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Abstract: This paper studies the use of multidimensional scaling (MDS) to assess the performance
of fractional-order variable structure controllers (VSCs). The test bed consisted of a revolute planar
robotic manipulator. The fractional derivatives required by the VSC can be obtained either by
adopting numerical real-time signal processing or by using adequate sensors exhibiting fractional
dynamics. Integer (fractional) VCS and fractional (integer) sliding mode combinations with different
design parameters were tested. Two performance indices based in the time and frequency domains
were adopted to compare the system states. The MDS generated the loci of objects corresponding to
the tested cases, and the patterns were interpreted as signatures of the system behavior. Numerical
experiments illustrated the feasibility and effectiveness of the approach for assessing and visualizing
VSC systems.

Keywords: variable structure control; fractional calculus; robot manipulator; fractional sensor;
multidimensional scaling; information visualization

1. Introduction

Variable structure systems (VSSs) [1,2] have good feasibility and robustness. As
concerns system theory, variable structure controllers (VSCs) are a relevant strategy when
facing systems with complex dynamics [3–5]. VSCs apply switching control laws to alter
the system dynamics and compel the system states to slide along a cross-section named
the sliding surface. The system trajectories have two distinct periods, usually called the (i)
reaching and (ii) sliding mode phases. In the reaching phase, the system states are forced
toward a prespecified sliding surface in finite time. Once the system states reach the sliding
surface, the sliding phase initiates, and the closed-loop system states slide toward the
origin along the sliding surface. During the reaching phase, the invariance of the VSC is
not guaranteed and the system response is quite sensitive to perturbations. In the sliding
phase, the system response remains invariant for both parametric and nonparametric
uncertainties [1,6].

Mechanical manipulators exhibit strong nonlinear dynamical effects that require ap-
propriate control algorithms. When applying VSCs with mechanical manipulators [7–10], a
common practice is to approximate the dynamics of each rigid link as a first-order linear
model. The imperfect implementation of high-frequency switching in VSCs results in
chattering at the control responses. This effect leads to a large stress on the actuation hard-
ware and can excite vibrations in the structure. To reduce the two effects, several schemes
have been proposed, involving some kind of smoothing, namely by changing the “on-off”
switching algorithm, or by complementing the VSC with some adaptive or feedforward
control actions [11–13]. However, the first-order reference model is not well suited to the
system’s intrinsic dynamics; therefore, a second-order model was proposed [2,14,15].
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Fractional calculus (FC) extends the scope of the classical calculus to noninteger or-
ders [16–20]. Fractional derivatives and integrals are helpful in control since they allow
adapting existing integer algorithms to a fractional version with more degrees of freedom.
Indeed, due its properties, FC emerged as a key tool in dynamics and control systems [21–25].

Embedding the FC concepts in VSCs has also been proposed [26–30]. Since we have
the freedom of selecting the fractional order, we can take advantage of the new parameter
to tune either the reference model or the control algorithm, affecting, thereby, the VSC
switching action. Previous work revealed that combining FC and VSC leads to superior
performance [31–33]. However, the algorithms require either numerical real-time signal
differentiation or adequate sensors to obtain the fractional derivatives. We can cite recent
works, namely Delavari et al. [28], who proposed a fractional-order sliding-mode controller
to control a flexible-link manipulator, while determining the design parameters trough
particle swarm optimization (PSO). Delavari and Heydarinejad [29] designed a fractional-
order backstepping-sliding-mode control for a class of fractional nonlinear systems with
mismatched disturbances, which were estimated using a fractional nonlinear observer.
Simulation examples showed the effectiveness of the control strategy. Wang et al. [34] inves-
tigated cable-driven manipulators under lumped uncertainties and proposed an adaptive
fractional control scheme based on time-delay estimation. The controller included a time-
delay estimation to compensate the unknown system dynamics, a fractional nonsingular
terminal sliding-mode surface to ensure high precision in the steady phase, and a reaching
law with an adaptive technique to obtain fast convergence, high precision, and reduced
chatter. Simulations and experiments were performed to show the effectiveness of the
scheme. Zhou et al. [35] proposed a deep-convolutional-neural network-based fractional
terminal sliding-mode controller for rigid manipulators. The neural network compensated
the uncertainties of the system. The chattering was mitigated, and the control strategy ex-
hibited robust performance against uncertainties and disturbances. Ma et al. [31] proposed
a quaternary fractional-order sliding-mode controller with fuzzy logic system, a neural
network, and an adaptive law to control the teleoperated cyberphysical system. External
disturbances, modeling uncertainties, and actuator faults were considered. Xie et al. [32]
addressed a coupled fractional sliding-mode control, together with an obstacle-avoidance
scheme, to control a four-wheeled steerable mobile robot. A modified near-time-optimal
potential function was introduced to improve collision problems. Fuzzy rules and proper
adaption gains were designed to mitigate chattering. Asymptotic stability and conver-
gence were guaranteed for the closed-loop system. Delavari and Jokar [33] presented a
fractional-order active fault-tolerant controller based on an adaptive nonlinear observer to
detect, estimate, and compensate faults of a knee joint orthosis. The controller was based
on fractional-order sliding-mode control, while the switching term was designed using
fractional-order interval type-2 fuzzy logic. The strategy was proven to reduce modeling
issues and chattering. Other examples can be found in [36–38].

