
  Abstract 

 The cerebellum forms a highly ordered and indispensible component of motor function within 
the adult neuraxis, consisting of several distinct cellular subtypes. Cerebellar disease, through 
a variety of genetic and acquired causes, results in the loss of function of defi ned subclasses of 
neurons, and remains a signifi cant and untreatable health care burden. The scarcity of therapies 
in this arena can partially be explained by unresolved disease mechanisms due to inaccessibility 
of human cerebellar neurons in a relevant experimental context where initiating disease mecha-
nisms could be functionally elucidated, or drug screens conducted. In this review we discuss the 
potential promise of human induced pluripotent stem cells (hiPSCs) for regenerative neurology, 
with a particular emphasis on in vitro modelling of cerebellar degeneration. We discuss prog-
ress made thus far using hiPSC-based models of neurodegeneration, noting the relatively slower 
pace of discovery made in modelling cerebellar dysfunction. We conclude by speculating how 
strategies attempting cerebellar diff erentiation from hiPSCs can be refi ned to allow the genera-
tion of accurate disease models. This in turn will permit a greater understanding of cerebellar 
pathophysiology to inform mechanistically rationalised therapies, which are desperately needed 
in this fi eld.  
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thalamus and pontine, medullary reticular, red and vestibular 

nuclei (De Zeeuw  &  Berrebi, 1995; Ito, 1984; Voogd et   al., 

1996; Ruigrok, 2011). Using non-induced pluripotent stem cell 

(iPSC)-based approaches, the cerebellum has been extensively 

studied and has well-established functions in motor control and 

motor learning, (fi ne) coordination, posture and balance (Ito, 

1984; Glickstein et   al., 2009; Schmahmann, 1997). Additionally, 

there is growing evidence implicating the cerebellum in cogni-

tive functions and emotion (Strata, 2015; Strick et   al., 2009; 

Anand et   al., 1959; Timmann, 2012). Its unique organisation, 

precise wiring and distinct pathophysiology make this particular 

structure equally vulnerable to injury and diffi  cult to repair. 

 Regenerative medicine has been revolutionised by the 

potential of disease modelling and manipulation via hiPSC 

technology, a recent discovery later recognised by the Nobel 

Prize in Physiology or Medicine (Takahashi et   al., 2007; Tabar 

 &  Studer, 2014). Diff erentiation of hiPSCs from healthy and 

diseased individuals into neuronal cells permits investigation 

and modelling of human neurodevelopmental processes. It 

also signifi cantly fosters our understanding of the pathologi-

cal processes driving diff erent developmental and degenera-

tive diseases and thus informs strategies to ameliorate disease 

progression, with the ultimate aim to restore structure and 

function (Xie  &  Zhang, 2015). Specifi c advantages include 
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  Introduction 

 The cerebellum, also termed  ‘ little brain ’ , is an extensively 

researched part of the neuraxis. Nonetheless, the molecular 

pathogenesis underlying cerebellar disease remains poorly 

understood, with the vast majority of such disorders still being 

immedicable to date (Manto, 2008). As one of the more principal 

neuraxial structures with high cellular and structural complexity, 

the cerebellum integrates and orchestrates  ∼ 80% of the number 

of total CNS neurons in only 10% of the total volume (Azevedo 

et   al., 2009). Its anatomical location in the posterior cranial 

fossa is functionally related to coordinating the major input from 

pontine and vestibular nuclei, the inferior olive and spinal cord 

to the cerebellum ’ s major output pathways via the ventrolateral 
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not only directed diff erentiation of any human cell type to 

model disease in a highly reductionist fashion but also that 

these cells will express mutations at a normal pathophysi-

ological level, removing the need for artifi cial overexpression, 

knockdown or knockout. Furthermore, given their theoretically 

limitless potential to proliferate before directed diff erentiation 

into clinically relevant cell types, this  ‘ renewable ’  resource 

for experimental material both recapitulates disease pheno-

types and further enables high-throughput drug screening in 

search of a revertive therapeutic agent (Efthymiou et   al., 2014; 

Malik et   al., 2014; Yang et   al., 2013). A second more long-term 

promise of hiPSCs will be patient-targeted individual therapy 

through transplantation, although accurate restoration of circuit 

integrity and function after damage will be a formidable task. 

