domain containing 71-like EFNA2 ephrin-A2
CCL7 chemokine (C-C motif) ligand 7 GATA6-AS1 GATA6 antisense RNA 1 (head to head)
CDA cytidine deaminase GMDS GDP-mannose 4,6-dehydratase
CYSRT1 cysteine-rich tail protein 1 HES6 hes family bHLH transcription factor 6
DDIT3 DNA-damage-inducible transcript 3 IMPA2 inositol(myo)-1(or 4)-monophosphatase 2
DNAJB1 DnaJ (Hsp40) homolog, subfamily B, member 1 KIAA1324 KIAA1324
DNTTIP1 deoxynucleotidyltransferase, terminal, interacting 

protein 1
KIAA1671 KIAA1671

DUSP14 dual specificity phosphatase 14 KREMEN1 kringle containing transmembrane protein 1
EPYC epiphycan LARGE like-glycosyltransferase
FST follistatin NOX1 NADPH oxidase 1
FXYD5 FXYD domain containing ion transport regulator 5 NRARP NOTCH-regulated ankyrin repeat protein
GAS1 growth arrest-specific 1 PER2 period circadian clock 2
GJB3 gap junction protein, beta 3, 31kDa PIP5K1B phosphatidylinositol-4-phosphate 5-kinase, type I, beta
GJB5 gap junction protein, beta 5, 31.1kDa PSMG4 proteasome (prosome, macropain) assembly chaperone 4
HCFC1R1 host cell factor C1 regulator 1 (XPO1 dependent) SKP2 S-phase kinase-associated protein 2, E3 ubiquitin protein 

ligase
HSPA6 heat shock 70kDa protein 6 (HSP70B’) SLC22A23 solute carrier family 22, member 23
IER5L immediate early response 5-like SPRED2 sprouty-related, EVH1 domain containing 2
IGFBP6 insulin-like growth factor binding protein 6 TMEM30B transmembrane protein 30B
KLK10 kallikrein-related peptidase 10 TRIM15 tripartite motif containing 15
KRT16 keratin 16, type I TSPAN13 tetraspanin 13
MFGE8 milk fat globule-EGF factor 8 protein
MIR100HG mir-100-let-7a-2 cluster host gene
MYH4 myosin, heavy chain 4, skeletal muscle
NKIRAS1 NFKB inhibitor interacting Ras-like 1
NPC1L1 NPC1-like 1
NT5E 5’-nucleotidase, ecto (CD73)
PAEP progestagen-associated endometrial protein
PDP1 pyruvate dehyrogenase phosphatase catalytic 

subunit 1
PHLDA3 pleckstrin homology-like domain, family A, member 

3
PPP1R15A protein phosphatase 1, regulatory subunit 15A
PRR9 proline rich 9
RBMS2 RNA binding motif, single stranded interacting 

protein 2
RGS4 regulator of G-protein signaling 4
TAGLN3 transgelin 3
TGFB2 transforming growth factor, beta 2
TNFSF4 tumor necrosis factor (ligand) superfamily, member 

4
VEGFB vascular endothelial growth factor B
ZFAS1 ZNFX1 antisense RNA 1
ZNF667-AS1 ZNF667 antisense RNA 1 (head to head)

Genes associated with increased (red) and decreased (green) relapse risk from our BRAFMT risk-supervised differential gene expression analysis data. 
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Bcl-xL mRNA expression is associated with poor 
prognosis in stage II/III BRAFMT CC

To confirm the clinical relevance of elevated Bcl-xL 
gene expression in our training set, in addition to testing 
the genotype-specific nature of its prognostic value, we 
next generated an “Initial Consolidation” dataset (n = 417, 
Supplementary Figure 1) by removing the filters initially 
applied to the discovery subset of the GSE39582 cohort, 
(i.e. we removed the restrictions on chemotherapy treatment 
and the follow-up criteria as detailed in Methods). This 
set of 417 patients represents an ideal cohort to assess the 
prognostic value of Bcl-xL in KRASWT and WT/WT patients 
that were not used to identify Bcl-xL, in addition to a further 
17 BRAFMT patients that were previously excluded from 
the discovery data. Within BRAFMT tumors (n = 41), the 
Bcl-xL-high group (Bcl-xLhigh) had a significantly higher 
risk-of-relapse compared to the Bcl-xL-low (Bcl-xLlow) 
expression group, using either an unadjusted (HR = 5.83), 
or adjusted model (HR = 9.63) accounting for potential 
confounding factors including age, gender, TNM stage and 
MSI status (confidence intervals could not be calculated due 
to an absence of events in Bcl-xLlow; Figure 1B and Table 
3). When examining untreated patients only, the prognostic 
value of Bcl-xL mRNA expression in BRAFMT patients was 