Several researchers proposed a variety of fractional controllers both in the discrete-
time [39–41] and frequency [42–44] domains. The implementation of such controllers
requires the use of approximation algorithms to obtain the fractional derivatives or the
implementation of sensors exhibiting fractional dynamics. The construction of these sensors
can take advantage of the advanced fabrication techniques of microelectromechanical
systems (MEMSs) [45], allowing, therefore, directly obtaining the fractional derivatives [46].

We have well-known indices to assess the performance of controlled systems. How-
ever, in general, a single criterion is not sufficient to capture the dynamic details. Therefore,
characterizing the system behavior is a multidimensional problem that can be tackled
with recent computational tools [47,48]. Dimensionality reduction [49] plays a key role,
since the data often exhibit a multidimensional nature. Dimensionality-reduction-based
schemes try to preserve in lower-dimensional representations the information present
in the original datasets. They include linear methods, such as classic multidimensional
scaling (MDS) [50], principal component [51], canonical correlation [52], linear discrimi-
nant [53], and factor analysis [54], as well as nonlinear approaches, such as nonclassic MDS
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or Sammon’s projection [55], isomaps [56], Laplacian eigenmaps [57], diffusion maps [58],
t-distributed stochastic neighbor embedding [59], and uniform manifold approximation
and projection [60]. Besides dimensionality reduction, these algorithms often allow direct
information visualization.

Hereafter, we considered the MDS technique to evaluate and visualize the perfor-
mance of fractional-order VSC. The test bed adopted consisted of a revolute planar robotic
manipulator. The fractional derivatives required by the controller can be implemented
either by numerical methods or by using sensors exhibiting fractional dynamics. Integer
(fractional) VCS and fractional (integer) sliding mode combinations, with different design
parameters, were studied. The system states for a number of test cases were obtained and
compared by means of two alternative distance metrics, namely in time or in frequency.
The information was input into the MDS. The algorithm then generated the loci of objects
where each point corresponded to one test case. The objects patterns were interpreted as sig-
natures of the system behavior. Several numerical experiments illustrated the effectiveness
of the approach.

The paper has four sections. Section 2 addresses the mathematical background and
key concepts useful in the remainder of the paper. Section 3 analyzes the dynamics of the
VSC system by means of MDS, while adopting the integer VSC and fractional sliding mode
(IVSC-FSM) and the fractional VSC and integer sliding mode (FVSC-ISM). The analysis
is performed either in the time or frequency domain. Finally, Section 4 presents the main
conclusions.

2. Preliminaries
2.1. Fractional Integrodifferential Operators

The Grünwald–Letnikov (GL) fractional operator of order α ∈ R on y(t), denoted as
GL
a Dα

t y(t), is given by [61]:

GL
a Dα

t y(t) = lim
h→0

h−α
[ t−a

h ]

∑
k=0

(−1)k
(

α
k

)
y(t− kh), α > 0, (1)

where [·] denotes the integer part, h is the time increment, and {t, a} ∈ R (t > a) are the
upper and lower limits of the “differintegral” operation, respectively.

In signal processing and control, the GL definition (1) can be approximated numeri-
cally using [62,63]:

GL
a Dα

t y(t) ≈ GL
(t−L)D

α
t y(t) = T−α

M(t)

∑
k=0

(−1)k
(

α
k

)
y(t− kT) = T−α

M(t)

∑
k=0

c(α)k y(t− kT), (2)

where T is the sampling period, L corresponds to the “memory length”, and M(t) =
min{[t/h], [L/h]}.

