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Abstract

The paradigm for compartment models in epidemiology assumes exponentially distributed

incubation and removal times, which is not realistic in actual populations. Commonly used

variations with multiple exponentially distributed variables are more flexible, yet do not allow

for arbitrary distributions. We present a new formulation, focussing on the SEIR concept

that allows to include general distributions of incubation and removal times. We compare

the solution to two types of agent-based model simulations, a spatially homogeneous one

where infection occurs by proximity, and a model on a scale-free network with varying clus-

tering properties, where the infection between any two agents occurs via their link if it exists.

We find good agreement in both cases. Furthermore a family of asymptotic solutions of the

equations is found in terms of a logistic curve, which after a non-universal time shift, fits

extremely well all the microdynamical simulations. The formulation allows for a simple

numerical approach; software in Julia and Python is provided.

Introduction

A burgeoning number of papers attempting to model the dynamics of the COVID-19 pan-

demic have been published over the last few months [1]. Among these, a large fraction ([2–4]

are just a few examples) are based in more or less complex variants of the classical SEIR (sus-

ceptible-exposed/preinfectious-infectious-removed) model [5], which assume exponential dis-

tributions of incubation and removal times. Real epidemic data do not support however an

exponential distribution for these parameters which are usually described by gamma, lognor-

mal or Weibull distributions [6, 7].

It is well-known that these more general distributions are difficult to be captured by classi-

cal compartmental models such as SEIR, which normally treat the incubation and removal

times as exponentially distributed, or as the sum of several exponentially-distributed indepen-

dent times. On the other hand, there is a vast literature on the study of non-Markovian
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stochastic processes to model epidemics [8], but no simple and concrete formulation of com-

partmental models for epidemics that implements general distributions. The goal of this paper

is to provide such a formulation, which is also practical from a numerical point of view.

The principles on which a completely general formulation of compartmental models can be

built are actually already present in the seminal work by Kermack and McKendrick [9], where

they considered the SIR model. Here, we focus on the more general SEIR model. Our starting

point is a formulation of the SEIR concept that correctly represents the evolution of an epi-

demic under the assumption of full homogeneity and fixed values of the microscopic parame-

ters, namely: i) number of contacts per unit time, ii) the probability of infection per contact,

iii) the incubation time and iv) the recovery/removal time. By construction the inter-compart-

ment probabilistic transition rates transparently conserve the total probability as time evolves:

we thus refer to our construction as uSEIR, where “u” stands for unitary.

We demonstrate that the results of uSEIR describe very well the result of a microscopic

Agent Based Model (ABM) simulation with no stochasticity in the model parameters. Arbi-

trary distribution of the incubation and removal times can be easily incorporated into our

equations, recovering the classical SEIR equations in the particular case of exponentially-

distributed incubation and removal times. We also show that the resulting equations can be

efficiently solved numerically, and provide appropriate codes and examples (with implementa-

tions in the Julia and Python/Cython languages).

The non-homogeneity in the infection rate per unit time is more subtle, because, in the

extreme case, it should invalidate the treatment in terms of global S-E-I-R populations. We

study two sources of this non-uniformity: inhomogeneity in the probability of infection per

contact and inhomogeneity in the number of contacts per individual. The first is modelled

with an ABM model with a negative binomial distribution of the probability of infection per

contact, the second is modelled with a simulation on a scale-free network. The uSEIR equa-

tions represent instead the evolution in which the infection rate per unit time is the average

one, independently of the underlying distribution. We observe that the simulations show a sig-

nificant variance which however amounts mostly to a time-translation. When the different

curves of infected individuals are shifted to tune their maxima, all the curves fall on a universal

curve correctly reproduced by the uSEIR equations. We analyse the origin of this universality,

i.e., independence on initial conditions. It derives from an asymptotic solution of the uSEIR

equations, which is found to be a logistic curve whose shape is fixed by the average microscopic

parameters. In the case of networks we briefly comment on the effect of clustering on the

dynamics of the epidemic.

Epidemic dynamics: From local to global

The spread of an infectious agent in a large population is a complex stochastic process, which

under certain assumptions can be described in terms of a relatively small number of global var-

iables, which follow deterministic differential equations. In order to understand the underlying

dynamics, it is useful to think of an epidemic outbreak in terms of simple agent-based models

(ABMs) [10], where the microdynamics can be studied by computer simulations. In these

models agents can make their own decisions based on the rules given to them, and the evolu-

tion can capture unexpected aggregate phenomena that result from combined individual

behaviours. ABMs can incorporate easily stochastic parameters as well as heterogeneities in

the population, and they are therefore a useful tool to study the performance of the description

in terms of global variables.

In the context of an epidemic, agents have four possible states: Susceptible (S), Exposed

(E), Infectious(I) and Removed (R). Only infectious agents can induce the change of state of
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another susceptible agent to that of exposed with a given infection rate, rS! E. Each exposed

agent necessarily becomes infectious after an incubation time, ti, while each infectious agent

remains in this state only during the recovery/removal time interval, tr. In a real epidemic this

time would be the interval of time during which an individual remains infectious. The agent

can move to the removed compartment either because it dies, recovers or gets isolated. All

these outcomes are equivalent as regards the evolution of the epidemic, which is monitored by

the total fraction of agents in states S(t), E(t), I(t), R(t) at any given time. The study of an epi-

demic in terms of these variables is the SEIR paradigm [9]. In this context, the so-called basic

reproduction number, R0, is a fundamental quantity that controls the rate of infection in an

homogeneous susceptible population. It is defined as the average number of individuals that

a given infectious agent turn to exposed in the interval tr, assuming a fully homogeneous and

susceptible population.

