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ABSTRACT
Ulcerative colitis has a significant impact on the quality of life for the patients, 

and can substantially increase the risk of colon cancer in patients suffering long-term. 
Conventional treatments provide only modest relief paired with a high risk of side 
effects, while complementary and alternative medicines can offer safe and effective 
options. Over the past decade, we have shown that both American ginseng and its 
hexane fraction (HAG) have anti-oxidant and anti-inflammatory properties that can 
suppress mouse colitis and prevent colitis-associated colon cancer. With the goal 
of isolating a single active compound, we further fractionated HAG, and found the 
most abundant molecule in this fraction was the polyacetylene, panaxynol (PA). After 
isolating and characterizing PA, we tested the efficacy of PA in the treatment and 
prevention of colitis in mice and studied the mechanism of action. We demonstrate 
here that PA effectively treats colitis in a Dextran Sulfate Sodium mouse model by 
targeting macrophages for DNA damage and apoptosis. This study provides additional 
mechanistic evidence that American ginseng can be used for conventional treatment 
of colitis and other diseases associated with macrophage dysfunction.

INTRODUCTION

Inflammatory bowel diseases (IBDs), including 
ulcerative colitis (UC) and Crohn’s disease (CD), are 
debilitating illnesses that significantly affect patients’ 
lifestyle and carry a high colon cancer risk. IBD prevalence 
is particularly high in North America and Europe (affecting 
3.8 million people), with an economic burden of $30–$45 
billion [1–4]. Of note, incidence has been increasing for both 
males and females over the past 20 years [5]. Frustratingly, 
conventional treatments of IBD patients have modest 

outcomes with 20% of patients not responding to anti-TNFα 
antagonists [6], and toxicity leads to dangerous side effects. 
As such, about half of all IBD patients (millions) turn to 
complementary and alternative medicines (CAMs). Although 
CAMs have been used for thousands of years, there is a 
gap in our knowledge of the mechanisms that support their 
effectiveness. Understanding these mechanisms will not only 
lead to standardized and more efficient treatment for IBD 
outside of toxic FDA-approved drugs but will also better 
our understanding of the potential applications of CAMs for 
other diseases with similar mechanisms.
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Inflammation generally occurs as an acute response 
to an injury and infection. This response is initiated 
by the activation of sentinel immune cells, such as 
macrophages and dendritic cells that reside around the 
injured or infected area, which then release chemokines 
and cytokines and may further recruit other immune cells  
[7–9]. Control of the immune response to infection 
is essential to preventing it from becoming a chronic 
condition. This control is done through apoptosis of 
immune cells via the tumor suppressor protein 53 (p53) 
[10, 11]. Low p53 levels in macrophages were observed 
to be a cause for higher expression of NF-κB-targeted, 
pro-inflammatory cytokines such as interleukin-6 (IL-6) 
and tumor necrosis factor (TNF), which are involved in 
chronic inflammation such as IBD [12–14].

The natural herb, American ginseng (Panax 
quinquefolius; AG), improves mental performance and 
detrimental end points associated with diseases, such 
as cardiovascular disease, diabetes, and influenza [15, 
16]. Over the past decade, we have shown that AG has 
anti-oxidant and anti-inflammatory properties and is 
able to suppress mouse colitis and prevent colon cancer 
associated with colitis [11, 17, 18]. Using bioassay-guided 
fractionation, we have shown that a hexane fraction of AG 
was particularly potent in this capacity [19–21].

Polyacetylenes are a distinct group of naturally 
occurring products, whose numerous pharmacological 
properties have been recognized [22, 23]. PA ([3(R)-
(9Z)-heptadeca-1, 9-dien-4, 6-diyn-3-ol]; falcarinol) is a 
bioactive member of this family. It has been identified in 
both traditional herbal medicines, such as AG, and dietary 
plants, e. g., carrots, celery, and fennel [24]. Interestingly, 
PA has been shown to have anti-cancer properties  
[24–27] and neuroprotective effects [28–30]. However, 
there remains an unanswered question regarding 
PA’s potential as an anti-inflammatory molecule and, 
therefore, its capacity to suppress chronic inflammatory 
diseases, such as UC. Here, we hypothesize that the most 
abundant single molecule ingredient of HAG is the active 
component of reducing inflammation in a mouse model 
and that this molecule targets macrophages (mФ) for 
apoptosis resulting in the suppression of colitis in mice.