The binomials c(α)k are computed by [62]:

c(α)k =

(
1− 1 + α

k

)
c(α)k−1, c(α)0 = 1. (3)

The “memory length” L is often chosen considering:

L ≥ 1
δ2

0Γ(α)
, (4)

where Γ is the gamma function and δ0 represents the maximum allowable error:

δ0 =
|GL
a Dα

t y(t)− GL
(t−L)D

α
t y(t)|

P
, P = max

[0,∞]
|y(t)|. (5)
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In many practical applications, we consider a = 0 and adopt Dα
t to denote the general-

ized “differintegral” operator.
Alternatively, we can use the approximation:

Z{Dαy(t)} ≈ T−α
M(t)

∑
k=0

(−1)k

(
α

k

)
y(t− kT)z−kZ{y(t)} =

(
1− z−1

T

)α

Z{y(t)}, z ∈ C, (6)

where Z{·} denotes the Z transform.
Equation (6) gives the s→ z Euler approximation, but we find often other algorithms

in controller design, such as the so-called Tustin or trapezoidal scheme. The Euler and
Tustin conversion techniques can be generalized in the scope of FC to:

sα ≈
[

1
T

(
1− z−1

)]α

=
[
Ψ0

(
z−1
)]α

, (7)

sα ≈
(

2
T

1− z−1

1 + z−1

)α

=
[
Ψ1

(
z−1
)]α

, (8)

where
[
Ψ0
(
z−1)]α and

[
Ψ1
(
z−1)]α are approximation functions of zero and one order,

respectively.
To obtain rational expressions, we need to truncate the Taylor series or Padé fraction.
The two approximations

[
Ψ0
(
z−1)]α and

[
Ψ1
(
z−1)]α can be averaged with weights p

and 1− p, respectively, resulting in:

sα ≈ Ψav

[
z−1; (p, α)

]
= p

[
Ψ0

(
z−1
)]α

+ (1− p)
[
Ψ1

(
z−1
)]α

. (9)

For instance, the case p = 3
4 corresponds to the Al-Alaoui operator [64,65].

2.2. Variable Structure Control

When adopting the VSC in a manipulator, the k-th link (k = 1, · · · , K) is induced to
mimic a first-order reference:

σk = ėk + λkek = 0, (10)

ek = θdk − θk, (11)

with
{

θdk, θ̇dk
}

and
{

θk, θ̇k
}

denoting the desired and the true position and velocity of
the k-th joint, respectively, σk standing for the switching variable, and ek representing the
position error. The expression s + λk = 0 has an eigenvalue, λk ∈ R, that characterizes the
sliding phase dynamics.

The VSC produces a control action Tk(t) that forces the robot to mimic the reference (10).
Often, the VSC follows an algorithm of the type:

Tk(t) = Tk[sgn(σk)], (12)

where the function sgn(·) returns the sign of its argument. When the VSC satisfies
the condition:

σkσ̇k < 0, (13)

convergence is guaranteed.
In [66], it was observed that such a strategy leads to stringent requirements because

the first-order model (10) allows discontinuous trajectories in the phase plane. However,
mechanical manipulators have inertias that lead to the continuous evolution of the links’
positions and velocities. Therefore, a first-order model requires high joint torques during
transients. In practice, torques cannot be infinite, and thus, the phase plane trajectories are
continuous. However, the demanding torque requirements saturate the robot actuators,
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resulting in a longer reaching phase, which is sensitive to perturbations. Therefore, a
second-order model was proposed to mitigate these problems [14]:

σk = ëk + 2ζkωnk ėk + ωnkek = 0, (14)

where ζk denotes the coefficient of damping and ωnk stands for the undamped natural fre-
quency. If the corresponding Laplace equation s2 + 2ζkωnks + ω2

nk = (s + λk1)(s + λk2) =
0 has negative real roots λk1 and λk2, then (14) yields an overdamped or a critically
damped behavior.

The model (10) leads to a single trajectory, while (14) always gives a continuous
trajectory passing through any initial condition. Therefore, the reaching period is avoided
and chattering is attenuated. Indeed, when perturbations arise, the actual robot trajectory
moves away from the desired one. If a first-order sliding model is used, then the controller
reacts, providing opposite phase plane trajectories towards the desired one. As some
delay is inherent to the digital control, a “switching” between the curves arises, originating
chattering. Using second-order curves, there is always a trajectory containing a given state,
and after a perturbation, the system is not forced to follow the initial trajectory. Instead,
it will follow a new one that contains the present state. As a result, the controller uses a
new curve, almost parallel with the previous one, passing through the actual phase plane
point. To accomplish this, the algorithm requires a second-order derivative, that is to say, it
requires acceleration sensors (for more details, see [14]).

