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Abstract

Lung cancer remains one of the most prominent public health challenges, accounting for the
highest incidence and mortality among all human cancers. While pulmonary invasive mucin-
ous adenocarcinoma (PIMA) is one of the most aggressive types of non-small cell lung can-
cer, transcriptional drivers of PIMA remain poorly understood. In the present study, we
found that Forkhead box M1 transcription factor (FOXM1) is highly expressed in human
PIMAs and associated with increased extracellular mucin deposition and the loss of
NKX2.1. To examine consequences of FOXM1 expression in tumor cells in vivo, we
employed an inducible, transgenic mouse model to express an activated FOXM1 transcript
in urethane-induced benign lung adenomas. FOXM1 accelerated tumor growth, induced
progression from benign adenomas to invasive, metastatic adenocarcinomas, and induced
SOX2, a marker of poorly differentiated tumor cells. Adenocarcinomas in FOXM1 transgenic
mice expressed increased MUC5B and MUC5AC, and reduced NKX2.1, which are charac-
teristics of mucinous adenocarcinomas. Expression of FOXM1 in Kras®'2P transgenic mice
increased the mucinous phenotype in Kras®'2P-driven lung tumors. Anterior Gradient 2
(AGR2), an oncogene critical for intracellular processing and packaging of mucins, was
increased in mouse and human PIMAs and was associated with FOXM1. FOXM1 directly
bound to and transcriptionally activated human AGRZ2 gene promoter via the -257/-247 bp
region. Finally, using orthotopic xenografts we demonstrated that inhibition of either FOXM1
or AGR2 in human PIMAs inhibited mucinous characteristics, and reduced tumor growth
and invasion. Altogether, FOXM1 is necessary and sufficient to induce mucinous pheno-
types in lung tumor cells in vivo.

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007097 December 21,2017 1/21


https://doi.org/10.1371/journal.pgen.1007097
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007097&domain=pdf&date_stamp=2018-01-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007097&domain=pdf&date_stamp=2018-01-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007097&domain=pdf&date_stamp=2018-01-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007097&domain=pdf&date_stamp=2018-01-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007097&domain=pdf&date_stamp=2018-01-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007097&domain=pdf&date_stamp=2018-01-05
https://doi.org/10.1371/journal.pgen.1007097
http://creativecommons.org/licenses/by/4.0/

@'PLOS | GENETICS

FoxM1 causes progression of benign lung adenoma to mucinous lung adenocarcinoma

Competing interests: The authors have declared
that no competing interests exist.

Author summary

Lung cancer is the leading cause of cancer-related deaths in men and women in the
United States. It has a high rate of mortality due to late detection and aggressive metasta-
sis. While multiple genes were implicated in the development of lung cancer, the molecu-
lar mechanisms that trigger the progression of benign lung adenomas to aggressive
adenocarcinomas are still unclear. FOXM1 is a transcription factor, which is induced in
lung cancers and is correlated with poor prognosis. In the present study, we used geneti-
cally-altered mice to express an activated form of FOXM1 protein in pre-existing benign
lung adenomas. FOXMI induced progression of lung adenomas into invasive, metastatic
adenocarcinomas with a mucinous phenotype. In an orthotopic xenograft model of
human mucinous lung adenocarcinoma, inhibition of FOXM1 suppressed mucinous
characteristics and reduced the tumor invasion and metastasis. FOXM1 directly activated
the AGR2 gene, a key regulator of mucinous phenotype in lung cancer cells. We have
demonstrated that FOXM1 is sufficient to drive progression of adenomas to adenocarci-
nomas and is nessesary to maintain a mucinous phenotype. Therapeutic targeting of
FOXM1 can be beneficial for treatment of PIMA patients.

Introduction

Lung cancers are classified into small cell lung cancer (SCLC) and non-small cell lung cancer
(NSCLC). Adenocarcinoma, the most common subtype of NSCLC, is a complex disease har-
boring activating mutations in KRAS (30%), EGFR (15%), or ALK (5%) genes [1]. Recently,
specific and effective receptor tyrosine kinase inhibitors have been generated to treat patients
with EGFR and ALK mutations. Efforts to pharmacologically inhibit oncogenic KRAS, how-
ever, have been largely unsuccessful and developing targeted therapies for KRAS-driven lung
cancer remains a significant challenge. While the majority of human NSCLCs have robust
expression of NKX2.1, a homeobox transcription factor which is routinely used as a marker of
NSCLC [2], a subset of the KRAS-driven tumors was identified with reduced expression of
NKX2.1 [3, 4] associated with mucinous characteristics and poor prognosis in NSCLC patients
[5]. NKX2.1 functions as a tumor suppressor in KRAS-driven mucinous adenocarcinomas,
but has an oncogenic role in EGFR mutated lung tumors[3]. Haploinsufficiency of Nkx2.I in
G12D_mediated lung tumorigenesis and increased production of mucins in
Kras®'*P-driven lung tumors [3]. While NKX2.1 represses mucinous differentiation in
NSCLCs, transcriptional activators of mucinous phenotype remain unknown.