again apparent (Figure 1C); however, the prognostic value 
of Bcl-xL in the chemotherapy-treated patient subgroup 
could not be evaluated due to small numbers (n = 8). The 
Bcl-xL medium expression group (Bcl-xLmed) displayed an 
intermediate relapse profile compared to the Bcl-xLhigh and 
Bcl-xLlow, suggesting a dose-response association between 
relapse risk and Bcl-xL gene expression. Stratification based 
on the median also demonstrated the prognostic value of 
Bcl-xL gene expression (HR = 5.24 (95% CI 1.3–21.2)) 
(Supplementary Figure 3A). 

In contrast, although there was a suggestive 
prognostic trend, no significant associations were observed 
for Bcl-xL gene expression in either the KRASMT or WT/
WT patient groups, using either an adjusted or unadjusted 
analysis model (Table 3 and Supplementary Figure 3B  
and 3C). 

ZFAS1 mRNA expression is associated with poor 
prognosis in stage II/III BRAFMT CC

High gene expression of ZFAS1 was associated with 
a prognostic trend in BRAFMT tumors compared to low 
gene expression (Supplementary Figure 4A) although 
given the small number of events in this stratified group, 
this trend failed to reach significance in either unadjusted 

Figure 1: Relapse risk analysis of BRAFMT tumors indicates that Bcl-xL gene expression is associated with prognosis 
in BRAFMT tumors. (A) BCL2L1 (Bcl-xL) was represented by 3 individual probesets in relapse risk analysis in BRAFMT tumors.  
(B and C) Relapse-free survival (RFS) curve using Kaplan-Meier estimation in the “Initial Consolidation” dataset comparing tertile 
stratified Bcl-xL gene expression levels in all BRAFMT (A) and untreated BRAFMT (B) stage II/III CRC patients. Unadjusted and adjusted 
HR statistics are detailed in Table 3.
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HR = 4.69 (95% CI 0.52–42.01), or adjusted HR = 4.71 
(95% CI 0.50–44.00) analyses (Supplementary Table 3). 
There was no prognostic value associated with high 
ZFAS1 expression in the KRASMT population (adjusted 
HR = 0.65 (95% CI 0.34–1.24)), although there was 
a significant association with lower relapse rates in 
the WT/WT population (adjusted HR = 0.47 (95% CI 
0.24–0.92)) (Supplementary Figure 4B, Supplementary  
Table 3) indicating an opposing prognostic role in these 
distinct tumor genotypes. 

Bcl-xL gene and protein expression are 
associated with the epithelial component of the 
tumor 

Given the multiple cell types that constitute the 
tumor microenvironment (TME) in CC, we analyzed Bcl-
xL mRNA expression levels in transcriptional data derived 
from micro-dissected tumor tissue (detailed in Materials 
and Methods section). We observed that its expression 
was bimodal in the epithelial compartment of the TME, 
with high and low subgroups around the median, whereas 
stromal expression levels were generally low, with values 

below the median (Supplementary Figure 5A). Analysis 
of matched Bcl-xL transcript abundance (by Agilent 
microarray), and protein level, (by Reverse Phase Protein 
Array (RPPA)) from 102 CRC tumor samples within The 
Cancer Genome Atlas (TCGA) indicated a significant 
correlation between both methodologies (p = 0.001; 
Supplementary Figure 5B), supporting protein-based 
assessment as an appropriate methodology to validate our 
data in an independent cohort. Following optimization 
of an IHC protocol for Bcl-xL protein expression, the 
predominantly epithelial-derived nature of Bcl-xL protein 
expression and neoplastic-specific staining compared to 
the normal glands in surrounding tissue was confirmed in 
a series of whole-face CC sections, although there does 
appear to be some stromal expression, in line with our 
transcriptional analysis (Figure 2A). 