To avoid this problem, introducing an integral action was also proposed, giving rise
to the reference [67]:

σk = ėk + 2ζkωnkek + ω2
nk

∫ t

0
ekdτ = 0, (15)

and the Laplace expression s2+2ζkωnks+ω2
nk

s , with two zeros and one pole at s = 0.
In [68], the problem was rewritten in the scope of FC with the reference model (10)

formulated as:
σk = Dα+1ek + λα

k D1ek + λkDαek + λα+1
k ek = 0. (16)

The characteristic polynomial is now (s + λk)
(
sα + λα

k
)
, and the fractional order of

−1 ≤ α ≤ 1 was explored.
Equation (16) is an “interpolation” between (14) and (15). We verified that: (i) for each

robot link, Expression (16) has two zeros or two zeros and one pole, for α > 0 or α < 0,
respectively; (ii) the dynamics of the manipulator, from torque to position, presents two
poles; (iii) coupling phenomena can be regarded as perturbations, pk (see Figure 1). The
location of the robot poles varies considerably [69], and the VSC adapts the gain to guaranty
that the system’s global dynamics follows the desired reference. Figure 2 sketches the root
locus of the unit-feedback VSC-controlled robot links for various values of α [70,71]. The
zeros and poles of the reference model must comply with the nature of the system dynamics.
Expression (16) along with the manipulator dynamics establishes a compromise between
zeros and poles, yielding a perceptive reference model. However, we verified that (16)
requires either numerical fractional-order differentiation or fractional-order sensors.

Figure 1. Block diagram of a VSC-controlled robot link.
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Figure 2. The root locus for various values of α.

2.3. Fractional-Order Sensor

In the classical form, an accelerometer measures the second time derivative of the
displacement of a rigid body. The sensor includes a moving mass that is interconnected
with a casing by one spring and one damper. Therefore, the motion of the mass with respect
to the casing is able to capture the acceleration of the body.

Modern accelerometers adopt MEMSs. These sensors synthesize mechanical and
electrical components in a small-scale semiconductor. MEMS technology allows integrating
the three mechanical elements of the device with displacement sensors and electronics.

A uni-axial accelerometer is modeled as:

Mÿ + Bẏ + Ky = Mü, (17)

where M, B, and K represent the mass, damper, and spring. The motion of M with respect
to the casing is denoted by y and the absolute displacement of the casing by u.

Applying the Laplace transform, we obtain the transfer function:

L{g(t)} = G(s) =
U(s)
Y(s)

=
Ms2

Ms2 + Bs + K
. (18)

Equation (17) can be generalized to a fractional order as:

MDγy + BDλy + KDνy = MDγu, γ > λ > ν, (19)

yielding the transfer function:

G(s) =
U(s)
Y(s)

=
Msγ

Msγ + Bsλ + Ksν
. (20)

For γ = 2, λ = 1, and ν = 0, Equations (19) and (20) yield the dynamics of the
classical accelerometer. However, (19) and (20) have no known physical meaning, and
their implementation requires fractional elements that are presently not available or are
unfeasible [72]. Indeed, (19) and (20) imply the fractionalization of Newton’s second law,
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and its meaning is somewhat controversial. On the one hand, it is straightforward to
generalize (17) and (18) from integer to fractional if we adopt an abstract perspective.
However, on the other hand, we do not have a guarantee of the feasibility and, furthermore,
that the physical properties remain of the same type. For instance, while for the standard
mass, we have F(s) = Ms2U(s), with F(s) denoting force, meaning it has the property of
being undeformable, there is no guarantee that the fractional mass, with model F(s) =
MsγU(s), has the same behavior.

In [45], a modular N-stage cascade fractional sensor was proposed. Each k-th stage,
k = 1, · · · , N, comprises the standard elements {mass, spring, damper}, represented by
{Mk, Kk, Bk}. The displacement of Mk relative to the previous stage k− 1 is denoted by
yk, while the external casing of the sensor corresponds to k = 0. The variables u and
zk = u−∑k

p=1 yp stand for the displacements of the device casing and Mk, respectively,
with respect to the external inertial frame.

The system model, having u as the input and y1 as the output, is expressed in the
Fourier domain as:

GN(jω) =
Y1(jω)

U(jω)
= Z−1(jω) · Z1(jω), (21)

where ω = 2π f is the angular frequency ( f is the frequency) and Z(jω) is given by:

Z(jω) = Z1(jω)+ (22)

1

Y1(jω) +
1

Z2(jω) +
1

. . .

YN−1(jω) +
1

ZN(jω) +
1

YN(jω)

,

with Zk(jω) = jω
jωBk+Kk

and Yk(jω) = jωMk.
For the case of selecting the parameters recursively, Mk+1 = ηMk, Bk+1 = εBk and

Kk+1 = κKk, η, ε, κ ∈ R+, we obtain [43,73–75]:

|GN(jω)| ∝ ωα, arg{GN(jω)} = απ

2
, (23)

α ≈ log(ε)
log(η) + log(ε)

. (24)

The interval for which GN(jω) exhibits fractional dynamics is established by the
relationships |jω| < B1