RESULTS

Panaxynol is the most abundant and a potent 
anti-inflammatory molecule in AG

We have previously shown that AG and HAG are 
effective in the treatment of colitis and prevention of colon 
cancer [11, 17–21]. We have also demonstrated that fatty 
acids and polyacetylenes are both components in AG 
and HAG [19]. In moving forward, to better understand 
the active components of HAG, we sub-fractionated 
this fraction of AG using liquid chromatography with 
UV/diode array detection (LC-UV/DAD) (Figure 1A). 

Fraction 1 (< 10% of the whole HAG) contains multiple 
minor components including two minor polyacetylenes 
tentatively identified based on UV spectra (Figure 1B). 
Fraction 2 (30% of HAG) contains two major 
polyacetylenes, panaxydiol (peak1) and panaxydol (peak 
2), and four minor polyacetylenes tentatively identified 
based on UV spectra (Figure 1C). Fraction 3 (24% of 
HAG) contains a major polyacetylene, PA (peak 3), 
and a fatty acid, linolenic acid (peak 4) (Figure 1D). 
Fraction 4 (27% of HAG) contains linoleic acid (peak 5) 
and no detectable polyacetylenes (Figure 1E). F5 (10%) 
contains minor fatty acids including saturates, and no 
polyacetylenes (Figure 1F).

The subfractions were used to treat ANA-1 mФ 
cell-line after they were polarized to M1 using interferon 
γ (IFNγ, 10 ng/ml) for 0, 2, and 4 hours. Using western 
blot, we show that fractions 2 and 3, the only fractions 
containing major polyacetylenes, suppress inducible nitric 
oxide synthase (iNOS) expression (Figure 1G), which is 
predictive of colitis suppression [17, 19]. Of the three 
major polyacetylenes in fractions 2 and 3 of HAG, PA was 
the most abundant (10.2%) molecule.

Panaxynol is effective as a treatment for colitis in 
Dextran Sulfate Sodium (DSS) mouse model

Following the isolation of PA from HAG, and an 
initial screening (iNOS suppression in vitro [31]), we 
tested the efficacy of this compound in the prevention and 
treatment of DSS-induced mouse colitis. The PA doses 
were equated to reflect the percentage composition of 
PA in HAG. In the prevention model, where mice were 
treated with PA for a week before the induction of colitis 
using DSS (Supplementary Figure 1A), treatment with 
PA did not inhibit colitis in mice when compared to the 
control group. Moreover, there was a marginal increase 
in the inflammation score with the highest dose of PA 
(Supplementary Figure 2A–2B) when compared to the 
vehicle group. This means that treatment with PA prior to 
DSS treatment slightly exacerbated DSS-induced colitis, 
indicating the inability of PA to act as a preventative 
method.

Excitingly, PA was very effective in the treatment 
model of colitis (Supplementary Figure 1B), where colitis 
was induced with DSS for a week followed by PA treatment. 
PA significantly decreased the Clinical Disease Index 
(CDI) (Figure 2A) and the inflammation score (Figure 2B, 
2D) in a dose-dependent manner. Colonic inflammation 
from PA-treated mice was limited to the distal end of the 
colon, while in the vehicle group, inflammation involved 
a larger area. To examine a biomarker of inflammation, we 
tested each colon section for cyclooxygenase-2 (COX-2) 
immunoreactivity using immunohistochemistry. There 
was a decreased expression of COX-2 with PA treatment 
(Figure 2C, 2E). Taken together, the results are consistent 
with the hypothesis that PA can be used to treat mouse 
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colitis. To note, we monitored the weights of the mice 
over the course of the experiment and did not observe any 

unexpected weight loss even with the highest dose of PA, 
indicating the non-toxic nature of PA.