Forkhead Box M1 (FOXM1) is a transcription factor activated by the RAS/ERK signaling
pathway [6-8]. Activation of RAS-ERK drives cell cycle progression by regulating the temporal
expression of cyclin regulatory subunits that bind to and activate their corresponding cyclin-
dependent kinases (CDK). CDK2/Cyclin E and CDK1/Cyclin B complexes phosphorylate a
variety of cell cycle regulatory proteins, including FOXM1, promoting G,/S and G,/M transi-
tions [9, 10]. Activated ERK1/2, PLK1, CDK4 and CDKG6 also phosphorylate FOXM1 and are
required for full transcriptional competency of the FOXM1 protein [11, 12]. FOXMI tran-
scriptionally activates cell cycle regulatory genes critical for DNA replication and progression
into mitosis, including Cyclin B1, PLK1, JNK1, CDC25B, TOPO2 and Aurora B [13-16].
FOXM1 is required for KRAS/ERK signaling during lung morphogenesis, since deletion of
Foxm1 prevented defects in branching lung morphogenesis caused by Kras“'*" [6]
of FoxmI from respiratory epithelial cells blocked tumorigenesis by oncogenic Kras
and decreased the tumor initiation and growth of Kras-mutations-associated chemically-

mice induced Kras

. Deletion
GI12D [8] ,
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induced mouse lung tumors [17] [18]. In humans, increased FOXM1 was correlated with
higher grades of lung cancers and poor patient survival [19]. While the role of FOXM1 in lung
tumor initiation and growth is well established, it is unclear whether FOXM1 enhances pro-
gression from adenomas to adenocarcinomas and regulates metastasis of lung tumors in vivo.

In the present study, we used a doxycycline-inducible transgenic mouse model to express
an activated FOXM1 transcript in pre-existing, benign lung adenomas. FOXM1 caused pro-
gression of lung adenomas into invasive, metastatic adenocarcinomas with a mucinous pheno-
type. Inhibition of FOXM1 in human mucinous adenocarcinoma cells inhibited mucinous
characteristics and reduced tumor invasion in an orthotopic xenograft mouse model. We have
demonstrated that FOXM1 is sufficient to drive progression of adenomas to adenocarcinomas
and is required for maintainance of the mucinous phenotype.

Results
FOXM1 causes progression to invasive adenocarcinomas

To examine the role of FOXM1 in pulmonary carcinogenesis, we used a urethane-induced
lung cancer model. Mice containing Spc-rtTA and tetO-GFP-FoxMI1-AN transgenes were gen-
erated. Treatment with doxycycline (Dox) expresses an activated form of FOXM1, the FoxM1-
AN, tagged with GFP [20]. To induce lung adenomas, the Spc-rtTA/tetO-GFP-FoxM1-AN dou-
ble transgenic mice (epiFoxM1-AN) were treated with urethane (Fig 1A). Low-grade lung ade-
nomas were present 14 weeks after initiation of urethane [16, 21], at which time epiFoxM1-AN
mice were treated with Dox to express the FoxM1-AN transgene in SP-C-expressing cells and
lung epithelial cells. Lungs were harvested 10 weeks later for tumor assessment. Expression of
activated FOXM1 increased the number and size of tumors (Fig 1B) and led to histologically
less differentiated tumors shown with H&E (Fig 1C). gqRT-PCR analysis of micro-dissected
tumors demonstrated human (transgenic) FOXM1 mRNA in epiFoxM1-AN lungs (Fig 1D).
FoxMI1-AN protein was detected in epithelial cells in the tumors by immunostaining (Fig 1E).

Consistent with published studies [21-23], the majority of tumors in control urethane-
treated mice were classified as low grades 1 and 2 non-small lung tumors (72%). Only 14% of
tumors were high grades 3 and 4 lung adenocarcinomas (Fig 1F and S1 Fig). Expression of
FoxM1-AN in low-grade adenomas increased the frequency of highgrade 4 tumors (23% vs.
7%), and caused progression into poorly differentiated adenocarcinomas (7%) which were not
detected in the controls (Fig 1F and S1 Fig). All tumors in control and epiFoxM1-AN mice
were positive for proSP-C (Fig 2A), which is consistent with previous studies and confirms the
type II alveolar epithelial origin of tumor cells [16, 24]. EpiFoxMI1-AN tumors often invaded
the airways as shown by proSP-C stained tumor cells in the bronchial lumen stained with
CCSP (CC10) (Fig 2A). Peritoneal lymph node metastasis were found in epiFoxMI1-AN mice
which expressed lung-specific NKX2.1 (TTE-1) protein (Fig 2B, right panel), indicating that
the metastases were derived from FoxMI-AN-positive tumors that expressed stabilized human
FOXM1 transgene [20]. Metastases were not present in control mice. Altogether, expression of
activated FoxM1-AN in benign lung adenomas caused tumor progression into poorly differen-
tiated, metastatic adenocarcinomas.

FOXM1 increases cellular proliferation in epiFoxM1-ANtumors

Since FOXM1 is often expressed in proliferating cells and activates cell cycle regulatory genes,
we used immunostaining for Ki-67 to visualize proliferating cells. Tumors from epiFoxMI1-AN
mice had increased numbers of Ki-67-positive cells (Fig 3A). No differences were observed in
the frequency of apoptosis, as assessed by cleaved-caspase 3 immunostaining (Fig 3B). SOX2, a
marker of stem-like and less differentiated NSCLC tumor cells [25, 26] and a known
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Fig 1. FOXM1 causes progression from benign lung adenomas to invasive adenocarcinomas. To induce lung
adenomas, the Spc-rtTA/tetO-GFP-FoxM1-AN double transgenic (epiFoxM1-AN, n = 9) and control single transgenic (n = 6)
mice were treated with six IP injections of urethane. At 14 weeks after the first urethane injection, when early low-grade lung
adenomas were already present, epiFoxM1-AN mice were treated with Dox to induce FOXM1-ANtransgene in SP-C-
expressing tumor cells and epithelial type Il cells. Mouse lungs were harvested at 24 weeks after the first urethane injection. (A).