Independent validation of Bcl-xL as a poor 
prognostic marker specifically in stage II/III 
BRAFMT CC

We then independently validated the prognostic 
value of Bcl-xL protein expression specifically in BRAFMT 

Table 3: Unadjusted and adjusted analyses of relapse-free survival

Bcl-xL Non-progressors 
n

Progressors 
n

Unadjusted Hazard ratios 
(95% confidence intervals)

Adjusted** Hazard ratios 
(95% confidence intervals)

BRAF MT         
 Low 14 0 1.00 1.00
 Medium 11 2 1.80 (Not calculable) 3.94 (Not calculable)
 High 8 6 5.83 (Not calculable) 9.63 (Not calculable)

KRAS MT     
 Low 38 18 1.00 1.00
 Medium 33 21 1.45 (0.75–2.77) 1.47 (0.76–2.84) 
 High 34 22 1.25 (0.65–2.40) 1.32 (0.68–2.56)

WT/WT 
 Low 57 13 1.00 1.00
 Medium 53 17 1.39 (0.67–2.85)  1.27 (0.61–2.64)  
 High 50 20 1.54 (0.77–3.10) 1.47 (0.72–3.01)

MT: Mutant; WT/WT: BRAF and KRAS wild-type.
*Cut-offs for low/medium/high Bcl-xl gene expression based on tertile values within each BRAF/KRAS status subgroup. 
**Adjustments included age and sex, and were tested for TNM stage, MSI status, adjuvant chemotherapy receipt and 
tumour location for all models. A backwards elimination model was applied for tested confounders until all were 
significant at the p < 0.25 level in the model. Final adjustments included age, sex, TNM stage and MSI status (for BRAF 
MT and WT/WT); age, sex, TNM stage, adjuvant chemotherapy receipt and tumour location (for KRAS MT). 
 RFS analysis was performed using Cox proportional hazards method in the BRAFMT, KRASMT or WT/WT stratified by 
Bcl-xL expression levels. Analysis was performed both before and following adjustment. *Cut-offs for low/medium/high 
Bcl-xL gene expression based on tertile values within each BRAF/KRAS status subgroup. **Adjustments included age 
and sex, and were tested for TNM stage, MSI status, adjuvant chemotherapy receipt and tumor location for all models. 
A backwards elimination model was applied for tested confounders, until all were significant at the p < 0.25 level in the 
model. Final adjustments included age, sex, TNM stage and MSI status (for BRAF MT and WT/WT); age, sex, TNM 
stage, adjuvant chemotherapy receipt and tumor location (for KRAS MT). 
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patient samples from within a Northern Ireland cohort  
(n = 661) (Supplementary Figure 1 and described in 
Methods). Employing tertiles defined by protein expression 
(Figure 2B), we found that Bcl-xLhigh was associated with 
an increased risk of CRC disease-specific survival (DSS; 
n = 77) when compared with Bcl-xLlow, in both unadjusted 
(HR = 3.07 (95% CI 1.24–7.60)) and adjusted models  
(HR = 5.50 (95% CI 1.71–17.69) (Supplementary Figure 
6A and Table 4). Similar findings were evident when using 
OS (n = 92) as the endpoint (Supplementary Figure 6B). 

We next conducted stratified analyses within the 
Northern Ireland cohort to assess independently the 
prognostic value of Bcl-xL protein expression in both 
untreated and chemotherapy-treated BRAFMT patients. 
In untreated patients, we observed a 12-fold increased 
DSS risk in patients with the highest Bcl-xL protein 
expression (adjusted model HR = 12.13 (95% CI 2.49–
59.13)) (Figure 3A), which was not observed in treated 
patients, (adjusted model HR = 0.96 (95% CI 0.08–11.42)) 
(Supplementary Figure 6C and Table 4). This significant 

Figure 2: Optimization of immunohistochemistry staining protocol for Bcl-xL protein expression in CC. (A) Whole-face 
CC tissue sections were used to optimize IHC protocol. A low level of protein expression was observed in the normal glands compared to 
surrounding stroma (Blue box) Elevated levels of expression were observed in neoplastic glands compared to both the normal glands and 
surrounding stroma (Red box). Some staining in the stroma is evident in both normal and cancer-associated regions. (B) Representative 
images of high, medium and low Bcl-xL protein expression by IHC in an independent “Northern Ireland cohort” of stage II/III CRC 
(Northern Ireland cohort; n = 740).
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prognostic benefit from adjuvant chemotherapy in 
BRAFMT patients was only observed in patients with the 
highest Bcl-xL protein expression (P-value for interaction = 
0.006), whereas patients with low Bcl-xL protein expression 
derived no benefit from the addition of chemotherapy 
(Figure 3B and 3C, Table 4 and Supplementary Figure 6C). 
Similar results were evident when using OS as the endpoint 
(Supplementary Figure 6D–6F). Importantly, in agreement 
with our initial consolidation cohort, we were again able 
to confirm that the prognostic value of Bcl-xL protein 
expression was not observed in KRASMT (HR = 1.00 (95% 
CI 0.57–1.77) and WT/WT (HR = 1.18 (95% CI 0.67–2.09)) 
patient samples (Table 4).