M1
and |jω| � K1

B1
. We note that for η > 1, ε > 1, and η

κ > 1, the
influence of Kk for the fractional order α is minimal [43,74,75]. Nonetheless, the recursive
dependence revealed problems for small α, with arg {GN(jω)} oscillating. This problem
limits the fractional behavior to the range 0 ≤ α ≤ 1, and an alternative computational pro-
cedure was proposed. Indeed, the determination of the values of the elements {Mk, Bk, Kk},
k = 1, · · · , N, can be viewed as an optimization problem [45] with objective function:

I =
∣∣∣b · π

2
− 〈arg {GN(jω)}〉

∣∣∣, ω ∈ [ω1, ω2], (25)

with b representing the power-law |GN(jω)| ∝ ωb, where b ∈ R, and 〈arg {GN(jω)}〉
denotes the mean of arg {GN(jω)}, ω ∈ [ω1, ω2]. The extreme frequency values of the
zeros and poles of GN(jω) impose the frequency bandwidth ω ∈ [ω1, ω2].

It should be noted that in this algorithm, we did not choose the fractional order, nor
{ω1, ω2} in advance. The numerical scheme involves running the optimization procedure
a number of times and characterizing each solution through the indices {I, σ, Ω}, where
I is the fitness function value, σ stands for the standard deviation of arg {GN(jω)} in
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the interval ω, and Ω = log ω1
ω2

. The user has to choose the solution taking into account
the indices.

Figure 3 illustrates the frequency response of a six-stage fractional sensor. The results
correspond to two instances synthesized by a PSO algorithm with a population of twenty
elements and a number of iterations equal to five, yielding the fractional orders α =
{0.16, 0.40}. The initialization was random in the interval {Mk, Bk, Kk} ∈ [0, 1]. The values
of the sensor parameters are listed in Table 1.
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Figure 3. The Bode diagrams of a 6-stage fractional sensor, yielding the fractional orders: (top)
α = 0.16; (bottom) α = 0.40.

Table 1. Two optimal solutions determined by the PSO for N = 6, yielding the fractional orders α = {0.16, 0.40}.

Order Stage Elements Parameters

α
{Mi, Bi, Ki}, k = 1, · · · , 6 I σ Ω1 2 3 4 5 6

0.16 0.30, 0.09, 0.34 0.63, 0.33, 0.59 0.87, 0.22, 0.38 0.22, 0.98, 1.38 0.17, 0.44, 0.49 0.76, 0.77, 0.15 1.08 6.89 4.25
0.40 0.12, 0.78, 0.93 0.57, 0.22, 0.58 0.84, 0.75, 0.12 0.54, 0.08, 0.84 0.67, 0.36, 0.85 1.12, 1.15, 1.61 0.97 9.29 4.73

Figure 4 depicts the sensor time responses y1(t) to the Dirac and Heaviside inputs
u(t) = {δ(t), h(t)}. We verify, (i) in Figure 3, a good fit to the ideal responses, within
the interval ω = [ω1, ω2], and (ii) in Figure 4, a good behavior for the initial transient, in
particular for the Heaviside input.
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Figure 4. The sensor time responses y1(t) to the input signals u(t) = {δ(t), h(t)}.

2.4. The Multidimensional Scaling Technique

MDS is a numerical procedure adopted to reduce the dimensionality and visualize
high-dimensional datasets.

Let vi, i = 1, . . . , N, be objects in a space with L dimensions. First, we choose a distance
d(vi, vj), i, j = 1, . . . , N, between the pairs of objects i and j, and calculate a dissimilarity
matrix D = [d(vi, vj)]. Then, we feed the MDS with D. The algorithm finds the coordinates
of the objects, zi, in an embedding P-dimensional space (P ≤ L) that minimize a fitness
function. The result is a matrix Z = [d̂(zi, zj)] that approximates D. Often, the stress cost
function, S , is used as the fitness function:

S =

[
∑
i<j

[
d(vi, vj)− d̂(zi, zj)

]2
] 1

2

. (26)

Nevertheless, other criteria are possible, such as the Sammon function:

S =


∑
i<j

[
d(vi, vj)− d̂(zi, zj)

]2

∑
i<j

[
d(vi, vj)

]2


1
2

. (27)

The MDS results were evaluated by comparing the object representations in the
original and the embedding spaces. This involved the generation of the Shepard diagram,
which relates d(vi, vj) versus d̂(zi, zj), and the stress map, which depicts S versus P.