Schematic of lung tumor induction and FoxM1-AN expression. (B) Average number (top) and size (bottom) of lung tumors
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following urethane treatment in control (n = 6 mice) and epiFoxM1-AN (n = 9 mice) mice. (C) Representative H&E staining of
lung tumors from control and epiFoxM1-AN mice demonstrates invasive and less differentiated phenotype of epiFoxM1-AN
tumors compared to controls. (D) Efficient expression of FOXM1-AN mRNA in microdissected epiFoxM1-ANtumors (n = 5)
compared to control tumors (n = 5) shown by qRT-PCR. mRNA levels were normalized to 8-actin mRNA. (E) Efficient
expression of transgenic FOXM1 protein in epiFoxM1-AN tumors shown by immunochistochemictry (IHC) using an anti-GFP
antibody (top panels) and anti-FoxM1 antibody (bottom panels). (F) Schematic diagrams of the tumor grades distribution in
control and epiFoxM1-AN mouse lungs. 25 tumors were analyzed from 9 epiFoxM1-AN mice, and 23 tumors from 6 control
lungs. 10 images from each mouse lung were used for analysis. A p-value <0.05 is marked with a single asterik (*) and a p-
value <0.01 is marked with a double asterik (**).

https://doi.org/10.1371/journal.pgen.1007097.9001

transcriptional target of FOXM1 [27], was increased in the epiFoxM1-AN tumors (Fig 3C, left
panels). Sox2 mRNA was increased in micro-dissected lung tumors from epiFoxM1-AN mice
(Fig 3C, right panel). Thus, expression of activated FoxM1-AN in lung adenomas increased
tumor cell proliferation and induced SOX2.

Mucinous characteristics of epiFoxm1-ANtumors

NKX2.1 is often used as a diagnostic marker of human NSCLCs [28], and its expression is
decreased in mucinous tumor subtypes [3, 4]. While lung tumors from control mice main-
tained robust expression of NKX2.1, the NKX2.1 staining was decreased in epiFoxM1-AN
tumors (Fig 4A, brown nuclei) and associated with decreased Nkx2.1 mRNA (Fig 4B). NKX2.1
was absent in a majority of FoxMI1-AN-expressing tumor cells (Fig 4C) and associated with

A Control epiFoxM1-AN

]

Mice with Lymph

Node Metastases %
<)
2
Control 0/6 =
g- |
epiFoxM1-AN 2/9 >

Fig 2. Expression of FOXM1 drives tumor invasion and metastasis. (A) Tumor invasion into the conducting airways was
shown by immunofluorescence staining for pro-SPC (tumor cells, red) and CCSP (CC10, bronchiolar epithelium, green). (B)
Frequency of peritoneal lymph node metastases (left panel). None of the control mice (n = 6) developed metastasis. Metastases
were found in two epiFoxM1-AN mice (n = 9). H&E staining and NKX2.1 immunostaining of epiFoxM1-AN peritoneal metastasis
are shown in right panels.

https://doi.org/10.1371/journal.pgen.1007097.9002
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Fig 3. FOXM1 increases cellular proliferation in epiFoxM1-AN tumors. (A) Increased number of Ki67-positive cells in
epiFoxM1-AN tumors is shown by immuno staining (left panels). Numbers of Ki67-positive cells were counted in ten random
fields of control and epiFoxM1-AN tumors at 200x magnification (right graph). (B) No changes in apoptosis were found in
epiFoxM1-ANtumors compared to controls. Tumors were stained with antibodies specific to cleaved caspase 3 (arrows, left
panels) and the number of positive cells were counted (right graph). The number of cleaved caspase 3-positive cells was
counted using ten random fields at 200x magnification. (C) Expression of FOXM1 in lung adenomas increased the number of
SOX2-positive cells. The increased SOX2 protein is shown with immunohistochemistry using antibodies against SOX2 (left
panels). Increased Sox2 mRNA is demonstrated by qRT-PCR (right graph). 8-actin mRNA was used for normalization. A p-
value <0.01 is marked with a double asterik (**).

https://doi.org/10.1371/journal.pgen.1007097.9003
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Fig 4. Expression of FOXM1 promotes mucinous characteristics in mouse lung tumors induced either by urethane or
Kras®'2P, (A) Lung sections form urethane-treated mice (control n = 6 and epiFoxM1-AN n = 9 mice) were stained with antibodies
against Nkx2-1 and Alcian blue. Tumors in epiFoxM1-AN mice were highly positive for mucus (blue) and had low Nkx2-1 protein
levels (brown). (B) Nkx2-1 mRNA was decreased in microdissected epiFoxM1-ANtumors (n = 5) compared to control tumors (n = 5)
as shown by gRT-PCR. B-actin mRNA was used for normalization. Data represent mean + SD of three independent determinations
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using micro-dissected lung tumors from n = 6 control mice and n =9 epiFoxM1-AN mice. (C) Co-localization studies demonstrated
decreased Nkx2-1 in FoxM1-AN-positive tumor cells. (D) Tumors from epiFoxM1-AN mice stained positive for Muc5B and Muc5Ac as
shown by immunofluorescence staining. (E) Parafin section from Kras®'?P-induced lung tumors (SPC-rtTA/TetO-Kras®'?° mice,

n = 3) and Kras®'2°; epiFoxM1-AN mice (SPC-rtTA/TetO-Kras®'2P/TetO-FoxM1-AN mice, n = 3) were stained with Alcian blue.
FoxM1-AN caused mucus depositions in lung tumors induced with Kras®'2P. A p-value <0.05 is marked with an asterik (*).

https://doi.org/10.1371/journal.pgen.1007097.9004

increased extracellular mucus deposition as shown by Alcian Blue staining (Fig 4A). Expres-
sion of mucins MUC5B and MUC5AC were increased in epiFoxM1-AN tumors (Fig 4D). We
also tested whether FOXM1 induced mucinous adenocarcinomas in a Kras“’*” model of lung
cancer. Mice co-expressing both the Kras“'?" and the FoxMI-AN transgenes (SPC-rtTA/ TetO-
Kras®?P/ TetO-FoxM1-AN, [20]) developed mucinous lung adenocarcinomas compared to
mice expressing Kras®'?? alone (Fig 4E). Taken together, our data demonstrate that FOXM1
expression in lung tumors suppresses NKX2.1 and causes progression of lung adenomas into
poorly differentiated, mucinous, metastatic lung adenocarcinomas.