DISCUSSION

In this study, we set out to identify factors 
influencing patient prognosis specifically in tumors 
harboring an oncogenic BRAF mutation. Stratification 
of a discovery prognostic cohort based on risk-of-relapse 
identified the Bcl-2 family member, Bcl-xL, as being 
upregulated at the transcriptional level in BRAFMT tumors 
from patients who went on to relapse following surgery, 
compared to those BRAFMT patients who experienced 
no disease recurrence. We validated the prognostic value 
of Bcl-xL specifically in BRAFMT tumors in both a 
consolidation transcriptional cohort and in an independent 

Table 4: Analyses of disease-specific survival in the independent IHC validation cohort

Bcl-xL Alive
n CRC Death (DSS) N Unadjusted Hazard ratios 

(95% confidence intervals)
Adjusted** Hazard ratios 

(95% confidence intervals)

BRAF MT         
 Low (<56.1) 16 7 1.00 1.00
 Medium (56.1–<91.1) 17 10 1.54 (0.58–4.09) 1.97 (0.60–6.44)
 High (≥91.1) 12 15 3.07 (1.24–7.60) 5.50 (1.71–17.69)

KRAS MT     

 Low (<53.5) 44 28 1.00 1.00
 Medium (53.5–<92.7) 41 24 0.98 (0.57–1.69) 0.93 (0.52–1.66) 
 High (≥92.7) 38 33 1.37 (0.82–2.27) 1.00 (0.57–1.77)

WT/WT 

 Low (<66.1) 57 28 1.00 1.00
 Medium (66.1–<105.8) 58 29 0.99 (0.59–1.68)  1.05 (0.60–1.84)  
 High (≥105.8) 59 31 1.07 (0.64–1.78) 1.18 (0.67–2.09)

MT: Mutant; WT/WT: BRAF and KRAS wild-type.
*Cut-offs for low/medium/high Bcl-xl gene expression based on tertile values within each BRAF/KRAS status subgroup. 
**Adjustments included age, sex, TNM stage, MSI status, adjuvant chemotherapy receipt, ECOG status, family history of colorectal 
cancer, year of diagnosis and extramural venous invasion for all models. 

Bcl-xL No Chemotherapy receipt Chemotherapy receipt

  Alive
n

CRC Death
(DSS)

N

Adjusted Hazard ratios 
(95% confidence 

intervals)

Alive
n

CRC 
Death

n

Adjusted Hazard ratios 
(95% confidence 

intervals)
BRAF MT             

 Low (<56.1) 11 4 1.00 5 3 1.00
 Medium (56.1–<91.1) 12 6 1.99 (0.38–10.29) 5 4 2.18 (0.23–20.89)
 High (≥91.1) 3 12 12.13 (2.49–59.13) 9 3 0.96 (0.08–11.42)

P for interaction 0.006   
MT: Mutant.
Cut-offs for low/medium/high Bcl-xl gene expression based on tertile values within each BRAF MT subgroup. 
Adjustments included age, sex, TNM stage, MSI status, adjuvant chemotherapy receipt, ECOG status, family history of colorectal 
cancer, year of diagnosis and extramural venous invasion. 
(Top) DSS analysis was performed using Cox proportional hazards method in the BRAFMT, KRASMT or WT/WT stratified by Bcl-xL 
IHC (H-score) protein expression levels. Analysis was performed both before and following adjustment. 
*Cut-offs for low/medium/high Bcl-xL gene expression based on tertile values within each BRAF/KRAS status subgroup. 
**Adjustments included age, sex, TNM stage, MSI status, adjuvant chemotherapy receipt, ECOG status, family history of colorectal cancer, 
year of diagnosis and extramural venous invasion for all models. (Bottom) Further adjusted analysis to identify treatment interaction 
effect of the Bcl-xL-high tertile group of BRAFMT tumors stratified by treatment received.
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population-based stage II/III cohort. Importantly, in each 
validation series, we also confirmed the BRAFMT-specific 
nature of this association, as in either KRASMT or WT/WT 
tumors, the expression of Bcl-xL was not associated with 
increased risk of disease relapse or death. Interestingly, 
we observed that although BRAFMT tumors with high 
Bcl-xL expression have a poor prognosis, this subgroup 
also appears to benefit the most from standard adjuvant 
chemotherapy.