A number of distances d(vi, vj) are possible to construct D [76]. Here, we adopted
{d1, d2} to quantify the dissimilarities in pairs (i, j) of objects that possess real and imagi-
nary components. As such, the i-th object is represented by a matrix of dimension L× 2,
vi =

[[
Re{vi1}, · · · , Re{viL}

]T , [Im{vi1}, · · · , Im{viL}]T
]
, where Re{·} and Im{·} repre-

sent the real and imaginary parts. The distances {d1, d2} are given by:

d1(vi, vi) = arccos


L

∑
l=1

Re{vil}Re{vjl}+
L

∑
l=1

Im{vil}Im{vjl}√√√√ L

∑
l=1

Re{vil}2 + Im{vil}2

√√√√ L

∑
l=1

Re{vjl}2 + Im{vjl}2

, (28)
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d2(vi, vj) =

L

∑
l=1

[Re{vil} − Re{vjl}]2

L

∑
l=1

Re{vil}2 +
L

∑
l=1

Re{vjl}2 −
L

∑
l=1

Re{vil}Re{vjl}
+

L

∑
l=1

[Im{vil} − Im{vjl}]2

L

∑
l=1

Im{vil}2 +
L

∑
l=1

Im{vjl}2 −
L

∑
l=1

Im{vil}Im{vjl}
.

(29)

It should be noted that using (28) and (29), the objects (i, j) can be compared in the
time or in the frequency domain. In the time domain, the vectors vi and vj have real
components, and the distances {d1, d2} yield the standard {arccosine, Jaccard} [76]. In the
frequency domain, the vectors vi and vj have complex components, and Expressions (28)
and (29) are calculated directly.

3. Multidimensional Analysis and Visualization of Variable Structure Control

The dynamics of a planar K-link manipulator can be expressed as:

J(θ)θ̈+ C(θ, θ̇) + G(θ) = T, (30)

where J(θ) represents the K× K matrix of inertial terms, C(θ, θ̇) and G(θ) stand for the
K× 1 vectors of Coriolis and centripetal force and gravitational components, respectively,
and T corresponds to the K× 1 vector of torques that act on the manipulator links.

We adopted as test bed a manipulator comprising two revolute joints (K = 2) and the
dynamics described in [7,8]. Therefore, we have:

J(θ) =
[

15.75 + 10 cos(θ2) 4 + 5 cos(θ2)
4 + 5 cos(θ2) 9

]
, (31)

C
(
θ, θ̇

)
=

[
−
(
5θ̇2 + 10θ̇1

)
sin(θ2)θ̇2

5 sin(θ2)θ̇
2
1

]
, (32)

G(θ) =

[
66.15 cos(θ1) + 49 cos(θ1 + θ2)

49 cos(θ1 + θ2)

]
. (33)

In the experiments, we considered the manipulator moving from an initial state given
by [7,8]:

[θ1(0), θ2(0)]
T = [−2.784,−1.204]T , (34)[

θ̇1(0), θ̇2(0)
]T

= [0, 0]T , (35)

to a final one described by:
[θ1(∞), θ2(∞)]T = [0, 0]T , (36)[
θ̇1(∞), θ̇2(∞)

]T
= [0, 0]T . (37)

To approximate the fractional derivative, we used the Al-Alaoui operator and T =
10−4 s. In the reference model, we considered λk = 10 (k = 1, 2), and in the control action,
we adopted the saturation torque values D1 = 200, D2 = 100.

3.1. Integer Variable Structure Control and Fractional Sliding Mode

We start by adopting the IVSC-FSM. We considered that the VSC generates a control
action given by a proportional function with a threshold saturation value:
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TVSS
k =


+Dk, σi > δk
σk
δk

Dk, −δk ≤ σk ≤ δk

−Dk, σk < −δk

, (38)

Tk = TVSS
k . (39)

The set of tests consists of adopting varying fractional orders α = {α1, . . . , αq, . . . αQ},
αq ∈ [−0.5, 1], and the amplitude of the proportional band δk = δ (k = 1, 2), with δ =
{δ1, . . . , δq, . . . δQ}, and δq ∈ [10−4, 101]. For both parameters, Q = 20 equidistant values
were considered, yielding N = 20× 20 test cases in total.

For each test case, we gathered the sampled state θ(tr) = [θ1(tr), θ2(tr)] and θ̇(tr) =
[θ̇1(tr), θ̇2(tr)], tr ∈ [0, 20] s, which yields state vectors of 20,001 dimensions. The data were
then organized in an N × L = (20× 20)× (4× 20,001)-dimensional array:

W̃(t) =


θT

11(tr) θT
21(tr) θ̇T

11(tr) θ̇T
21(tr)

· · · · · · · · · · · ·
θT

1i(tr) θT
2i(tr) θ̇T

1i(tr) θ̇T
2i(tr)

· · · · · · · · · · · ·
θT

1N(tr) θT
2N(tr) θ̇T

1N(tr) θ̇T
2N(tr)

. (40)

We normalized the array W̃(t) by the average and standard deviation, µ(·) and σ(·),
respectively, so that numerical saturation was avoided. Therefore, the columns of the
matrix W̃(t), denoted by ũ(t)

l , with l = 1, . . . , L, are recalculated as:

u(t)
l =

ũ(t)
l − µ(ũ(t)

l )

σ(ũ(t)
l )

, (41)

and a normalized array W(t) is obtained. Afterwards, the rows of W(t), denoted by v(t)
i ,

with i = 1, . . . , N, are used to compute the dissimilarity matrices Dh = [dh(v
(t)
i , v(t)

j )],
i, j = 1, . . . , 400, with h = 1, 2, that feed the MDS.