In this paper we want to derive a set of equations for these global variables that describe

correctly the global dynamics under the necessary assumption of a well-mixed and homoge-

neous population, if seen at a sufficiently large scale, but that incorporates arbitrary distri-

butions of incubation, removal and infection rates in the microdynamics. These set of

equations will be presented in the next section, where they will be benchmarked against two

types of ABM simulations, that we briefly describe next. In the first type of ABMs, a number

N of agents progressing through the S-E-I-R compartments move in an homogeneous space

and get exposed by proximity to infected neighbours with some probability. The second

type of models assumes the evolution on a network where the agents have a varying number

of contacts.

Spatially homogeneous ABM

We use the MESA package [11] to simulate the spread of an outbreak in a homogeneous popu-

lation. The agents in the model are called “turtles”, following the nomenclature of the NetLogo

[12] software. A two-dimensional turtle world is divided in a grid of equal size cells, and inhab-

ited by N turtles. At the initial time the turtles occupy a randomly chosen cell and at each clock

tick they do a random move to a neighbouring cells or stay in the same one.

To simulate the evolution of an epidemic, a small number of turtles are infectious, I0, at the

initial time, while S0 = N − I0 are susceptible. At each clock tick infectious (I) turtles can expose

any susceptible (S) turtle they find in their neighbourhood. Two turtles are considered neigh-

bours if they share the same cell or are in neighbouring ones.

More concretely, at each time step each susceptible neighbour of an infected turtle, k is

exposed with probability p. If the neighbour k becomes exposed, the clock time of this event is

recorded, tðkÞs!e. At each tick all the exposed turtles are examined and eventually turned into

infectious, at time t � tðkÞs!e > ti. Again, the time at which the transition to infectious happens is

recorded, tðkÞe!i, and the turtle remains infectious until it progresses to the recovered compart-

ment of time t � tðkÞe!i > tr.
The basic assumption of homogeneity at large scales or full-mixing of the S-E-I-R popula-

tions requires that the probability of infection per contact is small enough. Only in the limit

p! 0 we can expect that the infecting agent sees an average population of susceptibles (i.e the

turtles have time to diffuse before a second infection succeeds). In this limit, the basic repro-

ductive number is given by

R0 ¼ c� p� tr; ð1Þ

where c is the average number of neighbours or contacts per unit time. For the rules described
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before, and in the case of a turtle world homogeneous population, c is simply:

c ¼ 9
N
A
� 1

� �

�� 1; ð2Þ

where A is the total number of grid cells in the turtle world and 9 is the number of neighbour-

ing cells of any given cell (including itself). � is the measure of one time step. Therefore, the

infection probability can be obtained from any desired R0 as:

p ¼
R0

c � tr
: ð3Þ

The simulation with this p will only match the input value of R0 in the simulation if p is

small enough, so that the assumptions that go in the derivation of this formula are satisfied.

The simulation is run for a time t� tr and we use a step such that tr/�� 30.

This basic simulation setup has to be supplemented with a prescription to choose the times

that turtles remain exposed/infectious. A very common assumption is to take these times expo-

nentially distributed. This can be interpreted as each turtle trying to leave the exposed/infec-

tious compartments at each time tick with a fixed probability, leading to a Poisson process.

Other (more realistic) choices of distribution (gamma, Weibull, etc) allow to model some

inhomogeneity in the population. In this case, the evolution of the disease is described by a

non-Markovian SEIR model.

At each step the software records the turtles in each compartment and thus provides (in the

limit of small clock ticks) the functions S(t), E(t), I(t) and R(t), which can be directly compared

with the predictions of the solutions of the SEIR models.

ABM on networks

Realistic populations are not necessarily well-mixed, at least not at small scales. Most individu-

als have contact only with a very small fraction of the total population. Complex networks

show very rich topological features that are similar to real-world social networks. They can

have a small number of links between nodes and still display the small-world phenomena.

Scale-free networks can also capture the large difference of contacts that different individuals

in society have. The study of the evolution of diseases on complex networks allows to study the

impact of this rich topological structure in the evolution of and epidemic. The spread of epi-

demics on networks is an area of intense research. Since the seminal works [13] many studies

have been performed on this topic (see the recent review [14] and references therein).

A network is just a non-oriented graph {G, E} consisting on nodes G ¼ fnig
N
i¼1

and edges

linking two nodes, E = {eij}. We say that two nodes na and nb are connected if eab 2 E. The

number of edges attached to a node na is called its degree and labelled ka.
In the context of the spread of an infectious disease, each node is an agent, and the edges

represent the contacts. Each contact links two agents that can expose each other if one is infec-

tious and the other susceptible. The number of edges is therefore the number of contacts. At

each tick of time, �� tr, infectious nodes pick a single edge at random, and if susceptible they

attempt to infect the node attached to it with probability p. In this setup, each click of time rep-

resents therefore a contact and all nodes have the same number of contacts per unit time c = 1.