The prognostic value of stratifying CC patients 
based on BRAF mutational status has been well reported, 
particularly in stage IV metastatic tumors, where patients 
with BRAFMT tumors have poor survival rates. A previous 
study identified a transcriptional signature that could stratify 
stage II and III CRC tumor profiles into subgroups based on 
their similarity to BRAFMT tumors (pred-BRAFm) [7]. The 
authors demonstrated the utility of either BRAF mutational 
status or the pred-BRAFm classifier in identifying patients 
with shorter survival, although no difference was observed in 
the initial disease-specific relapse rates between the identified 

subgroups. This important result suggests that the prognostic 
power associated with the pred-BRAFm signature, or indeed 
the presence of the BRAF mutation itself, is due to shorter 
survival time because of aggressive disease after relapse in 
stage IV disease; however, initially, BRAFMT stage II and 
III patients are not at a higher risk of their early-stage disease 
progressing to metastatic disease. This subtle but crucial point 
underpins our rationale for performing a stratified analysis 
to identify factors determining risk-of-relapse specifically 
within the BRAFTMT genotype. The data presented here 
identifies for the first time a novel role for Bcl-xL expression 
in influencing disease relapse, providing a new, important and 
clinically relevant understanding of the biology underpinning 
aggressive BRAFMT stage II/III disease. Interestingly, we 
found almost no overlap between the genes associated with 
relapse in BRAFMT and KRASMT tumors, suggesting that 
although there is constitutive activation of the MAP kinase 
pathway in both these subgroups, there is clearly distinct 
prognostic tumor biology associated with these different 
genotypes. 

Figure 3: Independent validation of the prognostic value of Bcl-xL protein expression in BRAFMT CC. (A) Colorectal 
cancer disease-specific survival (DSS) curve using Kaplan-Meier estimation in the “Northern Ireland cohort” comparing tertiles stratification 
of Bcl-xL protein expression (by IHC H-score) in untreated BRAFMT stage II/III CC patients. (B) DSS of patients in the highest tertile 
of Bcl-xL protein expression stratified according to adjuvant chemotherapy treatment received. (C) DSS of patients in the lowest tertile 
of Bcl-xL protein expression stratified according to adjuvant chemotherapy treatment received. Unadjusted and adjusted HR statistics are 
detailed in Table 4.
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The benefits of combining transcription-array 
discovery followed by IHC validation in independent 
patient cohorts, as we have employed in our study, 
was recently demonstrated in an analysis of stage II/
III CC to identify a subgroup of undifferentiated 
tumors characterized by poor differentiation and low 
expression of the transcription factor CDX2 [8]. There 
are a number of parallels between the CDX2 study and 
our own, as they both use exploratory and retrospective 
analysis followed by clinically relevant IHC biomarker 
validation to identify a small subgroup of stage II/III 
patients with poor prognosis that appear to respond to 
adjuvant chemotherapy. Poorly differentiated tumors 
have previously been associated with right-sided MSI, 
CIMP disease [9]; however, the prognostic value of 
BRAF mutation was shown to be independent of CDX2 
expression [10]. Our analysis did not identify CDX2 
gene expression as a driver of disease relapse specifically 
in BRAFMT tumors and reciprocally Bcl-xL was not 
identified as prognostic across the entire CC population in 
the CDX2 study (similar to our data in BRAFWT tumors), 
thus suggesting that we have identified a unique subgroup 
of poor prognostic patients. However, as the CDX2 study 
did not collect or utilize BRAF mutation status, this could 
not be further assessed using their data. 

A previous study of Bcl-xL protein expression in 
CRC determined that high expression of this biomarker 
was associated with poor prognosis across the entire patient 
cohort [11]. Importantly, this data indicated a potentially 
confounding variable, as increased Bcl-xL expression was 
also significantly associated with later stage disease (already 
a well-established prognostic factor) [12]. In agreement 
with this earlier study, we also found that Bcl-xL expression 
was associated with later stage disease; however, using an 
adjusted analysis to take into account known confounding 
clinical factors (including stage), we show that Bcl-xL 
expression can independently predict prognosis, but only in 
BRAFMT tumors. A recent study using RPPA methodology 
reported that a mathematical model of Bcl-2 family protein 
interactions (including Bcl-xL) termed DR_MOMP was 
prognostic in chemotherapy-treated stage III CRC [13]. 
Moreover, this study found that Bcl-2 family signaling was 
particularly important in Consensus Molecular Subtypes 
(CMS) 1 and 3. As the CMS1 subgroup is enriched for 
BRAFMT disease, this report appears to be in agreement 
with our current study. However, the individual contribution 
of Bcl-xL expression to prognosis in CMS1/BRAFMT CRC 
was not reported; the study may have been underpowered 
in that respect. 