Figure 1: Isolation and characterization of various sub-fractions of HAG. (A–F) LC-UV/DAD analysis of Hexane fraction 
and each sub-fraction. F1 to F5 represent the collected fractions, 4 minutes each. Peak identities: 1. Panaxydiol, 2. Panaxydol, 3. Panaxynol, 
4. linolenic acid, 5. linoleic acid Column C-18 2.1 × 100 mm, 1 µl injection of a 5 mg mL-1 (whole) or equivalent fraction, gradient 55% to 
90% acetonitrile/water in 15 minutes; hold 5 minutes; re-equilibration 10 minutes. Note: The scale magnification for sub-fractions 1 and 5 
is 2×. (G) Effect of HAG and different sub-fractions of HAG on IFNγ-induced iNOS expression. ANA-1 mouse mФ were incubated for 12 
hours with HAG or the indicated sub-fractions (10 µg/ml), washed, then exposed to IFNγ (10 ng/ml) for 0, 2, and 4 hours. C+ indicates the 
positive control, which is ANA-1 cells stimulated by IFNγ, and then incubated with media.



Oncotarget2029www.oncotarget.com

Panaxynol targets macrophages for DNA 
damage in vitro

In an effort to identify the mechanism of action 
of PA, we studied the structure and observed that PA is 
a hydrophobic compound with several sites of potential 
modification that could convert it to a DNA alkylating 
agent (Supplementary Figure 3). The hydroxide at the 
3-position (C3) can be converted to an α, β unsaturated 
aldehyde, which is a Michael acceptor, while the double 
bond between the 9 and 10 position could potentially 
be converted to an epoxide. Furthermore, the hydroxide 
group on C3 can react with the amino group of nucleic 
acids and alkylate DNA. We, therefore, screened multiple 
cell types for PA-induced DNA damage. Strikingly, 
PA caused DNA damage, as identified by phosphor-
H2A histone family, member X (γ-H2AX) expression. 
However, γ-H2AX induction only occurred in mФ cell 
lines. These included mouse mФ (ANA-1, Figure 3A–3B; 
RAW264.7, Figure 3C), primary peritoneal mouse mФ 
(Figure 3D), and human mФ (U-937 after differentiation 
using 10 ng/mL of phorbol-12-Myristate-13-Acetate 
[PMA], Figure 3E). For all non-macrophage cells (Figure 
3F–3K), γ-H2AX induction was not seen up to 10 µM PA 
treatment. As well, when U-937 human monocytes were 
not differentiated to mФ, γ-H2AX induction was also not 

seen until 10 µM PA treatment (Figure 3K) when compared 
to induction at 1 μM in U-937 cells differentiated into mФ 
(Figure 3E). This indicated the specificity of DNA damage 
to mature mФ and not monocytes.

Panaxynol selectively targets macrophages for 
apoptosis in vitro and in vivo

Based on the understanding that DNA damage is 
associated with apoptosis, we hypothesized that PA can 
selectively cause apoptosis in mФ. Results are consistent 
with this hypothesis in two macrophage cell lines 
(Figure 4A–4C). Apoptosis was minimal in other non-
macrophage cells, including HCT-116 cells (Figure 4D) 
and mouse embryonic fibroblasts (MEFs) (Figure 4E). To 
examine whether PA selectively causes apoptosis in mФ 
in the presence of other cell types, we carried out a co-
culture experiment with M1 polarized ANA-1 mФ and 
colon cancer cells (HCT-116). Figure 4F shows that PA 
causes apoptosis in ANA-1 mФ at significantly higher 
levels than in HCT-116 cells.

To confirm that PA targets mФ in vivo, we used 
colons from the DSS-induced colitis experiment to 
perform IHC for mФ. We used a CD11b antibody, which is 
a surface marker for mФ, and we observed that PA-treated 
colons have lower expression of CD11b when compared to 

Figure 2: Panaxynol suppresses DSS-induced colitis in mice. (A) Representative images (magnification–100×) of histological 
sections from 3 groups; water, DSS only and highest dose of PA (1 mg/kg/day). (B) Inflammation scores obtained from H & E slides of the 
colon cross-sections. (C) Representative images of sections stained for COX-2 (magnification – 400×). (D) Immunoreactivity score (IRS) 
of COX-2 from IHC staining. (E) Clinical Disease Index (CDI) accounts for weight loss, blood in stool and stool consistency (n = 8). Values 
represent mean ± SEM. One-way ANOVA followed by Dunnett’s test was used for comparison between samples. p-value when compared 
to DSS group is indicated by: * = < 0.05, ** = < 0.01, *** = < 0.001, **** = < 0.0001.
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the vehicle group, indicating that PA treatment decreased 
the number of mФ in vivo (Figure 5).