More general situations can be simulated by allowing infectious nodes to attempt infecting

several nodes at each time step. As in the turtle world, the infectious agent remains so in a time

interval tr, while the times tr, ti can be chosen different for each node by drawing samples of

some previously chosen distribution.
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In contrast with the turtle world, a general network breaks the assumption of full mixing,

since two nodes that are not linked have exactly zero probability of transmiting the disease

between them. On the other hand, a fully connected network, where each node is linked to

the remaining N − 1 nodes, represents correctly a fully mixed situation. In this case the basic

reproductive number R0 is simply

R0 ¼ ptr: ð4Þ

For a general network with small clustering, the correction to this relation is expected to

scale as/ 1/hki as shown in Fig 1). More generally, the value of R0 can depend in a non-trivial

way on the network topological properties.

In our study we will concentrate on a particular one-parameter family of random networks

described by Klemm and Eguiluz (KE) [15]. These complex networks show a number of fea-

tures that are expected in realistic networks:

Scale-free Nodes with both large and small number of contacts are present. In fact the distri-

bution of the number of nodes is given by the power law

PðkÞ ¼
hki2

2k3
; k >

hki
2
: ð5Þ

Small-world Most nodes are not linked between themselves (i.e. hki�N), but every link can

be reached from any other by a small number of hops. Being more specific, the average dis-

tance between nodes gros logarithmically with the size of the network hdi�logN.

High clustering Even if two networks share the number of nodes, edges and the degree distri-

bution, they can look very different if the average clustering coefficient, hCi, is different.

Fig 1. R0/(p × tr) as a function of R0/k, for a network where each link is randomly linked to k other nodes, for two

values of ptr = 2, 8.

https://doi.org/10.1371/journal.pone.0244107.g001
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The clustering coefficient ci of a node ni measures the probability that two neighbors of ni
are also neighbours

Ci �
2jfejk n eji; eki; ejk 2 Egj

kiðki � 1Þ
: ð6Þ

In Fig 2 we show two networks with equal distribution of k that differ only in the different

clustering properties.

KE networks depend on a free parameter μ that does not affect the average degree of the net-

work or its distribution, but affects severely the value of the clustering, interpolating from

almost no clustering hCi = 0 for μ! 1, to a very clustered network with hCi�0.84 for μ = 0.

uSEIR formulation

A real epidemic is a complex stochastic process that eventually evolves to a regime where there

are large numbers of individuals in the S-E-I-R compartments. In the assumption that the pop-

ulations in these compartements are homogeneous and maximally mixed, the dynamics of the

system should be well described in terms of the global variables S(t), E(t), I(t), R(t), whose time

evolution is described by a set of deterministic differential equations [9, 16].

We first want to derive the set of equations that should describe the dynamics of these vari-

ables under the assumption that the incubation and removal times are fixed. The relation

between the changes in these variables is essentially fixed by unitarity. On the one hand, each

individual must be in one of the S, E, I or R compartments. Therefore the number of individu-

als in the population, N, is a constant:

SðtÞ þ EðtÞ þ IðtÞ þ RðtÞ ¼ N: ð7Þ

Secondly, there must also be a relation between the rates at which these different individuals

move from one compartment to the next. An infectious process is that in which an infected

individual gets in contact with a susceptible one. Let us call rS! E the rate of infection per unit

time per infected individual and per susceptible individual. The number of susceptible individ-

uals gets reduced by those that become exposed between [t, t + dt], that is:

dSðtÞ ¼ � rS!EIðtÞSðtÞdt: ð8Þ

Fig 2. Two examples of KE network with 500 nodes, mean degree hki = 9.93 and different clustering: hCii = 0.5 (μ
= 0.1) (left) and hCii = 0.07 (μ = 0.9) (right).

https://doi.org/10.1371/journal.pone.0244107.g002
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The parameter rS! E that governs the infection rate is often denoted as β/N in standard

SEIR notation. This is the basic equation that assumes an homogenous and maximally-mixed

susceptible and infectious populations, making the treatment of the microscopic process in

terms of global variables possible. It constitutes the simplest possible form of the force of infec-

tion, defined as (minus) the logarithmic derivative of S. Keeping within the simplest approxi-

mation, if the incubation and removal times of all individuals have the same values, we must

also have that the individuals that become exposed at time t are those that move from compart-

ment S! E minus those that move from E! I. But the latter must be the ones that entered

the exposed compartment in time t − ti. Therefore we have:

dEðtÞ ¼ � dSðtÞ þ dSðt � tiÞyðt � tiÞ;

dIðtÞ ¼ � dSðt � tiÞyðt � tiÞ þ dSðt � ti � trÞyðt � ti � trÞ;

dRðtÞ ¼ � dSðt � ti � trÞyðt � ti � trÞ;

ð9Þ

where θ is the Heaviside step function.

The initial conditions to these equations start with a fixed N and a number of infected indi-

viduals at time t = 0, I(0) = I0, so that S(0) = S0 = N − I0, while E(0) = 0 and R(0) = 0. In the

equations above, the number of initially infected individuals does not recover, but we can eas-

ily force this with the substitution in Eq (8):

IðtÞ ! ~IðtÞ � IðtÞ � Ið0Þyðt � trÞ: ð10Þ

These equations depend only on three variables, namely rS! E, ti and tr, which in principle

are the same parameters appearing in the classical SEIR models. In terms of the basic repro-

duction number, R0, rS! E corresponds to the combination:

rS!E ¼
R0

Ntr
: ð11Þ

Note that R0 is proportional to tr, while rS! E is independent of tr. In a microscopic descrip-

tion of the infected process as in the ABM simulations, the rate is related to the microscopic

parameters via R0 from Eq (1) or Eq (4) for the different ABMs.