FOXM1 regulates AGR2 in mouse and human lung adenocarcinomas

FOXMLI staining was increased in tumor cells in human pulmonary invasive mucinous adeno-
carcinomas (PIMAs) compared to adjacent normal lung tissue, where FOXM1 was not
detected (Fig 5A, upper panels). FOXMI staining in human PIMAs was associated with abun-
dant deposition of mucins (Fig 5A, middle panels), loss of NKX2.1 (Fig 5A middle panels) and
increased expression of AGR2 (Fig 5A bottom panels), an ER chaperone critical for the post-
translational processing of mucins and associated with various oncogenic functions, [29, 30].
AGR?2 was co-locolized with FOXM1 in human PIMA cells (Fig 6A). In mice, expression of
FoxMI-AN in urethane-induced or Kras“'*"-driven lung tumors led to increased AGR2 stain-
ing and Agr2 mRNA expression (Fig 6B and 6C). Thus, FOXM1 induces AGR2 in mouse and
human mucinous lung adenocarcinomas.

To determine whether FOXM1 regulates AGR2, we used shRNA lentiviral vectors to inhibit
FOXMI expression in A549 cells, a human mucinous lung cancer cell line with a Kras®'*®
mutation. Inhibition of FOXM1 reduced expression of AGR2 (Fig 6D and 6E) and was associ-
ated with decreased expression of proliferation-specific Cyclins B1, E1, Al and DI (S2A Fig).
FOXM1 depletion reduced mRNAs of goblet cell associated genes MUC5AC, MUC5B, MUCI
and SPDEF (S2B Fig), the latter is a critical transcriptional regulator of mucinous phenotype
[31]. To demonstrate that the FOXM1 regulation of the mucinous phenotype is not limited to
one cell line, we also inhibited FOXM1 in H2122 cells, another human mucinous lung adeno-
carcinoma with an activating mutation in Kras (Kras®'>“). Similar to findings in A549 cells,
inhibition of FOXM1 reduced AGR2 mRNA and protein in H2122 cells (Fig 6D and 6E).
Thus, FOXM1 is essential for AGR2 expression and the mucinous phenotype in human
mucinous lung adenocarcinoma cell lines.

FOXM1 induces transcription of AGR2

Since AGR2 was increased in FoxMI-AN expressing mouse lung tumors and human PIMAs
(Fig 6), we tested whether FOXM1 directly activates the transcription of the AGR2 gene. A
potential FOXM1-binding site was found within the -257/-247 bp region of the human AGR2
gene promoter (Fig 7A). Chromatin immunoprecipation (ChIP) in A549 cells demonstrated
that FOXM1 directly bound to the -257/-247 bp region of the AGR2 promoter (Fig 7A). Next
we cloned a -2.0 kb fragment of the human AGR2 promoter into luciferase (LUC)-expressing
vector and co-transfected the -2.0 kb AGR2-LUC plasmid with a CMV-FOXM!1 expression
vector into A549 cells. FOXMI1 increased the transcriptional activity of the AGR2 promoter
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Fig 5. FOXM1 and AGR2 are highly expressed in human pulmonary invasive mucinous adenocarcinomas (PIMAs).
Representative images of lung tissue sections from patients with PIMAs (n = 12 patients, S2 Table). Images include adjacent
normal lung tissue (left panels) and tumor lesions (right panels) in matched patients. Tissue sections were stained with
antibodies against FOXM1, AGR2, NKX2.1 or stained for mucus using Alcian blue (left panels). Image J software was used to
quantify intensity of staining (right graphs). A minimum of 5 random 20x field images per patient were quantified. Increased
FOXM1 staining in PIMAs was associated with abundant Alcian blue staining, loss of NKX2.1 and increased expression of
AGR2 in tumor cells.

https://doi.org/10.1371/journal.pgen.1007097.9005
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cancer model, AGR2 was induced in epiFoxM1-AN tumors. Immunofluorescence staining for AGR2 in control and epiFoxM1-AN lung
tumors (left panels, n = 6 control mice and n = 9 epiFoxM1-AN mice, ten images per each mouse lung) and qRT-PCR of Agr2 mRNA
using RNA from microdissected control (n = 5) and epiFoxM1-AN (n = 5) lung tumors (right panel). 8-actin mRNA was used for
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normalization. A p-value <0.01 is marked with a double asterik (**). (C) In mouse Kras
induced in lung tumors of Kras®22/ epiFoxM1-AN mice (n = 3) compared to control Kras

G120 _induced lung cancer models, AGR2 was

G120 mice (n = 3). (D) FoxMH1 is required for

AGR2 expression in PIMAs. Human PIMA cell lines A549 and H2122 were stable transduced with control (scramble) or shRNAs against
human FoxM1 (shFoxM1 #1 or shFoxM1 #2). Efficient inhibition of FoxM1 decreased Agr2 expression in both A549 (top) and H2122
(bottom) PIMA cells, shown with gRT-PCR. B-actin mRNA was used for normalization. A p-value <0.01 is marked with a double asterik
(**). (E) Western blot shows the correlation of the loss of FOXM1 and AGR2 in the A549 (top) and H2122 (bottom) cell lines.

https://doi.org/10.1371/journal.pgen.1007097.9006

(Fig 7B). Site-directed mutagenesis of the FOXM1 binding site blocked the ability of
CMV-FOXMLI to activate the AGR2 promoter, indicating that the -257/-247 bp AGR2 region
was required for FOXM1-mediated activation of AGR2 (Fig 7B). Thus, AGR2 is a direct tran-
scriptional target of FOXM1.