 The advent of hiPSCs is of particular relevance to a struc-

ture like the cerebellum both from developmental and clinical 

neurological perspectives as most of the mysteries remain to 

be unravelled (Manto, 2008; Leiner, 2010; Voogd, 2014) and 

no cure is available for the treatment of the vast majority of 

cerebellar diseases. Against this background, understanding 

the developmental  ‘ logic ’  of cerebellar diff erentiation is es-

sential to fi rst permit reproducible directed diff erentiation of 

hiPSCs in vitro, in order to generate accurate disease models 

for a variety of cerebellar disorders. 

 Here we highlight the promise of iPSC technology to re-

generative medicine, and especially neurology with a specifi c 

focus on the cerebellum. We fi rst discuss the prospects and 

remaining challenges of iPSC technology before focussing 

specifi cally on current strategies, achievements and limita-

tions for directed diff erentiation to cerebellar neurons. We 

conclude by summarising the advances in modelling human 

cerebellar degeneration using hiPSCs and speculating on fu-

ture areas of interest at the experimental interface between 

cerebellar neurology and human stem cell-based disease 

modelling  ‘ in-a-dish ’ .   

 iPSC technology and its relevance to medicine 

 The discovery of effi  cient reprogramming of adult human 

fi broblasts into iPSCs in 2007 (Takahashi et   al., 2007) has 

since caused a fundamental paradigm shift in regenerative 

medicine. Subsequent technique optimisation and refi nement 

of reproducibility and scalability (Okita et   al., 2011; Schlaeger 

et   al., 2015; Yu et   al., 2009; Jiang et   al., 2013; Hou et   al., 2013; 

Warren et   al., 2010) have only reinforced the importance of 

hiPSC-based modelling. With the help of a small number of 

transgenes it is becoming a standardised procedure to revert 

primary somatic cells of diseased patients and healthy con-

trol individuals into iPSCs for many laboratories worldwide, 

indeed this technology has also attracted considerable (and 

growing) commercial interest. These reprogramming methods 

somewhat circumvent ethical concerns accompanied by the 

use of primary human embryonic stem cells (hESCs) for medi-

cal research, and revolutionise predating approaches including 

somatic nuclear transfer into oocytes or fusion with ESCs, 

leading to tetraploidy (Yamanaka  &  Blau, 2010). The theo-

retically endless capability of self-renewal and the preserved 

genetic background (where mutated genes are expressed at 

a representative pathophysiological level) render hiPSCs an 

unprecedented and unparalleled resource. Combined with 

ongoing advances in the fi eld of directed diff erentiation into 

disease-specifi c cell types (Tabar  &  Studer, 2014; Shi et   al., 

2012; Schwartz et   al., 2014; Teng et   al., 2014; Dimos et   al., 

2008; Moretti et   al., 2010), hiPSC in vitro models faithfully 

recapitulate key aspects not only of human development, but 

also of genetic and sporadic disease that would otherwise be 

inaccessible for investigation. Thus, and for the fi rst time in 

regenerative medicine, this technology enables careful tem-

poral interrogation of pathogenic events in a patient-specifi c 

manner using a fully humanised model, which bypasses the 

need for artifi cial overexpression, knockdown or knockout (for 

a schematic, see Figure 1).   