We can compare the uSEIR and classical SEIR solutions to the ABMs simulations, matching

the basic microscopic parameters. In Fig 3 we show the curve for the fraction of infected indi-

viduals as a function of time measured from 10 independent turtle simulations in a population

of 104 agents with a fraction of infectious agents of 10−3 at t = 0, and assuming fixed parameters

ti, tr and rS! E for all the agents. The uSEIR solution agrees very well with the simulations,

while the classical SEIR predicts a wider and less pronounced peak.

This is of course not surprising, since classical SEIR is known to be valid when ti and tr are

exponentially distributed, corresponding to an underlying Markovian stochastic process.

Modifications of SEIR equations adding more compartments can be designed to represent

Erlang distributions, that for sufficiently large n are narrower, but uSEIR gets the limit of fixed

values of the parameters directly and without these complications.

In realistic cases, not all individuals have the same incubation or removal times, and cer-

tainly not all individuals have the same number of contacts and probability of infection per

contact. In the following, we consider the effect of these different non-homogeneities.

Generically distributed ti and tr

Non-trivial distributions for ti and tr can be incorporated in the uSEIR equations by consider-

ing different compartments of individuals. For example, the population divides into those with
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different incubation periods, tðkÞi , so we have Sk(t) as the susceptible individuals in the k-th

compartment of incubation time. Each compartment follows its usual progression Sk! Ek!
Ik! Rk, but the important point to notice is that a given susceptible individual in compart-

ment k becomes an exposed individual in the same compartment k, but can get infected from

any infectious individual in any other compartment. If we assume that the capability to infect

per unit time is independent on the compartment, the number of susceptible individuals in

compartment k changes as they become exposed according to:

dSkðtÞ ¼ � rS!E
~IðtÞSkðtÞdt: ð12Þ

while Eq (9) will still be valid for the exposed, infected and recovered in each compartment k,

taking the incubation period as that corresponding to this compartment, t(k).

Summing over all the compartments, the first equation leads to:

dSðtÞ ¼ � rS!E
~IðtÞSðtÞdt; ð13Þ

while in the others we get

dEðtÞ ¼ � dSðtÞ þ
X

k

dSðt � tðkÞi Þyðt � tðkÞi Þ;

dIðtÞ ¼
X

k

f� dSðt � tðkÞi Þyðt � tðkÞi Þ þ dSðt � tðkÞi � trÞyðt � tðkÞi � trÞg;

dRðtÞ ¼
X

k

f� dSðt � tðkÞi � trÞyðt � tðkÞi � trÞg:

ð14Þ

Fig 3. Curve of the infected individuals as a function of time (in days) for the uSEIR (solid-black), minimal SEIR

(dashed-red) and 10 agent simulations (cyan) in a population of N = 104 and I(0) = 10 with R0 = 3.5, ti = 5.5 days

and tr = 6.5 days. The values of R0, ti and tr are in the typical range of those used to describe the current COVID-19

pandemic.

https://doi.org/10.1371/journal.pone.0244107.g003
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Obviously in the limit of tðkÞi varying continuously the sum becomes an integral with the

corresponding PDF, PE(ti):

X

k

ð:::Þ !

Z

dtiPEðtiÞð:::Þ;
Z 1

0

dtiPEðtiÞ ¼ 1: ð15Þ

We can similarly assume sub-compartments for varying tr, with a PDF PI(tr), and the modi-

fication would be analogous, resulting in the following delay integro-differential equations:

dSðtÞ
dt

¼ � rS!E

Z

dtrPIðtrÞ~IðtÞSðtÞ;

dEðtÞ
dt

¼ � S0ðtÞ þ
Z t

0

dti S
0ðt � tiÞPEðtiÞ;

dIðtÞ
dt

¼ �

Z t

0

dti S
0ðt � tiÞPEðtiÞ þ

Z t

0

dti

Z t� ti

0

dtr S
0ðt � ti � trÞPEðtiÞPIðtrÞ;

dRðtÞ
dt

¼ �

Z t

0

dti

Z t� ti

0

dtr S
0ðt � ti � trÞPEðtiÞPIðtrÞ:

ð16Þ

We refer to Eqs (16) and (9) indistinctively as uSEIR.

A simple and efficient algorithm to solve these equations, complete with easy-to-use codes

in Python and Julia, is described in S1 Appendix.

Recovering classical SEIR

In the case where the probabilities are exponential, the integro-differential equations can be

reduced to regular differential ones, of the classical SEIR type.