Interestingly, overexpression of AGR2 in FOXM1-defecient A459 cells rescued mRNA and
protein levels of Cyclin D1, but was not able to rescue expression of other cyclins and muci-
noius genes (Supplemental S3 Fig). Depletion of AGR2 alone was sufficient to decrease expres-
sion of proliferation-specific and mucin-specific genes (S3 Fig) and reduce the growth of A549
cell in vitro (S4A Fig). These data demonstrate that both FOXM1 and AGR?2 are critical for cell
growth and maintenance of the mucinous phenotype in PIMA cells in vitro.

FOXM1 and AGR2 maintain mucinous characteristics of lung
adenocarcinomas in vivo

We used lentiviral ShRNA to stably inhibit FOXM1 in A549 cells in an orthotopic xenograft
tumor model. Single cell suspensions of control and FOXM1-deficient A549 cells were delivered
into the tracheas of immunocompromised mice. Eight weeks after inoculation, control A549
cells formed numerous tumors while FOXM1-deficient cells formed smaller and fewer tumors
(Fig 7C). FOXM1-deficient xenografts were also less mucinous, with substantially reduced cyto-
plasmic swelling and reduced staining with Alcian blue (Fig 7C and 7D) and associated with
decreased staining of AGR2 and MUC5AC (Fig 7E). Interestingly, parental A549 cells fre-
quently metastasized into the mediastinal lymph nodes (6 out of n = 6 mice, 100% incidence of
lymph node metastasis) and into the liver (2 out of n = 6 mice, 33% incidence of liver metasta-
sis) (Fig 7F). In contrast, FOXM1-depleted tumors did not develop liver metastasis (0 out of

n = 6 mice, 0%) and had decreased metastatic potential for mediastinal lymph nodes (1 out of

n = 6 mice, 17%) (Fig 7F). In addition, control A549 tumors were locally invasive, infiltrating
the pulmonary bronchioles and alveolar regions, whereas FOXM1-deficient A549 tumors were
non-invasive (Fig 7G). Similar to intra-tracheal administration, a direct inoculation of
FOXM1-deficient A549 cells into the left lung lobe inhibited the tumor growth and metastasis
into the liver and mediastinal lymph nodes (S4B and S4C Fig). Similar effect was found after
inhibition of AGR2 (S4B and S4C Fig). Thus, knockdown of FOXM1 or AGR2 reduced tumor
invasion and inhibited mucinous phenotype of human lung A549 adenocarcinomas in vivo.

Discussion

Activating KRAS mutations are associated with poor prognosis in patients with non-small cell
lung cancers (NSCLCs), and KRAS mutant NSCLC tumors are often resistant to common
anti-cancer drugs. Several KRAS-regulated kinases, including ERK1/2, PLK1, CDK1, CDK2,
CDK4 and CDK6 phosphorylate FOXM1, contributing to its transcriptional activation. While
FOXML1 alone was insufficient to induce lung tumors in transgenic mice [32], genetic deletion
of FoxmI from mouse respiratory epithelium inhibited the initiation of lung tumorigenesis by
Kras®'?P [8]. These results indicate that FOXM1 functions downstream of oncogenic KRAS to
induce lung tumorgenesis. Deletion of Foxm1 from fetal mouse lungs prevented the effects of
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Fig 7. FOXM1 increases transcription of AGR2and is required to maintain mucinous phenotype in PIMAs. (A) Schematic
of a potential FOXM1 binding site in the AGR2 promoter (left panel). ChlP shows binding of FOXM1 to the AGR2 promoter in
A549 cells (right panel). A549 cells were fixed, lysed, sonicated, and used for immunoprecipitation with an antibody against
FOXM1 or rabbit control IgG. PCR was performed encompassing a predicted FOXM1 binding site from -257bp to -247bp of the
human AGR2 promoter. DNA region located at —6.0 kb of Agr2 promoter was used as a negative control. (B) FOXM1
transcriptionally activates AGR2 promoter. Sequence denotes the predicted binding motif and the sequencing results following
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mutagenesis (top). Dual luciferase assay in Hek293T cells transfected with the WT (AGR2-Luc) or mutated -2.0kb AGR2 (mut
AGR2-Luc) promoter and an empty (CMV-Empty) or human FoxM1 expression (CMV-FoxM1) vectors is shown (bottom). A p-
value <0.01 is marked with a double asterik (**). (C) Depletion of FOXM1 in human invasive mucinous A549 adenocarcinoma
cells decreased lung tumor growth in the orthotopic xenograft model of lung cancer. A549 cells were inoculated into tracheas of
immunocompromised mice. Representative images of H&E staining (5-8 images per mouse lung) and photographs of mouse
lungs after eight weeks post tumor inoculation are shown (left panels). Tumor numbers and sizes in the two groups (n = 6 control
(Scramble) and n = 6 shFoxM1 mice) are shown (right panel). (D-E) FoxM1 is required to maintain mucinous phenotype in human
PIMAs shown in orthotopic xenograft model of lung cancer (n = 6 control mice and n = 6 shFoxM1 mice). (D) Inhibition of FOXM1
reduces mucus depositions shown with Alcian Blue, and (E) reduces AGR2 and MUC5AC expression in A549 orthotopic
xenografts. AGR2 co-localizes with MUC5Ac in the orthotopic A549 xenografts. 5-8 images per mouse lung were used. (F)
Frequency of observed mediastinal lymph node and liver metastases in control (Scramble) mice (n = 6) and shFoxM1 mice

(n = 6). (G) Control (Scramble) orthotopic A549 xenograft tumors (green) invade airways (purple). No invasion of tumor cells into
airways was found in FOXM1-deficient tumors.

https://doi.org/10.1371/journal.pgen.1007097.9007

activated Kras®'*? during lung development [6], demonstrating an important role for
FOXM1 downstream of the KRAS/ ERK signaling cascade. In the present study, we found that
FOXMLI is necessary and sufficient to induce mucinous characteristics in lung adenocarcino-
mas induced by either urethane or Kras®'?". The FoxMI-AN-expressing mouse tumors resem-
bled human pulmonary invasive mucinous adenocarcinomas (PIMAs), an aggressive subtype
of NSCLC associated with activating mutations in KRAS [1]. Consistent with these findings,
we detected robust expression of FOXM1 in human PIMAs. Since FOXML1 is required for
KRAS/ERK signaling in mouse tumor models, our studies provide a rationale for pharmaco-
logical targeting FOXM1 in PIMA tumors with activating KRAS mutations.