The reason for the significant benefit from standard 
chemotherapy of Bcl-xL high BRAFMT CRC is unclear. 
High Bcl-xL expressing tumors may be “primed” to 
undergo apoptosis in response to chemotherapy, due to 
co-expression of pro-apoptotic Bcl-2 family members.
[14, 15] A recent high-throughput drug screen aimed at 
uncovering therapeutic strategies in CRC, revealed the 

essentiality of MCL1, Bcl-2 and Bcl-xL in BRAFMT-
driven disease [16]. Additionally, a further drug screening-
based study identified Bcl-xL as a critical regulator of 
MEK inhibitor resistance, which was synthetically lethal 
across a broad panel of BRAFMT cell line models [17]. 
These findings and the findings presented in our study 
suggest that directly targeting Bcl-xL may be an effective 
therapeutic strategy for BRAFMT CRC in the adjuvant 
disease setting. 

We also identified high expression of the long 
noncoding RNA ZFAS1 as a poor prognostic marker in 
our discovery dataset. ZFAS1 was previously reported to 
be overexpressed in CRC compared to adjacent non-CRC 
tissue, with siRNA-mediated targeting revealing its role as a 
regulator of p53 protein levels, cell proliferation and colony 
formation in a small panel of CRC cell lines [18]. Validation 
of this marker, using methodologies such as RNA in situ 
hybridization, may clarify its role in disease progression and 
may become increasingly important as our understanding of 
the biology of long noncoding RNAs increases.

The findings presented both here and by others 
suggest that BRAFMT driven CRC is more aggressive 
than BRAFWT disease, but only when the disease has 
disseminated from the primary site. Interestingly, we 
observed specific changes in the ER-stress machinery in 
BRAFMT tumors with the highest-risk of disease relapse, 
with activation and upregulation of factors including 
GADD34, heat shock proteins, and stress-related 
transcription (DDIT3) in our analysis. Additionally, using 
GSEA, we identify increased hypoxia and EMT signaling 
in high-risk tumors, again indicating an association with 
ER stress-activation. Each of these factors have been 
demonstrated to activate the unfolded protein response 
(UPR), which in turn has been correlated with a higher 
risk of metastatic recurrence in breast cancer [19, 20]. 
In agreement with our findings, upregulation of UPR 
signaling in disseminated tumor cells from breast cancer, 
lung cancer and prostate cancer enables both the formation 
and long term persistence of metastatic lesions [19, 20]. 
In addition to activation of the UPR machinery, high Bcl-
xL expression may promote survival of invasive tumor 
cells during the metastatic process; for example Bcl-xL 
has been reported to be a suppressor of anoikis, [15, 21] 
which would explain its association with increased risk-of-
relapse in the BRAFMT subgroup. 

This study has several strengths. We have identified 
Bcl-xL as a novel predictor of response within a poor 
prognostic group of CC patient samples, using a robust 
approach that included validation in an independent cohort 
using a clinically relevant methodology. Importantly, 
while we do find significant prognostic and predictive 
value using Bcl-xL gene expression in 2 independent 
cohorts, final validation of this discovery approach would 
require transcriptional data, detailed treatment information 
and clinical follow up from an independent well balanced 
cohort, preferably in a clinically trial setting, enriched 
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for the specific subtype of interest, in our case BRAFMT 
stage II/III CRC. The population-based nature of our 
validation cohort also means that the results should be 
generalizable to all stage II/III CRC patients, however 
we do acknowledge that by using a population-based 
approach for validation of these findings, there may be 
a selection bias for patients who subsequently received 
chemotherapy, and this that may have impacted on our 
results. Additionally, given that IHC and mutational tests 
for BRAF and KRAS are routinely utilized in the diagnostic 
work-up of CC patients, the methods we have used here 
could easily be employed within routine pathology 
reporting practice. However, we do acknowledge that 
further work is required to identify an optimal cut-off 
level of Bcl-xL expression that would allow a more robust 
classification of low and high expressers for prospective 
patient stratification. 