 iPSC technology and its relevance to neurology 

 Neuronal cells have been amongst the earliest cell types to be 

generated via reproducible and effi  cient diff erentiation proto-

cols from hESCs (Reubinoff  et   al., 2001; Zhang et   al., 2001) 

and hiPSCs (Shi et   al., 2012; Chambers et   al., 2009). Protocols 

range from in vitro formation of embryoid bodies exposed to 

retinoic acid in a stage-specifi c manner, co-culture with neural 

inducing feeder cells or direct pharmacological inhibition of 

transforming growth factor (TGF-beta) and bone morphoge-

netic protein (BMP) signalling performed on a monolayer of 

stem cells (dual SMAD inhibition). These approaches can reli-

ably induce neural conversion; the resulting precursors can be 

 ‘ patterned ’  using developmentally rationalised morphogenetic 

cues, and then be terminally diff erentiated into region-specifi c 

neuronal and glial subtypes. 

 Although this technology permits modelling of human de-

velopmental processes and diseases (Lancaster et   al., 2013; 

Marchetto et   al., 2010) in an essentially foetal system (Patani 

et   al., 2012), an ever growing number of studies confi rm that 

mutant hiPSCs derived from patients with inherited disease 

can successfully recapitulate key cellular pathophysiology, 

including those diseases that are adult onset (Dimos et   al., 

2008; Israel et   al., 2012; Koch et   al., 2011; Lee et   al., 2009; 

Sanchez-Danes et   al., 2012; Schondorf et   al., 2014; Woodard 

et   al., 2014). In addition to uncovering cellular and molecu-

lar pathogenesis in inherited and sporadic conditions (Israel 

et   al., 2012; Sanchez-Danes et   al., 2012) hiPSCs can also be 

used successfully to screen for potential novel therapeutics 

(Yang et   al., 2013; Bellin et   al., 2012; Cooper et   al., 2012) or 

to delineate genetic from non-genetic infl uences driving neu-

ronal disease as demonstrated lately for the case of monogenic 

twins discordant in their clinical phenotype with Parkinson ’ s 

disease (PD) (Woodard et   al., 2014). While a comprehensive 

summary of the most important fi ndings from iPSC stud-

ies in the fi eld of neurology is beyond the scope of this ar-

ticle, the interested reader is referred to recent reviews on this 

topic (Xie  &  Zhang, 2015; Cao et   al., 2014; Ross  &  Akimov, 

2014). Despite this undisputed contribution to understand-

ing development and disease of the human nervous system, 

remaining caveats include possible oncogene reactivation 

via reprogramming procedures, uncontrolled epigenetic and 

genetic modifi cations of generated stem cells and precursors 

from in vitro culture conditions or undiscovered transgene 

integration, low-effi  ciency and non-directed diff erentiation 

that might lead to proliferation and teratoma formation in vivo, 

laborious and expensive culture and experimental settings with 
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high intrinsic biological variability. These will require further 

optimisation until this technique can realise its full potential for 

disease modelling, drug discovery and ultimately autologous 

transplantation, although this remains a much longer term aim 

with several unresolved issues to date (Tabar  &  Studer, 2014; 

Cyranoski, 2013; Grskovic et   al., 2011; Ausubel et   al., 2011; 

Frantz, 2012; Schwartz et   al., 2012; Kordower et   al., 2008).  

 What distinguishes cerebellar modelling with iPSCs 
from the successful modelling of other subregions of the 
human brain? 

 Modelling cerebellar disease with hiPSC technology has not yet 

become a broadly used routine approach and is reported with 

less frequency compared with other neurological diseases. 

 Progress in modelling cortical, striatal, midbrain, spinal, pe-

ripheral sensory and autonomic nervous system development and 

disease using human pluripotent stem cells is largely attributable 

to the presence of established protocols for directed diff erentiation 

to region specifi c neurons and glia (Shi et   al., 2012; Israel et   al., 

2012; Aubry et   al., 2008; Delli Carri et   al., 2013; Perrier & Pe-

schanski, 2012; Jeon et   al., 2012; Sanchez-Danes et   al., 2012; Per-

rier et   al., 2004; Yan et   al., 2005; Kriks et   al., 2011; Li et   al., 2005, 