We found that transgenic expression of activated FoxMI-AN increased cell proliferation
and tumor growth, findings consistent with the known role of FOXM1 in activation of cell
cycle regulatory genes [13, 14]. Expression of FOXM1 in Rosa26-FoxM]1 transgenic mice accel-
erated proliferation of tumor cells and increased the number and size of lung adenomas after
tumor initiation/ promotion with 3-methylcholanthrene (MCA)/butylated hydroxytoluene
(BHT) [15, 32]. Likewise, genetic deletion of the FoxmI gene from adult mouse respiratory epi-
thelium inhibited tumorigenesis caused by MCA/BHT or urethane [17]. In the present study,
we observed abundant extracellular mucin and reduced NKX2.1 expression in FoxMI1-AN-
expressing tumors, features characteristic of human PIMAs [5]. This unexpected finding was
further investigated using PIMA cell lines in which FOXM1 expression was required for
expression of MUC5AC, MUC5B, MUC1, and the mucin-associated disulfide isomerase, AGR2
in vitro and in an orthotopic xenograft mouse model. Our data are consistent with published
studies demonstrating that deletion of FoxmI from respiratory epithelial cells or pharmacolog-
ical inhibition of FOXM1 by RCM-1 compound reduces MUC5AC and prevents differentia-
tion of mucin-producing goblet cells in mouse asthma models [33, 34].

AGR?2 is an ER chaperone which functions as a proto-oncogene in breast, colon, and esoph-
ageal adenocarcinoma [30, 35-37]. Since AGR2 was highly expressed in the Kras-LSL%"*";
Nkx2.1-/+ mucinous lung carcinomas [3, 38], we investigated AGR?2 expression in a carcino-
gen-induced FoxMI1-AN transgenic mouse model and human PIMAs. We identified AGR2
was highly expressed in both PIMAs and FoxMI-AN-expressing mouse lung tumors, as a result
of direct transcriptional activation by FOXM1. Although the oncogenic functions of AGR2
remain largely unknown, AGR2 expression was demonstrated to be prognostic in human lung
cancer [39]. In normal goblet cells, AGR?2 is required for folding and processing of secreted
(MUC5AC) and membranous mucins (MUCI1, MUC2, MUC5B;) which have also been impli-
cated in various tumor-promoting processes [30, 40]. AGR2 was also shown to interact with
reptin an inhibitor of p53, which may contribute to tumor cell proliferation and survival [41].
These molecular interactions may promote the mucinous and aggressive nature of PIMA
tumors. Consistent with important role of FOXM1 and AGR2 in PIMAs, inactivation of either
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Fig 8. FOXM1 stimulates progression of lung adenomas into mucinous adenocarcinomas. Schematic
drawing shows that FOXF1 induces expression of cell-cycle regulatory and mucinous genes, including Agr2,
causing increased tumor cell proliferation and mucinous phenotype. FOXM1 directly activates transcription of
Agr2. Both FOXM1 and AGR2 are critical for PIMA growth, invasion and progression of lung adenomas into
aggressive mucinous adenocarcinomas.

https://doi.org/10.1371/journal.pgen.1007097.g008

AGR2 or FOXM1 was sufficient to inhibit the tumor growth, invasion and metastasis in orthoto-
pic mouse model. Altogether, our studies support a model in which FOXM1 functions down-
stream of KRAS and stimulates expression of AGR2 and other proliferation-specific and
mucinous genes (Fig 8). Both FOXM1 and AGR2 induce tumor growth, progression, invasiveness
and maintain mucinous characteristics in PIMAs. Since PIMA is a particularly aggressive cancer
subtype without specific therapeutic options, our findings suggest that pharmacological inhibition
of either AGR?2 or its upstream regulator, FOXM1, may be beneficial for PIMA patients.
Modeling mucinous lung adenocarcinomas in mice requires both activation of oncogenic
KRAS and downregulation of Nkx2.1 [3]. Neither KRAS activation nor reduction of NKX2.1
alone is sufficient for carcinoma development or mucin production, indicating context specific
crosstalk between these two genes. In the present study, expression of FoxMI-AN in urethane-
induced lung adenomas decreased NKX2.1 and increased tumor progression and mucin pro-
duction. Since urethane generates activating mutations in Kras, FOXMI may regulate genetic
interactions between Kras and Nkx2.1 during development of mucinous lung adenocarcino-
mas. Interestingly, FoxMI-AN-expressing lung tumors contained many SOX2 expressing cells
[27]. Since SOX2 is a marker of stem-like and dedifferentiated tumor cells [42], activation of
SOX2 can contribute to increased invasiveness of lung tumors in FoxMI-AN transgenic mice.
In summary, activation of FOXM1 in pre-existed lung adenomas caused progression to
invasive, metastatic adenocarcinomas. FOXM1 enhanced mucinous characteristics in lung
tumors and transcriptionally activated Agr2, a mucin-associated oncogene. We have developed
a mouse model of mucinous, metastatic lung adenocarcinomas and demonstrated that
FOXMLI is necessary and sufficient to induce mucinous phenotype in lung tumor cells.