In conclusion, we have identified and independently 
validated the prognostic value of Bcl-xL mRNA and 
protein expression specifically within BRAFMT CC, 
which should help inform selection of treatment options 
for high-risk BRAFMT stage II/III patients in the adjuvant 
disease setting. This approach could prevent the initial 
relapses, which ultimately contribute to the poor outcomes 
of patients with this genotype. Data presented here provide 
compelling evidence that, in addition to BRAF mutational 
analysis, assessment of Bcl-xL protein expression using 
routine diagnostic IHC methods can identify both poor 
prognostic BRAFMT stage II/III CC patients who will 
benefit from adjuvant therapy and an otherwise good 
prognostic subgroup of BRAFMT patients who derive 
no significant advantage from the addition of adjuvant 
chemotherapy.

MATERIALS AND METHODS

Transcriptional datasets

Gene expression profiles were downloaded from 
NCBI Gene Expression Omnibus (GEO) (http://www.
ncbi.nlm.nih.gov/geo/). Accession number GSE39582 
contains 566 tumor transcriptional profiles (460 stage II/
III) from a CC series and has previously been employed 
by the CRC subtyping consortium [22, 23]. As detailed in 
Supplementary Figure 1, the GSE39582 cohort contained 
460 stage II/III CC profiles which had relapse data available. 
For initial biomarker discovery, the “Prognostic Subset” 
contained untreated stage II/III patients stratified into 
high-risk (if the patient relapsed within 36 months) or low-
risk (if there was no relapse). The “Initial Consolidation” 
contained all stage II/III patients with relapse information 
and mutational data (n = 417), which included BRAFMT 
(n = 41; 24 of which will have been used already in the 
prognostic subset), KRASMT (n = 166) or WT/WT (n = 210) 
(Supplementary Figure 1). Accession number GSE35602 
contains profiles from 13 CRC cases, which were 

obtained using laser-microdissected tissue to extract RNA 
specifically from stroma or epithelium regions separately, 
followed by gene expression microarray analysis.

Transcriptomics (Agilent; mRNA_Preprocess_
Median) and protein (Reverse Phase Protein Array/mda_
rppa_core-protein_normalization) data were downloaded 
from the COAD pipeline in Firehose (https://gdac.
broadinstitute.org/). Patient samples which had both 
mRNA and RPPA data were collated (n = 102) and were 
analysed with the Pearson’s correlative analysis using 
GraphPad Prism version 5 for Windows.

Transcriptional analysis

Partek Genomics Suite was employed for dataset 
analysis. Differentially expressed probesets which had a 
fold-change +/– 1.75 fold and p-value < 0.005 were defined 
using analysis of variance (ANOVA) of supervised risk 
groupings in both the BRAFMT and KRASMT subgroups 
separately. Genes represented three times by different 
probesets were selected for further genotype-specific 
survival analysis. This method inevitably increases false 
negatives, by ruling out genes represented by fewer 
probesets, but it increases the confidence in the positive 
results. In the BRAFMT analysis, these criteria identified 
BCL2L1 (Bcl-xL) and NCRNA00275 (ZFAS1). Gene 
Set Enrichment Analysis was accessed (GSEA; http://
software.broadinstitute.org/gsea/index.jsp) and the 
Microenvironment Cell Populations-counter (MCP) was 
accessed via the https://doi.org/10.5281/zenodo.61372 link.

Bcl-xL Immunohistochemistry (Bcl-xL IHC)

We optimized a protocol for Bcl-xL IHC on sections of 
CRC tissue using various antibody dilutions and processing 
parameters. In line with REMARK guidelines, reproducibility 
and robustness were tested using a TMA block containing 
20 cores of CRC tumor from different patient resections. 
For staining of the control and independent cohort TMAs, 
sections were cut at 4 μm on a rotary microtome, dried at 37° 
C overnight, and then used for IHC, which was performed 
on an automated immunostainer (Leica Bond-Max, Milton 
Keynes, UK). Antigen-binding sites were detected with a 
polymer-based detection system (Bond, Newcastle Upon 
Tyne, UK; cat. no. DS9800). Bcl-xL IHC antibody (Cell 
Signaling Technology, MA, United States) (Bcl-xL (54H6) 
Rabbit mAb #2764) was employed at 1:250 dilution with 
epitope retrieval solution 2 pretreatment for 30 minutes. 
All sections were visualized with diaminobenzidine, 
counterstained with hematoxylin, and mounted in DPX. 