Let us assume

PEðtiÞ ¼
1

htii
e� ti=htii; ð17Þ

and define

f ðtÞ �
Z t

0

dtiPEðtiÞS
0ðt � tiÞ ¼

Z t

0

dzPEðt � zÞS0ðzÞ: ð18Þ

The derivative of this function is related to that of E(t), using Eq (14),

f 0ðtÞ ¼ �
1

htii
dE
dt
ðtÞ; ð19Þ

so up to a constant

f ðtÞ ¼ �
EðtÞ
htii
þ C: ð20Þ
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Since f(0) = E(0) = 0, the constant must vanish and the equations reduce to:

dS
dt
¼ � rS!E

Z

dtrPIðtrÞ~IðtÞSðtÞ;

dE
dt
¼ �

dS
dt
�

1

htii
EðtÞ;

dI
dt
¼

1

htii
EðtÞ �

1

htii

Z t

0

PIðtrÞEðt � trÞ;

dR
dt
¼

1

htii

Z t

0

PIðtrÞEðt � trÞ:

ð21Þ

Analogously we define

gðtÞ �
1

htii

Z t

0

dtrPIðtrÞEðt � trÞ; ð22Þ

which for an exponential with average htri satisfies

g 0ðtÞ ¼
I0ðtÞ
htri

; ð23Þ

and therefore

gðtÞ ¼
IðtÞ
htri
þ C0; ð24Þ

where C0 = −I(0)/htri. Finally, the integral in the first equation:

Z

dtrPIðtrÞ~IðtÞ ¼ IðtÞ � Ið0Þð1 � e� t=htriÞ � �IðtÞ: ð25Þ

Finally, defining

�RðtÞ � RðtÞ þ Ið0Þð1 � e� t=htriÞ; ð26Þ

we recover the classical SEIR equations:

dS
dt
¼ � rS!E

�IðtÞSðtÞ;

dE
dt
¼ �

dS
dt
�

1

htii
EðtÞ;

d�I
dt
¼

1

htii
EðtÞ �

1

htri
�IðtÞ;

d�R
dt

¼
1

htri
�IðtÞ:

ð27Þ

We can incorporate easily the exponential distributions for ti and tr in the ABMs simula-

tions, while we maintain the rate of infection constant. The comparison of the SEIR solution

of Eq (27) and the homogeneous ABM simulation with exponentially distributed ti and tr is

shown in Fig 4. The agreement as expected is good, even if the variance is much larger than in

the fixed-parameters case. In fact, an interesting observation is that most of the observed vari-

ance of the outbreaks is a simple time translation. If we time-translate all the outbreaks to

PLOS ONE A new formulation of compartmental epidemic modelling

PLOS ONE | https://doi.org/10.1371/journal.pone.0244107 February 3, 2021 10 / 22

https://doi.org/10.1371/journal.pone.0244107


make their maxima coincide the variance is much smaller and the agreement with SEIR better,

see Fig 5. We will discuss the origin of this time-shift in the following section.

An exponential distribution for the incubation and removal times is however not realis-

tic. A more realistic distribution seems to be, e.g., a general gamma distribution, Γ[k, θ]. For

Fig 4. Evolution of the fraction of infected individuals as a function of time (in days) in classical SEIR (solid

black) of Eq (27), and in 100 random turtle simulations with exponentially-distributed ti and tr (cyan) in a

population of N = 104 and I(0) = 10 with R0 = 3.5, htii = 5.5 days and htri = 6.5 days.

https://doi.org/10.1371/journal.pone.0244107.g004

Fig 5. As in Fig 4, after a time-shift of the simulation curves so that their maxima coincide with that of the SEIR

solution.

https://doi.org/10.1371/journal.pone.0244107.g005
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the COVID-19 epidemic, the distribution of incubation times has been shown to be well

described with a gamma with parameters (k, θ)’(5.8, 0.948) [7], corresponding to an aver-

age htii’5.5 days. For the removal time, we assume the same distribution with parameters

(6.5, 1). This corresponds to the average between the “short” and “long” removal times dis-

cussed in [7].

We compare the results of the gamma-distributed ABM simulations in Fig 6. As expected,

classical SEIR does not give a good description of the simulations in this case, while solving the

integro-differential Eq (14) does.

We note that, although there is a vast literature on incorporating arbitrary distributions for

ti and tr in stochastic approaches to the propagation of epidemics (see, e.g., a recent review in

[8]), we have not found a simple formulation of the problem in the context of compartmental

models such as the one described by equations Eq (16). While generalizations of exponential

distributions, such as the Erlang case, are dealt with in the standard SEIR literature using a

superficially similar sub-compartmentation approach (see, e.g., [17–21]) this is not quite as

general as the treatment described here.

Non-uniform infection rate and universality

A different situation is when the rate of infection is non-uniform across the population. It is

important to stress that the rate depends on two independent parameters: the number of con-

tacts per infected individual, which critically depends on the clustering properties of the social

network, and the probability of infection per contact. Non-uniformity can originate in either

of the two properties. In this section we will consider the simplest case of a uniform number of

contacts, but a non-uniform infection probability per contact.

Fig 6. Fraction of infected individuals as a function of time (in days) from the average of 100 turtle simulations

with ti and tr distributed in the population according to the gamma distributions (cyan) compared to the solution

of the uSEIR of Eq (16) (solid black) and classical SEIR (red dashed). The simulations have been time-shifted so that

their maxima coincide. The simulation has parameters in both cases N = 104 and I(0) = 10 with R0 = 3.5, htii = 5.5 days

and htri = 6.5 days.

https://doi.org/10.1371/journal.pone.0244107.g006
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Non-uniform rate: The probability of infection

We could separate the population in individuals that infect others with different rates. The rate

might depend on the type of infectious individual and the type of susceptible individual. Defin-

ing rlk to be the rate at which an infected individual of type l infects a susceptible individual of

type k. The equations in this case are:

dSkðtÞ ¼ �
X

l

rlkIlðtÞSkðtÞdt;

dEkðtÞ ¼ � dSkðtÞ þ dSkðt � tiÞyðt � tiÞ;

dIkðtÞ ¼ � dSkðt � tiÞyðt � tiÞ þ dSkðt � ti � trÞyðt � ti � trÞ;

dRkðtÞ ¼ � dSkðt � ti � trÞyðt � ti � trÞ:

where ti and tr might also depend on the compartment.