DISCUSSION

Currently available treatments for IBD have multiple 
side effects and affect major organs like kidneys, liver 
(hepatitis), and pancreas (pancreatitis) [32]. Furthermore, 
immune targeting drugs, e. g., infliximab that targets 
the tumor necrosis factor (TNF) pathway, are broadly 
immunosuppressive with major side effects including a 
higher risk of non-Hodgkin’s lymphoma [33]. We have 
shown that AG treats colitis in mice [17]. However, it is 
composed of multiple ingredients with diverse effects, 
making it unfit for use as a mainstream drug. Upon 
examining the different extracts of AG, we identified HAG 
to be the most effective fraction in the treatment of colitis 
[19]. Further analysis examined the various components 
of HAG’s ability to suppress iNOS, an inflammatory 

response gene, in mФ. PA, apart from being the most 
abundant molecule in HAG, is also more effective than the 
whole HAG in suppressing iNOS expression in mФ that 
are polarized to M1 (pro-inflammatory). Hence, testing PA 
for the treatment of colitis is a natural step towards the 
identification of the bioactive component to treat colitis 
and prevent colon cancer.

The DSS mouse model is used due to its ability 
to produce inflammation in mice resembling UC and 
it is symptoms [34]. Therefore, consistent with our 
previous studies with AG and UC, we used DSS-induced 
mouse colitis model for studying the effect of PA on an 
inflammatory disease. We found that PA treats DSS-
induced colitis in the mouse, as seen by decreased CDI, 
inflammation, COX-2 expression, and the halted weight 
loss in treated mice. There was no toxicity even at higher 
doses, as observed by the insignificant weight changes. In 
future experiments, we will examine the effect of PA on 
the liver and kidneys to further rule out toxicity.

Figure 3: Panaxynol induces γ-H2AX in macrophages, but not in other cell types. All cell types were treated with PA at 
specified doses for 12 hours. Activated mФ were generated by treating with IFNγ (10 ng/ml for 8 hours) prior to PA treatment. U-937 cells 
were treated with 10 ng/ml PMA for 24 hours for differentiation into mФ. (A–E) MФ showed increased DNA damage with doses starting 
from 1 µM, as shown by the increase in the expression of γ-H2AX, a sensitive marker of DNA damage. (F–J) Non-macrophage cell lines, 
including other immune cells (i. e. lymphoblasts and T cells) and epithelial cell lines, did not show any change in the protein expression of 
γ-H2AX and (K) U-937 cells which are monocytes were more sensitive than U-937 mФ. M - cell culture media.
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One of the mechanisms by which AG and HAG treat 
colitis is by targeting immune cells for apoptosis [11, 20]. 
We also examined the structure of PA and identified it to 
be a hydrophobic compound, is a potential DNA-reactive 
alkylating agent. PA and its derivative, falcarindiol, have 
previously been shown to be protein-alkylating agents 
[35]. Furthermore, it has been shown that PA causes 
DNA damage in the colorectal cancer epithelial cell-line, 
CaCo2 [36]. It can be reasoned that the mechanism of 
action of PA can be via the induction of DNA damage. 
Our preliminary results show that PA causes DNA damage 
in multiple cell lines and that mФ are especially sensitive 
to DNA damage induced by PA. In fact, we have tested 
a range of doses (0.01 mg/kg–1 mg/kg, Figure 3) and 
demonstrated that PA is very effective at 0.1 mg/kg, which 
would translate to 6 mg for an average patient weighing 
60 kg. This is an extremely low dose when compared to 
the immunosuppressive drugs currently available, placing 
PA a step above the other treatments for UC. Seeing that 
PA seems to target mФ specifically for apoptosis through 
DNA damage, we predict that this is the key component in 
PA’s anti-inflammatory effect.