2008; Hu & Zhang, 2009; Patani et   al., 2011; Corti et   al., 2012; 

Devlin et   al., 2015; Valensi-Kurtz et   al., 2010; Chambers et   al., 

2012; Lee et   al., 2012; Pomp et   al., 2005). This clearly fosters 

the applicability of hiPSCs in clinical research and further paves 

its way towards translation as refl ected in the number of publica-

tions generated in these respective fi elds. Conversely, modelling 

cerebellar conditions has been hampered by the absence of such 

robust diff erentiation paradigms. Comparing the number of iPSC 

publications investigating neurological non-cerebellar disorders 

to the amount of published work harnessing iPSC technology to 

study cerebellar pathology we currently observe a strong disequi-

librium: (1) the few reports studying cerebellar diseases with iPSC 

technology (Koch et   al., 2011; Eigentler et   al., 2013; Hick et   al., 

2013; Bird et   al., 2014) have derived non-cerebellar cells from pa-

tients with primarily cerebellar phenotypes, (2) no reported study 

thus far has reproduced the single published protocol to specify 

cerebellar-like cells from hiPSCs (Erceg et   al., 2012) available at 

that time.   

 Why is the cerebellum lagging behind? 

 An important contribution to the lack of reliable and effi  cient 

cerebellar diff erentiation protocols might certainly come from 

the rarity of cerebellar diseases. One could argue that simply 

the medical and socio-economic necessity to generate hiPSC 

models of cerebellar disorders is lower and therefore orches-

trated eff orts of developmental biologists have focussed on de-

riving more  ‘ deserving ’  cell types for more common disorders 

such as PD and Alzheimer’s disease (AD). In these disciplines, 

signifi cant progress in directed diff erentiation of disease-rel-

evant neurons has been made (Shi et   al., 2012; Perrier et   al., 

  Figure 1.     iPSC technology has already started to foster the study of the human cerebellum and its pathologies in a patient-specifi c way. Overcoming the 

current bottleneck of directed diff erentiation will further facilitate the benefi cial eff ects of this technology on the disorders of the cerebellum.  Cerebellar 
Patient taken from Netter ’ s Concise Neurology, p.85, Elsevier, Inc. (copyright).   
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2004; Yan et   al., 2005; Kriks et   al., 2011). Even though (hered-

itary) degenerative conditions of the cerebellum might be less 

frequent than degenerative conditions of the basal ganglia or 

cortex, the cerebellum is aff ected in a range of common and rare 

conditions, including paraneoplastic cerebellar degeneration, al-

cohol abuse, nutritional defi ciency and rare inherited conditions 

[dominant and recessive spinocerebellar ataxias (SCAs and AR-

CAs)]. Moreover, multiple sclerosis  –  the most common cause for 

neurological disability in young people of developed countries  –  

frequently targets the cerebellum, and tumours in the gran-

ule cell (medulloblastomas) represent up to 20 – 40% of brain 

tumours in children and young adults (Arseni  &  Ciurea, 1981; 

Salero  &  Hatten, 2007). Additionally, cerebellar malforma-

tions (e.g. Dandy – Walker or Arnold – Chiari malformations, 

Joubert syndrome and pontocerebellar hypoplasias) are highly 

disabling both to the aff ected patients and their carers. Cur-

rently, we cannot off er treatment to prevent ongoing cerebellar 

degeneration, and we will not be able to in the near future, 

unless we understand the molecular and cellular mechanisms 

underlying human cerebellar degeneration more precisely. 

The generation of reliable disease models will be crucial to 

progress in this fi eld. We therefore want to highlight that a 

deeper mechanistic understanding of cerebellar development 

will permit establishment of accurate disease models using 

iPSC technology. Insights into the molecular pathogenesis will 

in turn allow more mechanistically rationalised approaches to 

therapy in this arena. 