Figure 5 sketches the 3-dim loci generated when adopting the arccosine distances and
Jaccard distances d1(v

(t)
i , v(t)

j ) and d2(v
(t)
i , v(t)

j ). The points, which represent the test cases,
are linked by means of lines of constant δ (or α) values, while each color corresponds to one
value of α (or δ). When the parameters varied, we obtained patterns that characterized the
dynamics of the controlled system. For constant and low α, as δ grows, the loci describe a
path that reaches an inflection zone and change direction. The round trips are identical for
low values of α. As α increases, the inflection tends to vanish, and the locus becomes more
insensitive to δ. For δ constant, we also verified the emergence of patterns, being similar to
each other for all values of α.

The behavior of a system can also be assessed in the frequency domain. Therefore, we
computed the Fourier transform of the state vectors F{θ(tr)} = [F{θ1(tr)},F{θ2(tr)}] =
[Θ1( fr), Θ2( fr)] and F{θ̇(tr)} = [F{θ̇1(tr)},F{θ̇2(tr)}] = [Θ̇1( fr), Θ̇2( fr)], using 300
frequency values logarithmically spaced in the interval fr ∈ [10−2, 102] Hz, where F stands
for the Fourier operator. We organized the data into an N × L = (20× 20)× (2× 4× 300)-
dimensional array:

W̃( f ) =
Re{ΘT

11} Im{ΘT
11} Re{ΘT

21} Im{ΘT
21} Re{Θ̇T

11} Im{Θ̇T
11} Re{Θ̇T

21} Im{Θ̇T
21}

· · · · · · · · · · · · · · · · · · · · · · · ·
Re{ΘT

1i} Im{ΘT
1i} Re{ΘT

2i} Im{ΘT
2i} Re{Θ̇T

1i} Im{Θ̇T
1i} Re{Θ̇T

2i} Im{Θ̇T
2i}

· · · · · · · · · · · · · · · · · · · · · · · ·
Re{ΘT

1N} Im{ΘT
1N} Re{ΘT

2N} Im{ΘT
2N} Re{Θ̇T

1N} Im{Θ̇T
1N} Re{Θ̇T

2N} Im{Θ̇T
2N}

.
(42)
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Figure 5. The 3-dim MDS locus for the IVSC-FSM, assessing the time-domain behavior, with the distances: (top) Arccosine

d1(v
(t)
i , v(t)

j ); and (bottom) Jaccard d2(v
(t)
i , v(t)

j ). The points represent the test cases. On the left, lines connect points of
constant δ, and each color corresponds to points of constant α. On the right, lines connect points of constant α, and each
color corresponds to points of constant δ. The fractional order αq ∈ [−0.5, 1], and the width of the band δq ∈ [10−4, 101].

As before, after normalizing the columns of W̃( f ) by the arithmetic mean and the
standard deviation, we obtained the normalized array W( f ). The rows of W( f ), denoted
by v( f )

i , with i = 1, . . . , N, were then used to compute the dissimilarity matrices Dh =

[dh(v
( f )
i , v( f )

j )], i, j = 1, . . . , 400, with h = 1, 2, as defined by Expressions (28) and (29), and
input into the MDS.

Figure 6 shows the MDS 3-dim loci using {d1, d2}. As before, the points, which repre-
sent test cases, are linked by lines of constant δ (or α) values, while each color corresponds
to one value of α (or δ). We verified the existence of patterns that were similar to the ones
observed before the analysis, thus confirming the results.

3.2. Fractional Variable Structure Control and Integer Sliding Mode

We explored the FVSC-ISM, where the proportional-like VSS was replaced by a
proportional-integral controller with a VSS control action in the integral part. Therefore,
we included a fractional derivative in series with the VSS switching law. The switching
border is given by (15), and the controller is:

TVSS
k =


+Dk, σk > δk
σk
δi

Dk, −δk ≤ σk ≤ δk

−Dk, σi < −δk

, (43)

Tk = Dα
[

TVSS
k (t)