PA, however, did not prevent colitis in mice. 
Furthermore, treatment with the highest dose of PA slightly 
increased the inflammation score when compared to the 
untreated mice. The resident mФ in the lamina propria of 
the intestine are anti-inflammatory and important for the 
maintenance of homeostasis. They clear any microbes and 
other stimuli that cross the epithelial cell barrier, mainly 
by phagocytosis, but do not secrete any cytokines [37]. 
Since PA targeted mФ before induction of colitis in the 
prevention model, the disease was more severe and PA was 
ineffective. This is consistent with previous studies that 
showed that depletion of mФ prior to induction of colitis 
resulted in exacerbated DSS-induced colitis [38]. However, 
upon initiation of UC, there is increased accumulation of 
pro-inflammatory mФ that secrete cytokines to enhance the 
inflammatory response. An overactive response by the mФ 
to the enteric microbiota at this stage greatly contributes 
to the pathogenesis of colitis [39]. Treatment with PA to 
target mФ at this stage was highly effective in suppressing 
colitis and emphasizes the effectiveness of PA in treating 
an autoimmune inflammatory disease. For that reason, PA 
may also work for CD or even rheumatoid arthritis [40].

Figure 4: Panaxynol induces apoptosis in macrophages, but not in HCT-116 and MEF cells. Cells were treated with PA 
for 12 hours with indicated doses. PA significantly increased the percentage of apoptotic cells in (A) unstimulated ANA-1 cells at 50 µM 
(18%) and 100 µM (70%), (B) IFNγ stimulated ANA-1 cells at 10 µM (3.3%) and (C) RAW264.7 cells at 50 µM (50%) and 100 µM (99%). 
(D) PA had no significant apoptotic effect on HCT-116. (E) PA induced apoptosis in MEFs only at a high dose of 100 µM (9.5%). (F) In a 
co-culture experiment, PA caused apoptosis only in ANA-1 cells, but not HCT-116 cells. p-value indicated by; * = < 0.05, ** = < 0.01, *** = 
< 0.001, **** = < 0.0001.
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The reason for the mФ being specifically targeted 
by PA is not completely understood. However, this 
property of PA would distinguish it from broadly 
immunosuppressive drugs that are currently on the market 
for the treatment of UC. Furthermore, PA (as compared to 
the hundreds of other potential CAMs currently used with 
success in animals) not only comes from a natural source, 
but as a single ingredient, allowing the potential to be 
standardized on its own, or in a cocktail. Future directions 
involve investigating whether PA can prevent colon cancer 
as the next natural step, since macrophage depletion 
not only decreases inflammation but also suppresses 
tumorigenesis in AOM-DSS-induced model of colitis 
induced colon cancer in mice [41]. Another direction to 
explore in the future is to determine if PA can achieve its 
anti-inflammatory effects in a CD mouse model.

MATERIALS AND METHODS

Identification and isolation of panaxynol

Characterization of HAG and extraction of PA were 
carried out by our collaborator, Dr. Anthony Windust at 
the National Research Council (Ottawa, ON, Canada). 
The method for characterization and analysis of HAG 
has been described in detail previously [19]. Briefly, 
for characterization of bioactive components of HAG, 

this fraction was sub-fractionated through preparative, 
reverse-phase HPLC, where the HAG was divided into 
5 sub-fractions based on elution time (4 minutes each). 
The fractions were collected over 6 repeat runs (6 × 50 
mg injected) and evaporated to dryness. A comparative 
analysis by analytical scale LC-UV of both the whole and 
each sub-fraction was performed to confirm identities of 
constituents in each sub-fraction.

PA was isolated and purified from Panax 
quinquefolius grown on the Harper Ranch, Kamloops, 
BC, Canada. The method of extraction and purification 
of PA has been previously described [31]. Briefly, dried 
root of four-year-old AG was dissolved in ethanol and the 
organic layer was concentrated using vacuum centrifuge 
to yield dark brown oil. This extract was further separated 
using flash chromatography and the fractions containing 
PA were dried to yield crude PA. The crude PA was then 
subjected to multiple passes of chromatography and 
the purity of the final extract was validated using liquid 
chromatography with UV diode array detection (LC-UV-
DAD). Purified PA was dissolved in 95% ethanol for use 
in in vitro and in vivo experiments.