 Against this background, it seems plausible that the inher-

ent and notorious developmental complexity of cerebellar cells 

[and especially Purkinje cells (PCs)] and subsequent diffi  cul-

ties generating them from human iPSCs have hampered signifi -

cant progress in this fi eld, despite both early (Salero  &  Hatten, 

2007; Su et   al., 2006; Muguruma et   al., 2010) and indeed more 

recent developmental breakthroughs (Muguruma et   al., 2015).   

 What has been done to study cerebellar diseases using 
iPSC technology? 

 At the time of writing, the authors are aware of one publication 

using hiPSC-derived long-term self-renewing neuroepithelial-

like stem (lt-NES) cells from patients with SCA3 to study the 

cellular pathology of the most common autosomal-dominant 

degenerative cerebellar disorder (Koch et   al., 2011). Here, the 

inherent diffi  culty and the lack of effi  cient in vitro cerebellar 

diff erentiation protocols are circumvented by studying lt-NES 

cells. These cells do express a hindbrain-like transcriptional 

signature with markers usually observed in cells of a ventral 

anterior hindbrain fate (Koch et   al., 2009) which transcription-

ally (and possibly functionally) approximates these cells to the 

cerebellum. Using this model, the authors detected neuron-

specifi c early aberrant protein processing, aggravated by exci-

tation in SCA3 mutant iPSC neurons, thereby breaking a mile-

stone for the fi eld in modelling late-onset cerebellar disease 

in a dish (Koch et   al., 2011). Since then, Friedreich ’ s ataxia, 

the most common autosomal recessive cerebellar disorder with 

additional multisystemic aff ection has been studied through 

various attempts using iPSC technology. Again, investigators 

in these studies utilised non-cerebellar cells to study a cellular 

phenotype (Eigentler et   al., 2013; Hick et   al., 2013; Bird et   al., 

2014; Ku et   al., 2010). None of the above studies reported suc-

cessful utilisation or modifi cation of the  –  by that time  –  only 

published protocol describing cerebellar-like granule cell dif-

ferentiation from hiPSCs (Erceg et   al., 2012). 

 In order to explain the lack of studies using patient-derived 

iPSCs to generate cerebellar cells and study their pathology we 

need to address the following question:   

 What do we know about the development of 
cerebellar cells that might distinguish them from 
other neuronal cells? 

 Cerebellar development in humans occurs over a prolonged 

time span ranging from the early embryonic period to the fi rst 

postnatal years. It happens in parallel to the development of the 

forebrain, midbrain, spinal cord and their arising substructures, 

but follows its own distinct stereotyped pattern. In summary, 

four basic processes can be delineated: Firstly, the cerebellar 

primordium forms at the midbrain – hindbrain boundary (MHB) 

under close transcriptional infl uence of the isthmic organiser 

(IsO; for more information on this structure, see, Wurst  &  Bally-

Cuif, 2001). Subsequently, two diff erent proliferative compart-

ments appear, giving rise to two distinct principal cerebellar cell 

type precursors, which will later migrate and/or diff erentiate to 

form the inhibitory PCs and the excitatory granule cells. In a 

third step, the aforementioned granule precursors migrate tan-

gentially to form the external granule layer (EGL) where sig-

nifi cant maturation takes place before they eventually migrate 

radially inwards to their ultimate residence in the internal gran-

ule layer (IGL). Finally, cell maturation and establishment of 

cellular connections characterise the last process giving rise to 

the three-layered cerebellar cortex with its distinct circuitry and 

conserved foliation pattern that organises the cerebellum into 

10 lobules (for more detailed information on cerebellar devel-

opment, please see, Ten Donkelaar  &  Lammens, 2009; White 

 &  Sillitoe, 2013). It is noteworthy that the cerebellar cortex is 

connected to the remaining neuraxis only via long projecting 

axons arising from PC somata in the central PC layer, which 

exert modulatory inhibitory input to deep cerebellar nuclei 

(DCN).   