Assuming that the rates only depend on the type of infecting individual and not on the type

of susceptible and, for simplicity, that ti and tr are fixed, only the total number of individuals in

each compartment needs to be evolved. This is the case, because the different compartments

are in some proportion in the population and we assume the proportion is preserved by the

initial conditions of the Ik(0) and Sk(0). The equations reduce to the usual ones with a rate that

is the weighted average:

reff ¼
X

k

rkpk; ð28Þ

where pk is the proportion of individuals in compartment k. In the continuous case

reff ¼
Z

dr rPRðrÞ; ð29Þ

where PR(r) is the corresponding PDF.

However, this result seems in conflict with the fact non-uniformity in the rate is known

to be very important in the evolution of an epidemic (see, e.g., [22, 23]). One example of this

is the relevance of the fraction of individuals for which the probability of infection is zero.

Their presence in a given population implies that the effective number of useful contacts gets

reduced. When the fraction of the population with zero infecting power is large enough the

epidemic may be aborted. In practice, the effect is similar to that of herd immunity, used to

measure the needed number of vaccinations to abort an epidemic. A very rough estimate for

the fraction of herd immunity, fH, would be

R0ð1 � fHÞ ¼ 1; fH ¼ 1 � 1=R0: ð30Þ

For example, with R0� 3, fH� 0.7, that is 70% of the population. One would then naively

expect that in an epidemic where this estimate holds about 70% of the population ends up get-

ting infected; however, in the previous examples a larger fraction is found. The reason for this

overshooting effect is that, due to the time delay in the process, the fraction of recovered indi-

viduals grows slowly and is not effective in reducing the growth of the epidemic sufficiently, as

would be the case if the fraction of immune individuals had been present from the start, as

would be the case, for instance, in a (partially) vaccinated population. Note that in the SEIR

paradigm, the immune population is part of the susceptible, that pass by the compartments

E! I! R but have zero infecting power when they are I so they are inert. In practice the evo-

lution of the epidemic would be identical if we just dropped them from the start and readjust

the rate not to include them.
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It has been argued that for COVID-19 the distribution of R0 across the population is well

described by the negative binomial distribution, NB[0.16, 0.0437] [24], which has average 3.5

but a large dispersion. This distribution implies that about 60% of the population is immune

(not far from the naive herd immunity), while there must be few individuals that have a very

large rate of infection, the famous superspreaders.

In Fig 7 shows the evolution of 100 simulations assuming fixed ti and tr while R0 is drawn

from this negative binomial. The average of those outbreaks as well as the result of uSEIR

using the average hR0i are also shown. Clearly the variance is huge, and the average is not a

good representation of the individual epidemic histories. The uSEIR curve misses completely

the outliers.

There is an interesting observation however. If all the curves are time-translated to make

their maxima coincide, they fall in the uSEIR curve, as shown on the right Fig 8.

This fact can be interpreted as follows. The position of the peak is non-universal, because it

depends very sensitively on the initial conditions, in particular on what is the infectious poten-

tial of the first infectious agents. Since all epidemics start with a small number of individuals,

we cannot invoke the central limit theorem for the initial stages of an outbreak. These stages

have a large variability, however as the exponential grows the averaging effect of the population

starts to be effective. The curve around the maximum is in fact universal, in the sense that it

depends on the average of the basic parameters and not on the initial conditions, as we now

show from the uSEIR equations.

Universality and the logistic curve

We have observed that the main effect of the different initial conditions is a temporal shift of

the maximum, but the shape or the height of the infection curve does not change significantly.

This strongly suggest that the equations have a universal solution. We have indeed found it.

Fig 7. Curve of the fraction of infected individuals as a function time (in days) from the average of 100 agent

simulations with R0 distributed in the population according to negative binomial (cyan) with ti and tr fixed. The

average of those histories is the red curve. The simulation has parameters N = 2 × 104 and I(0) = 10 with hR0i = 3.5, ti =

5.5 days and tr = 6.5 days. This is compared to uSEIR (black).

https://doi.org/10.1371/journal.pone.0244107.g007
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Let us consider the differential Eq (9) near the maximum of the infection curve tmax, which

will remain as a free parameter. Let us also assume that tmax� ti, tr, and define the function

FðtÞ � SðtÞIðtÞ: ð31Þ

The differential equations for the uSEIR with fixed ti and tr and for t� ti, tr:

dS
dt
þ

dR
dt
¼ rFðt � ti � trÞ � rFðtÞ ’ � rðti þ trÞ F0ðtÞ �

ti þ tr
2

F00ðtÞ
� �

;

dE
dt
¼ rðFðtÞ � Fðt � tiÞÞ ’ rti F0ðtÞ �

ti
2
F00ðtÞ

� �

;

dI
dt
¼ rðFðt � tiÞ � Fðt � ti � trÞÞ ’ rtr F0ðtÞ � ti þ

tr
2

� �

F00ðtÞ
� �

:

ð32Þ

which implies

SðtÞ þ RðtÞ ¼ C � rðti þ trÞ FðtÞ �
ti þ tr

2
F0ðtÞ

� �

;

EðtÞ ¼ C0 þ rti FðtÞ �
ti
2
F0ðtÞ

� �

;

IðtÞ ¼ C00 þ rtr FðtÞ � ti þ
tr
2

� �

F0ðtÞ
� �

:

ð33Þ

Since I(t)!0, E(t)!0, F(t) = S(t)I(t)!0 as t!1, it follows that C0 = 0, C00 = 0 and C = N.