Cell lines and reagents

All cells were maintained in appropriate media for 
each cell-line recommended by ATCC supplemented with 

Figure 5: Panaxynol targets macrophages in vivo. Effect of PA on macrophages in vivo. (A) Representative images of sections 
stained for CD11b (magnification – 400×) (N = 8). (B) Immunoreactivity score (IRS) of CD11b from IHC staining. p-value indicated by; * 
= < 0.05, ** = < 0.01, *** = < 0.001, **** = < 0.0001.
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10% New Born Calf serum (NBCS) (Biofluids, Rockville, 
MD), penicillin (10 U/ml) and streptomycin (10 μg/ml, 
Biofluids) at 37°C in a humidified chamber with 5% 
CO2 atmosphere. Experiments with PA were carried out 
by treating the cells with indicated concentrations of PA 
dissolved in appropriate media with 0.1% NBCS. For 
polarization to M1 type mФ, ANA-1 cells were exposed 
to 10 ng/ml interferon-γ (IFNγ) for 8 hours (R&D 
Systems, Minneapolis, MN). For differentiation of U-937 
monocytes into mФ, cells were treated with 10 ng/ml 
phorbol 12-myristate 13-acetate (PMA) (Sigma; P1585) 
for 24 hours. After replacing with fresh media containing 
no PMA, the cells were allowed to grow for 48 hours 
before treatment with PA. CD4+CD25- cells were isolated 
from the spleens of C57BL/6 mice as previously described 
[20]. Briefly, the mФ and B cells were depleted before 
isolation of CD4+CD25- T cells using MACS separator 
along with CD4 and CD25 microbeads (Miltenyi Biotec, 
Auburn, CA).

Western blot analysis and antibodies

Phospho-Histone H2AX (Ser139) (cat #9718S), 
phospho-p53 (Ser15) (cat #9284S), and GAPDH 
(D16H11) (cat #5174S) rabbit monoclonal primary 
antibodies (1:1000 dilution); and horseradish peroxidase 
conjugated anti-rabbit secondary antibody (7074S) 
(1:2000 dilution) were purchased from Cell Signaling 
Technology, Danvers, MA. Primary antibody incubations 
were carried out overnight at 4°C Secondary antibody 
incubations were carried out at room temperature for 1 
hour. The Western blot signal was detected by Pierce ECL 
Western Blotting Substrate (Thermo Scientific, Rockford, 
IL) and developed onto Hyperfilm (GE Healthcare Life 
Sciences, Pittsburgh, PA) or imaged using Bio-Rad 
ChemiDoc Imager.

Flow-cytometric TUNEL analysis

TUNEL (Terminal deoxynucleotidyl transferase 
dUTP nick end labeling) was performed using Fluorescein 
in situ cell death detection (cat #11684795910, Roche 
Diagnostics, IN). Briefly, cells were incubated in 0.1% 
NBCS supplemented media containing appropriate 
concentrations of PA or vehicle. Cells were harvested after 
12 hours of treatment and TUNEL assay was performed 
as described by the vendor with DNAse from Sigma-
Aldrich as positive control. TUNEL positive cells were 
detected and quantified using Beckman Coulter F500 
Flow Cytometer and CXP software.

In vivo experiments

DSS (MW 36000–50000) obtained from 
International Laboratories USA (San Francisco, CA) was 
used to induce colitis in mice. 8–10 weeks old C57BL/6 

mice were obtained from Jackson Laboratories (Bar 
Harbor, ME) and maintained in a suitable environment 
according to the Institutional Animal Care and Use 
Committee (IACUC) standards. The care and usage of 
the mice were monitored by Animal Resource Facility 
(ARF) at the University of South Carolina, Columbia. 
This study was approved by IACUC (Animal Use 
Protocol # 2178).