Materials and methods
Ethics statement

The cohort consisted of an independent lung adenocarcinoma patients who underwent lung
cancer resection at the Department of Thoracic Surgery of the Thoraxklinik at the University
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Hospital Heidelberg. All samples were obtained with the informed consent of the patients and
the approval of the local Ethics Committee of the University of Heidelberg (protocols 270/
2001 and 206/2005). All animal studies were reviewed and approved by the Cincinnati Chil-
dren’s Hospital Medical Center Institutional Animal Care and Use Committee (protocol num-
ber IACUC2016-0070). We followed the guidelines outlined in CITI Training Program for
Animal Care and Use (The Collaborative Institutional Training Initiative (CITI) and Associa-
tion for Assessment and Accreditation of laboratory Animal Care (AAALAC).

Animal models

SPC-rtTA mice harboring a 3.7kb fragment of the human SPC promoter was used to drive
expression of an rtTA cassette as previously described [43]. (TetO) -CMV-GFP-FoxM1-AN
mice possessed a stabilized human FOXMI cDNA cassette fused to GFP as previously
described [20]. SPC-rtTA mice were bred to (TetO) ,-CMV-GFP-FoxM1-AN to generate SPC-
rtTA; TetO-FoxMI-AN mice as previously described [20]. Mice with single or no transgenes
were used as controls. SPC-rtTA; TetO-FoxM1-AN mice without doxycycline were also used as
controls. 6-8 week old male mice received six intraperitoneal (I.P.) injections of urethane at a
dose of 1 gram per kilogram of body weight. 14 weeks after the first injection, mice were main-
tained on chow containing doxycycline, except for SPC-rtTA; TetO-FoxM1-AN control mice.
The SPC-rtTA/ TetO- Kras®'?"/ TetO-FoxM1-AN mouse tumor model was used as previously
described [20]. For A549 orthotopic xenograft experiments, 2.5x10° A549 cells were inoculated
into the tracheas or left lung lobes of 8 week old male NOD.Cg-Prkdc*“112rg™""7'/Sz] (NSG)
immunocompromised mice.

RNA isolation and real-time qRT-PCR

Total mRNA was isolated from microdissected lung tumors or cell lines using RNA Stat60
according to the manufacturer’s instructions. Isolated total mRNA was treated with DNASE I
(Promega) according to the manufacturer’s instructions. DNASE treated RNA was reverse
transcribed into cDNA using the High Capacity cDNA Reverse Transcription Kit (Invitrogen).
Real time PCR was performed using the TagMan Gene Expression Assays and a StepOnePlus
Real-Time PCR System (Invitrogen) as described previously [44]. Inventoried TagMan mouse
gene assays are summarized in S1 Table. All reactions were performed in triplicate and nor-
malized to B-actin mRNA.

Lung histology, immunohistochemistry, and immunofluorescence

Mouse and human lung tissue paraffin sections (5um) were stained with the following anti-
bodies: anti-FOXM!1 (Santa Cruz), anti-GFP (Abcam), anti-SPC (Seven Hills Bioreagents),
anti-CC10 (Santa Cruz), anti-NKX2.1 (Seven Hills Bioreagents), anti-AGR2 (Cell Signaling),
anti-MUC5Ac, anti-MUC5B (Abcam), anti-Ki67 (ThermoFisher Scientific), anti-Cleaved Cas-
pase 3 (R&D Systems), anti-SOX2 (Santa Cruz). H&E Staining and Alcian Blue staining were
performed according to the manufacturer’s protocol and as previously described [33, 45, 46].
Human lung tissue samples were provided by the tissue bank of the National Center of Tumor
Diseases (NCT, Heidelberg, Germany) in accordance with the regulations of the tissue bank
and the approval of the Ethics Committee of the Heidelberg University. Image ] software was
used for quantification of staining intensity in human lung tissue samples. Mean positive sig-
nal was quantified on 8-bit images with the following thresholds (low/high): FOXM1 (22/176),
AGR?2 (41/165), and NKX2.1 (58/160). For quantification of Alcian blue staining, the blue hue
was quantified on color images using the following threshold settings: hue 136/143 pass, satu-
ration 0/255 pass, and brightness 200/255 pass. A minimum of 5 random 20x field images per
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patient were quantified. Adjacent normal lung tissue was included only if clearly discernable
in the patient sample.

Generation of A549 and H2122 cell lines with stable knockdown of
FOXM1

Plasmids expressing shRNA specific to human shFOXM1 #1 (5-GCCAATCGTTCTCTGAC
AGAA-3’), human shFOXM1 #2 (5-GCAAGAAGAAATCCTGGTTAA-3), or shRNA con-
trol (5-CAACAAGATGAAGAGCACCAA-3’) were used to generate lentiviruses. The stable
knockdown of FOXM1 was achieved by transducing human lung adenocarcinomas A549 and
H2122 with lentiviruses followed by puromycin selection as previously described [47].

Western blot

Protein lysates were prepared from A549 and H2122 cell lines 48 hours after puromycin selec-
tion using RIPA buffer (Abcam) supplemented with ImM PMSF (Sigma) and protease inhibi-
tor cocktail (Roche). Western blot analysis was done as described previously [48, 49]. Primary
antibodies were incubated overnight at 4°C in 1% nonfat, dry milk. f-actin was used as loading
control. The following antibodies were used for Western blot: FOXM1 (Santa Cruz), AGR2
(Cell Signaling), or B-actin (Santa Cruz).