 What do we know about the development of 
Purkinje cells that might distinguish them from 
other cerebellar cells? 

 PCs are not only the cerebellum ’ s key eff ectors but they are also 

thought to be primarily aff ected in SCAs (Hekman  &  Gomez, 

2015) among other cerebellar conditions. Their pronounced 

sensitivity, morphology, and unique functional circuitry with 

neighbouring cells permits a carefully coordinated output, 

which integrates complex temporal and spatial events at the 

synapse to long-term depression (LTD), or long-term potentia-

tion (LTP) with precision and fi delity (White  &  Sillitoe, 2013; 

Schorge et   al., 2010; Buff o  &  Rossi, 2013). 

 Their embryonic origin stems from neural progenitor cells 

of the cerebellar ventricular zone (Hoshino, 2006; Hibi  &  

Shimizu, 2012), one of the two germinal layers of the cerebel-

lar primordium. However, it has been intrinsically diffi  cult for 

developmental biologists to infl uence PC generation either in 

vivo or in vitro. Although publication bias towards positive 

fi ndings confounds an accurate and comprehensive analysis of 
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past and current attempts at cerebellar neurogenesis, one no-

table recent study demonstrates successful transplantation of 

cerebellar neural stem cells (NSC) into the cerebellum of SCA3 

mutant mice with functional reorganisation (Mendonca et   al., 

2015). This report confi rmed a reduction of mutant ataxin-3 

(ATXN3) inclusions and atrophy within the cellular layers of 

the cerebellum and specifi c preservation of the number of PCs 

post-transplant compared with the non-transplanted mutant 

mice. Importantly this work failed to demonstrate the specifi ca-

tion of PCs from the cerebellar NSC graft in vivo and in vitro, 

thus suggesting an indirect benefi cial eff ect of the graft on PC 

survival and cerebellar integrity. The diff erentiation of TUJ1-

positive neurons, glial fi brillary acidic protein (GFAP)-positive 

astrocytes and neural/glial antigen 2 (NG2)-positive oligoden-

drocytes and their subsequent integration into the cerebellum 

was observed in vivo and in vitro in their mouse model, at the 

expense of PCs. These results seem to be somewhat mirrored 

by the advances in the fi eld of cerebellar cell diff erentiation 

from hiPSCs: whilst there has been no successful report of ma-

ture fully functional PC diff erentiation from hiPSCs or ESCs 

until early 2015 (Muguruma et   al., 2015; Wang et   al., 2015), 

generation of MATH1    �    cerebellar-like granule cells from hiP-

SCs had been reported years earlier (Erceg et   al., 2012).   

 How can the fi eld move from here?  

 The recent publication of Muguruma et   al. (2015) is a landmark 

study recapitulating key developmental steps in cerebellar 

neurogenesis in order to achieve effi  cient directed diff erentia-

tion of hiPSCs. Briefl y, the authors report regionalising ESC-

derived embryoid bodies to the MHB in vitro and subsequent 

generation of self-organising cerebellar plate neuroepithelium 

(CPNE) that gives rise to mature, fully functional PCs and 

granule cells, as well DCN neurons and various interneurons 

in specifi c co-culture settings. By the precise timing of sequen-

tially administered extrinsic morphogenetic signals [fi broblast 

growth factor2 (FGF2), FGF19 and stromal cell-derived fac-

tor 1 (SDF1)] the team promoted self-formation of continu-

ous CPNE with dorsal-ventral and apical-basal organisation, 

mimicking cerebellar development for the fi rst time in a 

dish. The investigators managed to harness the currently pit-

ted knowledge of developmental cues required for cerebellar 

development to a reductionist 3D culture with external ad-

ministration of three morphogens in a timely defi ned man-

ner only. This proof of principle of cerebellar-like develop-

ment in vitro was conducted on hESCs, although the authors 

also confi rm that the same protocol applied to two hiPSC 

lines yielded similar fi ndings (Muguruma et   al., 2015). This 

study will certainly inspire researchers to reproduce, modify 

(Wang et   al., 2015) and further optimise the protocol (e.g. 

monolayer culture in fully chemically defi ned medium) 

and to use this platform to further investigate human cerebellar 

development and degeneration (see Figure 1).     