Using the previous equations, it is easy to derive a differential equation for F(t), expanding at

Fig 8. The same as in Fig 7 with the individual ABM simulations time-shifted to keep their maxima invariant and

coinciding with maximum of the uSEIR curve.

https://doi.org/10.1371/journal.pone.0244107.g008
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linear order in ti and tr:

F00ðtÞ �
F0ðtÞ2

FðtÞ
þ r2 tr

ti þ
tr
2

FðtÞ2 ¼ 0: ð34Þ

We are interested in the solution near the maximum, so we use the initial conditions:

F0ðtmaxÞ ¼ 0; FðtmaxÞ ¼ F0: ð35Þ

This non-linear equation has an analytical solution given by:

FðtÞ ¼ F0ð1 � tanh 2½aðt � tmaxÞ�Þ; ð36Þ

with

a � r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trF0

2ti þ tr

r

: ð37Þ

This is the universal function that drives the evolution of the infected, exposed and suscepti-

ble+recovered individuals near the maximum. The maximum of the infected is at tmax − ti for

the infected, while the maximum(minimum) for the exposed (susceptible+recovered) is at

tmax. The integral of this function from [−1,1] is

Z 1

� 1

dtFðtÞ ¼
2F0

a
: ð38Þ

Note that for large tmax, the range t< 0 gives a negligible contribution. We can also derive

the value of the susceptible at tmax since

SðtmaxÞ ¼
FðtmaxÞ

IðtmaxÞ
¼

1

rtr
; ð39Þ

and the curve of the susceptible can be easily obtained

SðtÞ ¼ SðtmaxÞ � r
Z t

tmax

FðtÞ: ð40Þ

The total number of susceptible at the end of the epidemic is therefore:

Sð1Þ ¼
1

rtr
� r

F0

a
: ð41Þ

With this we conclude that the epidemic curve is universal once the value of the maximum

position is determined. The value of F0 should also depend on the basic parameters and not

the initial conditions, although the precise value is not easy to get. A rough estimate can be

obtained as follows. Near the maximum, and if the incubation and removal times are suffi-

ciently small, we can approximate that R(tmax)’ I(tmax) + E(tmax), since the infected and

exposed quickly recover; using this and the value of S(tmax) we can estimate F0 to be

F0 �
N � SðtmaxÞ

2rðtr þ tiÞ
: ð42Þ

The only dependence on the initial condition remains in tmax. In Fig 9 we compare the

numerical solution to the uSEIR equations to the analytic expression of Eq (36), fixing the

parameters F0 and tmax (the height and the position of the peak) from the numerical solution.

Varying the initial conditions, that is the fraction of the number of infected individuals at t = 0,
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shifts tmax, but otherwise leaves the curve invariant. As can be seen, the analytical solution

around the peak describes very well the full uSEIR solution. The agreement is better for smaller

values of ti and tr.
It is possible to extend this asymptotic solution to the case where ti and tr are not fixed but

drown from distributions PE(ti) and PI(tr). Eq (34) gets modified in that the coefficient of the

last term becomes:

r2
htri

htii þ
ht2r i
2htri

; ð43Þ

where hi refers to the average with the corresponding PDF. Therefore the logistic, Eq (36), is

still the asymptotic solution with a modified parameter:

a! r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
htriF0

2htii þ ht2
r i=htri

s

: ð44Þ

Non-uniform rate in network simulations

We now consider the non-homogeneities in the social contacts. We have generated a number of

KE networks with hki = 40 and different clustering properties, by changing the μ parameter. The

networks have 106 nodes. On these networks we evolve the epidemic using the time progression

explained above, starting with 10 infected nodes. The probability of infection per contact is

p = 2 × 10−3. For the incubation and removal times we assume a LogNormal distributions, in

units of the step time, �, with parameters (μX, σX) = (103, 200) for tr and (μX, σX) = (500, 100) for

Fig 9. Comparison of the results of the curve of infected as a function of time (in days) for fixed parameters R0 =

2.1, ti = 3 days and tr = 3 days, and the analytical result of Eq (36) with the parameters F0 and tmax tuned with the

height and position of the peak. The two pairs of solid curves correspond to a fraction of infected individuals of 10−3

and 5 � 10−4. The two dashed lines are the same function shifted in time.

https://doi.org/10.1371/journal.pone.0244107.g009
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ti, where μX is the mean and s2
X is the variance. For these parameters, phtri = 2, which gives an

approximation to R0 up to 1/hki corrections, as explained in sec. 1. From Fig 1, we can get a

more precise estimate of R0 = . For each network we run a number of simulations and average

the S-E-I-R fractions, after performing a time-shift to make their maxima coincide (which as in

previous cases, reduces most of the variance). In Fig 10 we show the evolution of infected indi-

viduals as a function of time for the various networks. We observe a clear dependence on the

clustering parameter, but nevertheless the data in all cases is extremely well described by the uni-

versal behaviour derived from uSEIR, Eq (36). The lines are three-parameter fits (a, I0, tmax) of

the form:

IðtÞ ¼ I0½1 � tanh2
ðaðt � tmaxÞÞ�: ð45Þ

uSEIR predicts, according to Eqs (36) and (44) and Fig 1,

ahtriffiffiffiffiffiffiffiffiffiffi
I0=N

p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0htri

ð2htii þ ht2
r i=htriÞ

s

’ 0:972; ð46Þ

while

I0 ¼ phtri
F0

N
; ð47Þ

and using the rough estimate of Eq (42), we get I0/N� 1/6. Both parameters would therefore be

given in terms of the average microscopic parameters.