Chromatin immunoprecipitation

A549 human lung adenocarcinoma cells were harvested, cross-linked using formaldehyde,
sonicated to produce fragments approximately 500-1000 bp in size and immunoprecipitated
using FOXM1 antibody or rabbit IgG antibody as previously described [50]. Revers cross-
linked ChIP DNA samples were subjected to qPCR using oligonucleotides specific to promoter
regions of human AGR2: -257/-247 (Fwd. 5-TTGACAGGAGCAGGGAAGTATTGTAGA-3’;
Rev.5-CATTTGATTTGCCTGAAGGCTGATTTGT-3’). PCR products (expected size 211bp)
were visualized by gel electrophoresis. A negative control region 6.0kb upstream of the AGR2
transcriptional start site was selected for amplification (expected size 111bp) with the following
primers: (Fwd. 5-AGACCTCACCTTTTGTGTGC-3’; Rev. 5-ACAAGCACAAGCCCATT-
CAC-3).

Cloning of the human AGR2 promoter and dual luciferase assay

The human AGR2 promoter region -1827bp to +197bp was amplified from A549 human geno-
mic DNA using the following PCR primers: Forward-5 CCTTGCCATCCGTCAGCCACTA
3’; Reverse- 5TGCTGTCAGGAGCCTTACCTGG 3. The PCR product was cloned into
pCR2.1 TOPO and verified by DNA sequencing. The promoter fragment was subcloned into
pGL2-Basic luciferase vector (LUC) by double digestion with Acc651 and Xhol restriction
enzymes (New England Biolabs). For site-directed mutagenesis of the putative FOXM1 bind-
ing site, primers containing a 4 base pair change were used with the Site-Directed Mutagenesis
kit (Invitrogen): Forward-5 TGTGTGTCTTCAAGTGACTGACGGCAATCTGCCCACGGA
3’; Reverse-5 TCCGTGGGCAGATTGCCGTCAGTCACTTGAAGACACACA 3°. Hek293T
cells were transfected with a CMV-Empty or CMV-human FOXM1Db plasmids, as well as with
LUC reporter driven by -2.0 kb AGR2 promoter region (AGR2-LUC) WT or mutated AGR2-
LUC promoter region. CMV-Renilla was used as an internal control to normalize transfection
efficiency (relative luciferase activity). A dual luciferase assay (Promega) was performed 24
hours after transfection, as described previously [51, 52]. The standard error of the mean was
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calculated using the mean relative luciferase activity for each of the three wells in each group.
All values were normalized to cells transfected with AGR2-LUC + CMV-Empty plasmids.

Cloning of the human AGR2 cDNA

The human AGR2 cDNA was cloned from total RNA from A549 cells. RNA was isolated and
reverse-transcribed into cDNA using random primers, as described above. For amplification
of the AGR2 ¢cDNA, we used Q5 High-Fidelity Polymerase (New England Biolabs) and the fol-
lowing primers: Forward-5 ATGGAGAAAATTCCAGTGTCAG 3’; Reverse-5 CTTTACAAT
TCAGTCTTCAGCAAC 3. The 530bp band corresponding to the AGR2 cDNA was gel
digested, cloned into PCR2.1 TOPO (Invitrogen) and sequence verified. The AGR2 cDNA was
subcloned into BamHI and Xhol restriction sites in the retroviral plasmid MIEG3.

Statistical analysis

Statistical analysis was performed using Prism software. ANOVA and Student’s T-test were
used to determine statistical significance. Right skewed measurements were log-transformed
to meet normality assumption prior to analysis. P values less than 0.05 were considered signifi-
cant. Values for all measurements were expressed as the mean + standard deviation (SD). Data
were graphically displayed using GraphPad Prism v.5.0 for Windows (GraphPad Software,
Inc., La Jolla, CA, USA).

Supporting information

S$1 Fig. FOXM1 induces lung tumor progression. Representative H&E images depicting
tumors of each grade observed in the lungs of control (n = 6) and epiFoxM1-AN (n = 9) mice.
Scale bar = 500pM.

(TIF)

$2 Fig. FOXML1 is essential for the expression of cell cycle regulatory genes and markers of
mucinous tumors. mRNA isolated from control A549 (scramble) or shFoxM1 A549 stable cell
lines were used for gRT-PCR. Knockdown of FOXM1 decreased mRNAs of cell cycle regula-
tors (A) and mucinous characteristics (B) in A549 human pulmonary invasive mucinous ade-
nocarcinoma. mRNA expression is normalized to B-actin mRNA. A p-value <0.05 is marked
with a single asterik (*) and a p-value <0.01 is marked with a double asterik (**).

(TIF)

S3 Fig. Expression AGR2 in FOXM1-deficient tumor cells does not restore the expression
of cell cycle-regulatory genes and mucinous genes. (A) Western blot shows efficient overex-
pression of human Agr2 gene in Hek293T cells. (B) qRT-PCR analysis of proliferation-specific
genes in stably transduced A549 cells. Only Ccndl mRNA was restored to the control level
after overexpression of AGR2. mRNA expression is normalized to f-actin mRNA. (C) Western
blot shows the efficient knockdown of FOXM1 (shFoxM1) and overexpression of AGR2 in
A549 cells. (D) qRT-PCR analysis of mucin markers. nRNA expression was determined by
qRT-PCR and normalized to B-actin mRNA (n = 3 independent cell cultures). A p-value
<0.05 is marked with a single asterik (*).

(TIF)

$4 Fig. Deletion of FOXM1 or AGR2 decreased tumor cells growth in vitro and in orthoto-
pic mouse model. (A) Growth of H2122 human mucinous lung adenocarcinoma cells was
determined by MTT assay after knockdown of FOXM1 or AGR2. (B) Bioluminescent imaging
of mice 35 days after orthotopic transplantation of A549 cells in the left lung lobe. Location of
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metastases are shown with arrows. (C) Tumor incidence and frequency of macroscopic metas-
tases were determined 35 days after inoculation of A549 cells in the left lung lobe (n = 6 mice
in each group).

(TIF)

S1 Table. List of mouse and human Tagman probes used for experiments.
(TIF)

$2 Table. Clinical information of mucinous lung adenocarcinoma patient samples used in
this study.
(TIF)
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