For the prevention model of colitis, mice were given 
PA, once daily, at different doses (0.01 mg/kg, 0.1 mg/kg, 
0.5 mg/kg and 1 mg/kg diluted in ddH2O) by oral gavage 
for two weeks (Supplementary Table 1). The lowest dose 
was calculated based on our previous experiments with 
AG and HAG. Starting on day 7, mice were given 2% DSS 
in drinking water to induce colitis. For the colitis treatment 
experiments, mice were given 2% DSS in their water for 2 
weeks. Starting on day 7, mice were given PA at the same 
doses as the prevention experiments (0.01 mg/kg, 0.1 
mg/kg, 0.5 mg/kg and 1 mg/kg) by oral gavage. Control 
mice were given ddH2O by oral gavage (Supplementary 
Table 1). The weight of mice was monitored over the 
duration of the experiment. The mice were sacrificed on 
day 14, colons were harvested, their length was measured, 
and they were processed for further analysis.

Blood in stool was detected using Hemoccult 
(Beckman Coulter) fecal immunochemical test. 
Immediately before sacrifice, stool consistency (0-fully 
formed stool; 2-loose stool; 4-diarrhea) and blood in the 
stool (0-no blood; 2-detected using Hemoccult; 4-rectal 
bleeding) were scored, and these measurements were 
used along with the weight difference in mice from the 
beginning to the end of the experiment (0 = no weight loss; 
1 = 0–5% weight loss; 2 = 6–10% weight loss; 3 = 11–15% 
weight loss; 4 = 16–20% weight loss), to calculate the CDI.

Immunohistochemistry

Sections of paraffin-embedded colons were 
incubated with cyclooxygenase-2 (COX-2) (cat 
#60126; Cayman Chemical Company, Ann Arbor, 
MI) mouse polyclonal antibody, diluted 1:10,000 in 
Antibody Amplifier™ (ProHisto, LLC, Columbia, 
SC) overnight. The slides were then processed using 
EnVision+ System HRP kits (DAKO, Carpinteria, 
CA) according to the instructions provided by the kit, 
which uses the chromagen, diaminobenzidine to elicit 
dark brown reaction to the HRP-tagged secondary 
antibody provided in the kit. Methyl green was used as 
a secondary stain. Immunoreactivity score was obtained 
by multiplying scores from two criteria – 1) percentage 
of tissue stained (0–5: 0 (0% positive staining), 1 (< 
10%), 2 (11–25%), 3 (26–50%), 4 (51–80%), or 5 (> 
80%)), and 2) staining intensity (0–3: 0 (Negative 
staining), 1 (Weak), 2 (Moderate), or 3 (Strong)). The 
scores of two parameters are multiplied, giving a range 
of scores between 0–15.
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Inflammation scoring

Colons were fixed in formalin for 24 hours, then sent 
to the Instrumentation Resource Facility in the University 
of South Carolina, School of Medicine in Columbia, South 
Carolina, U. S. A. Paraffin-embedded colons were serially 
sectioned (5 µm) and one section from each mouse was 
stained with hematoxylin and eosin. The stained slides were 
blindly examined under a microscope by two investigators 
for histopathological changes and scored according to a 
system previously described and extensively used by our 
lab and many others [19, 42, 43]. Briefly, the histology 
score for inflammation accounts for four parameters – 1) 
inflammation severity (0 (no inflammation), 1 (minimal), 2 
(moderate), and 3 (severe)); 2) inflammation extent (0 (no 
inflammation), 1 (mucosa only), 2 (mucosa and submucosa), 
and 3 (transmural)); 3) crypt damage (0 (no crypt damage), 
1 (one-third of crypt damaged), 2 (two-thirds damaged), 
3 (crypts lost and surface epithelium intact), and 4 (crypts 
lost and surface epithelium lost)) and; 4) percentage area of 
involvement (0 (0% involvement), 1 (1–25%), 2 (26–50%), 
3 (51–75%), and 4 (76–100%)). The scores for the first three 
parameters are added and the sum is multiplied by the fourth 
parameter, giving a range of scores between 0–40.

Statistical analysis

Data are expressed as a mean ± standard error of 
the mean. Mean differences were compared by one-way 
analysis of variance (ANOVA), followed by Dunnett’s 
multiple comparison tests. A P-value of ≤ 0.05 was chosen 
for significance.
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