Independent stage II/III CC Northern Ireland 
validation cohort

Candidate biomarkers identified from transcriptional 
datasets were then evaluated within a Northern Ireland 
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population-based cohort of stage II/III CC patient samples 
(n = 740) using immunohistochemical methods. The 
Northern Ireland Cancer Registry was used to identify all 
patients who underwent surgery in Northern Ireland between 
2004 and 2008, for a single, primary, stage II or III colon 
adenocarcinoma (n = 1,539). A detailed clinical case note 
review was then conducted, to verify diagnosis and stage and 
to extract clinical information, including the use of adjuvant 
chemotherapy and outcome data. Following this review, 
n = 113 cases were excluded (7%), mainly on the basis of 
inaccurate staging. Of the remaining n = 1,426 patients, 
 n = 740 patients (52%) were diagnosed within the jurisdiction 
of the Northern Ireland Biobank, of which specimens relating 
to n = 661 patients (89%) were successfully retrieved. All 
patients were followed up for occurrence and cause of death 
via linkage to the Northern Ireland Registrar General’s 
Office, up to 31st December 2013. Patients were recorded as 
having a CRC-specific death if any cause of death was listed 
as ICD-codes C18, C19, C20 and/or C26. 

Northern Ireland cohort immunohistochemical 
and mutational analysis 

This cohort was assembled into a tissue microarray, 
containing 3 cores from epithelial-rich tumor regions 
per patient. Blocks were retrieved and tumor regions 
were annotated for subsequent coring (KA, MBL, JJ). 
One millimeter diameter tissue cores were extracted 
from donor blocks and inserted into recipient blocks 
using a manual tissue arrayer (Estigen, Tartu, Estonia). 
Additionally, mutational analysis was undertaken for 
KRAS and BRAF on n = 661 (89%) of the TMA cohort 
using the ColoCarta panel (Agena Bioscience, Hamburg, 
Germany). This panel includes: BRAF: D594V, V600E, 
V600K, V600L, V600R. HRAS Q61L. KRAS: A59T, 
G12A, G12C, G12D, G12F, G12R, G12S, G12V, G13D, 
G61H, Q61L. Following sequencing, mutational status of 
BRAF and KRAS was available for a sub-cohort (n = 661; 
BRAFMT n = 92, KRASMT n = 248, WT/WT n = 321). 
Using the IHC methodology optimized in line with the 
REMARK guidelines in whole face CC sections, we 
assessed Bcl-xL protein expression using digital pathology 
software, QuPath [24], to give a numerical representation 
of both the extent and the intensity of staining (H-score), 
based on the mean expression of all cores (3 cores for each 
patient). In line with REMARK guidelines, all scoring 
was performed while blinded to the clinical details of 
the cohort and the survival endpoints. Using tertile 
stratification methodology, we assigned patients in each 
mutational genotype into high, medium or low groups 
according to their Bcl-xL protein expression H-score.

Ethical approval

Clinical note review was conducted under the 
auspices of the Northern Ireland Cancer Registry ethical 

approval from ORECNI (REC: 10/NIR02/53). Ethical 
(REC:11/NI/0013, project NIB13-0069) and Bcl-xL 
staining (NIB16-0212) approval was received from the 
Northern Ireland Biobank.

Statistical analysis 

Clinical characteristics were compared using 
chi-squared tests, according to mutational groupings. 
Tertile stratification in GSE39582 was performed on 
the mean biomarker, BCL2L1 (Bcl-xL), expression 
value from the three probesets used within the BRAFMT  
(n = 42), KRASMT (n = 166) and the WT/WT (n = 210) 
subgroups. Similarly, in the Northern Ireland cohort, tertile 
stratification was performed on the mean Bcl-xL H-score 
expression value from the multiple tumor cores available 
(up to 3 per patient) within the BRAFMT (n = 92), 
KRASMT (n = 248) and the WT/WT (n = 321) subgroups. 
Cox Proportional hazards analysis was conducted for both 
the transcriptional dataset and Northern Ireland cohort, 
prior to and after adjustment for potential confounders, to 
evaluate the association between Bcl-xL and survival in 
CC patients, according to BRAF and KRAS mutation status 
(Stata version 11.2, StataCorp, College Station, TX, USA). 
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