]
. (44)
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As before, the test cases were based on changing the fractional order α =
{α1, . . . , αq, . . . αQ}, αq ∈ [−0.2, 0.6], and the width of the band δk = δ (k = 1, 2) δ =
{δ1, . . . , δq, . . . δQ}, δq ∈ [10−4, 101]. For both parameters, Q = 20 equidistant values were
considered, yielding N = 20× 20 test cases. The controller and the manipulator parameters
were set equal to the ones adopted in Section 3.1 (i.e., T = 10−4, λk = 10, with k = 1, 2, and
D1 = 200, D2 = 100).
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Figure 6. The 3-dim MDS locus for the IVSC-FSM, assessing the frequency-domain behavior, with the distances: (top)

Arccosine d1(v
( f )
i , v( f )

j ); and (bottom) Jaccard d2(v
( f )
i , v( f )

j ). The points represent the test cases. On the left, lines connect
points of constant δ, and each color corresponds to points of constant α. On the right, lines connect points of constant α, and
each color corresponds to points of constant δ. The fractional order αq ∈ [−0.5, 1], the width of the band δq ∈ [10−4, 101],
and fr ∈ [10−2, 102] Hz.

Figure 7 portrays the 3-dim loci generated with the distances d1(v
(t)
i , v(t)

j ) and

d2(v
(t)
i , v(t)

j ). We verified the existence of patterns that characterized the behavior of the
system as the values of the parameters varied. For constant and low α, as δ increases, the
paths spread. The round trips are similar to each other for low values of α. As α increases,
the inflection tends to vanish, and the locus becomes more insensitive to δ. For constant δ,
patterns also emerge, and we verified that they were of the same type, independent of the
values of α. Figure 8 depicts the MDS 3-dim loci using d1(v

( f )
i , v( f )

j ) and d2(v
( f )
i , v( f )

j ).
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Figure 7. The 3-dim MDS locus for the FVSC-ISM, assessing the time domain-behavior, with the distances: (top) Arccosine

d1(v
(t)
i , v(t)

j ); and (bottom) Jaccard d2(v
(t)
i , v(t)

j ). The points represent the test cases. On the left, lines connect points of
constant δ, and each color corresponds to points of constant α. On the right, lines connect points of constant α, and each
color corresponds to points of constant δ. The fractional order αq ∈ [−0.2, 6], and the width of the band δq ∈ [10−4, 101].
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Figure 8. The 3-dim MDS locus for the FVSC-ISM, assessing the frequency-domain behavior, with the distances: (top)

Arccosine d1(v
( f )
i , v( f )

j ); and (bottom) Jaccard d2(v
( f )
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j ). The points represent the test cases. On the left, lines connect
points of constant δ, and each color corresponds to points of constant α. On the right, lines connect points of constant α, and
each color corresponds to points of constant δ. The fractional order αq ∈ [−0.2, 0.6], the width of the band δq ∈ [10−4, 101],
and fr ∈ [10−2, 102] Hz.
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To sum up, the MDS technique is able to represent large sets of objects with different
classes of performance indices. The interpretation of the loci is based on the emerging
patterns and clusters. The goal herein was to investigate the use of MDS to assess and easily
visualize the performance of fractional-order VSC applied to revolute planar robotic ma-
nipulators. Indeed, classical indices can be adopted to assess the performance. For instance,
standard time-domain parameters, such as the rise, peak and settling time, overshoot,
and peak value have been widely used. However, often, single (or small set) criteria are
insufficient, and different indices can lead to conflicting information. Therefore, assessing
control systems’ performance is a multidimensional problem that can take advantage of
present-day computational information visualization techniques. The analysis adopted was
based on data from the control system operation. The proposed MDS approach assumes
that all relevant factors are implicitly embedded in these data. Obviously, the MDS analysis
and visualization are not independent of the controlled system. However, this is not a
drawback of the method. On the contrary, other systems and the influence of distinct
parameters can be easily assessed by generating MDS loci that embed their corresponding
information. In conclusion, the MDS constitutes a computational tool capable of generating
useful representations of large sets of objects without being limited to a single class of
performance indices. In this paper, the objects were closed-loop controlled systems, which
differed from each other by a number of parameters. The relationships between such ob-
jects were unveiled based on the clusters and patterns that emerged on the MDS loci. More
parameters can be assessed easily, generating additional objects for visualization. Therefore,
further research using distinct indices and algorithms can be performed. Therefore, the
results point toward further advances using other indices and fractional algorithms.

4. Conclusions

We addressed the use of MDS to study fractional-order VSCs. The approach compares
patterns emerging in the MDS loci when varying the controller parameters. Different in-
dices for processing the system state in the time and the frequency domains were adopted.
The results illustrated the effectiveness of the MDS representation and revealed that it is
simple to generate and interpret different controlled systems for a variety of test condi-
tions. The generalization to other systems and the adoption of new assessment indices
is straightforward.
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