In Fig 11 we show the dependence of a
ffiffiffiffiffiffiffiffiffiffi
I0=N

p � 1

and I0/N, on the average local clustering

hCi. For small clustering we observe that a
ffiffiffiffiffiffiffiffiffiffi
I0=N

p � 1

is roughly constant and matches rather

Fig 10. Average fraction of infected nodes as a function of time in units of htri for various networks with equal

average degree, hki = 40, but different clustering properties, depending on μ. The ER network shows the result on

an Erdős-Rényi random network [25] with hki = 40 and zero clustering. The lines going through the data are fits to Eq

(36), leaving a, I0 and tmax as free parameters.

https://doi.org/10.1371/journal.pone.0244107.g010
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well the microdynamical average value of Eq (37). Instead I0/N decreases with clustering, even

for small clustering. This effect can be interpreted as effective suppression of the fraction of

susceptible population: clustering seems to screen the access to the susceptible. Note that if we

substitute in the uSEIR equations S by fc S, where fc is the screening factor, the asymptotic solu-

tion is as in Eq (45) with I0! fc I0, while a
ffiffiffiffiffiffiffiffiffiffi
I0=N

p � 1

remains invariant. This could explain the

behaviour found at small clustering.

At large clustering, on the other hand, the parameters I0 and a show a non-trivial depen-

dence with clustering. In spite of this, the logistic remains an extremely good description of the

time evolution of the infected fraction. It would be interesting to understand this behaviour in

Fig 11. Dependence of the fit parameters ahtri
ffiffiffiffiffiffiffiffiffiffi
I0=N

p � 1

and I0/N on the average clustering. Dashed lines are

intended to guide the eye through the data points.

https://doi.org/10.1371/journal.pone.0244107.g011
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terms of a renormalization or screening of the basic parameters, or modifications of the force

of infection with respect to the well-mixed approximation yielding −S0/S/ I.
As a final comment, we note that everything we have studied here assumes no time varia-

tion of the basic parameters. In a real epidemic, measures of social distancing, self-protection,

etc. are taken, that induce a sudden change of the basic parameters, particularly the rate of

infection. This effect induces a quench of the epidemic curves that we have been discussing in

this paper. It will be interesting to explore to what extent the evolution after the quenches can

be understood in terms of the fundamental parameters, in particular whether the universality

near the herd-peak translates into some universality of the curve after a quench, if it has hap-

pened in the asymptotic regime.

Conclusions

In this paper we have presented a simple formulation, uSEIR, Eq (16) of the SEIR modeliza-

tion of a epidemic outbreak that properly accounts for an arbitrary distribution of incubation

and removal times, reducing to classical SEIR in the limit of distributions of the exponential

family. We have compared this model with a series of ABM homogeneous simulations for

various scenarios including fixed values for the incubation and removal times, as well as vari-

ous realistic distributions for the the latter, or for the probability of infection per contact. We

have also considered ABM simulations on scale-free networks with varying clustering prop-

erties. In all cases, the model reproduced the simulations accurately after a non-universal

time-shift. Only in the presence of large local clustering in the distribution of contacts we

observed a clear deviation, when the averages of microdynamical parameters are included.

The uSEIR formulation allowed us to understand the universality property observed in dif-

ferent outbreaks in the simulations. This derives from an explicit asymptotic solution found

for small incubation and removal times in terms of a logistic curve, with a shape that can be

determined in terms of the microdynamical parameters. This curve is found to fit very well

the data even in cases of large clustering, provided the parameters are left as free fit parame-

ters, suggesting that the dynamics in the high clustering regime may still be well described in

terms of global variables but with screened or renormalized parameters. On the contrary, the

early stages of an outbreak are highly non universal, an aspect that should be carefully taken

into account when fitting data and predicting using any SEIR modelling. Only when the

early stages of exponential growth are well underway, is uSEIR expected to be a good descrip-

tion. The averaging of independent outbreaks, without taking into account the non-universal

time-shift, can also be very misleading.
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References

1. See for example, the CMMID repository, https://cmmid.github.io/topics/covid19/.

2. Tang B, Wang X, Li Q, Bragazzi NL, Tang S, Xiao Y, et al. Estimation of the Transmission Risk of the

2019-nCoV and Its Implication for Public Health Interventions. J Clin Med. 2020; 9: 462. https://doi.org/

10.3390/jcm9020462 PMID: 32046137

3. Lin Q, et al. A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan,

China with individual reaction and governmental action. International Journal of Infectious Diseases.

2020; 93: 211. https://doi.org/10.1016/j.ijid.2020.02.058 PMID: 32145465
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