 The future of iPSC technology in modelling 
cerebellar diseases 

 If the above-mentioned goal(s) can be met, the future of model-

ling cerebellar diseases with iPSC technology will be bright. We 

are cautiously optimistic that effi  cient and reproducible proto-

cols for the generation of PCs and granule cells from hiPSCs 

will be developed within the coming years using insights from 

developmental biology and also guided by recent breakthroughs 

(Koch et   al., 2011; Muguruma et   al., 2015; Mendonca et   al., 

2015). This will be crucially important to foster this currently 

underrepresented fi eld within hiPSC modelling of neurodegen-

eration. Such advances will permit accurate study of develop-

mental and degenerative processes. Here, having lagged behind 

the main fi eld previously might actually become a strategic 

advantage: important platforms for disease modelling (for re-

cent reviews, please see e.g., Zeng et   al., 2014), drug discovery 

(e.g., Hunsberger et   al., 2015) and evaluation of cell replace-

ment therapies (Kamao et   al., 2014) have been established in 

the meantime successfully for other iPSC-derived cell types, and 

can be adapted to iPSC-derived cerebellar cells by building on 

this important knowledge. Successfully applied, these platforms 

will exert their full potential towards a better understanding of 

cerebellar development, disease pathways and therapeutic av-

  Figure 2.     Modelling cerebellar diseases with 

hiPSC technology: past, present and future. We 

think, SCA3 and Friedreich ’ s ataxia (FA), as the 

most common autosomal-dominant and -recessive 

cerebellar degenerative conditions, should be 

remodelled using PCs diff erentiated from patient-

derived iPSCs once possible. Furthermore, 

preferential choice should target cerebellar diseases 

due to genetic defects in pathophysiologically widely 

linked genes, e.g. SCA15 (Schorge et   al., 2010), and 

employ suitable cellular readouts with a focus on 

electrophysiology and live-cell imaging to widen our 

knowledge about cerebellar diseases as  ‘ impaired 

network and impaired plasticity ’  disorders.  
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enues in cerebellar disease. We depict this in a time bar summa-

rising past eff orts (blue and black font) with future predictions 

(red font) which may be of special interest to model genetic cer-

ebellar diseases with iPSC technology (Figure 2). Furthermore, 

eff orts in establishing accurate cerebellar in vitro disease models 

will  –  as has happened in other fi elds already (Soldner et   al., 

2011)  –  be complemented by the generation of isogenic hiPSC 

lines via modern genomic editing techniques (Hockemeyer 

et   al., 2009, 2011). Such approaches allow introducing or  ‘ cor-

recting ’  diff erent mutations that solely aff ect cerebellar integrity 

against an identical genetic background to precisely disentangle 

disease-causing mechanisms from background genomic varia-

tion between diff erent lines. Finally, the gathered knowledge and 

progress towards effi  cient cerebellar diff erentiation protocols 

will impact on direct lineage reprogramming eff orts (for recent 

reviews, please see, Ladewig et   al., 2013; Vierbuchen  &  Wernig, 

2012). 

 In summary, the cerebellum currently fails to obtain com-

parable experimental recognition as other neuraxial regions 

largely due to a poor translation of its underlying developmental 

biology into directed diff erentiation strategies. Noting recent 

breakthroughs in the directed diff erentiation of human pluripo-

tent stem cells into cerebellar derivatives, we predict that this 

hitherto relatively understudied region of the neuraxis can now 

begin to receive the experimental attention it deserves. This in 

turn may illuminate the precise mechanisms of cerebellar devel-

opment and degeneration, thus informing therapeutic strategy.        
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