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ABSTRACT
Background Numerous observational studies 
have highlighted structural inequalities in COVID- 19 
mortality in the UK. Such studies often fail to consider 
the hierarchical, spatial nature of such inequalities in 
their analysis, leading to the potential for bias and an 
inability to reach conclusions about the most appropriate 
structural levels for policy intervention.
Methods We use publicly available population data 
on COVID- 19- related mortality and all- cause mortality 
between March and July 2020 in England and Wales 
to investigate the spatial scale of such inequalities. 
We propose a multiscale approach to simultaneously 
consider three spatial scales at which processes driving 
inequality may act and apportion inequality between 
these.
Results Adjusting for population age structure and 
number of local care homes we find highest regional 
inequality in March and June/July. We find finer grained 
within region inequality increased steadily from March 
until July. The importance of spatial context increases 
over the study period. No analogous pattern is visible 
for non- COVID- 19 mortality. Higher relative deprivation 
is associated with increased COVID- 19 mortality at all 
stages of the pandemic but does not explain structural 
inequalities.
Conclusions Results support initial stochastic viral 
introduction in the South, with initially high inequality 
decreasing before the establishment of regional trends 
by June and July, prior to reported regionality of the 
’second- wave’. We outline how this framework can help 
identify structural factors driving such processes, and 
offer suggestions for a long- term, locally targeted model 
of pandemic relief in tandem with regional support to 
buffer the social context of the area.

BACKGROUND
Inequality in COVID- 19 outcomes has been a 
matter of keen interest in the UK since the early 
stages of the pandemic.1 2 The ‘second wave’ of 
SARS- CoV- 2 infection and subsequent COVID- 19- 
related illness across the UK has been characterised 
by a strong regionality and an emergent North- 
South divide in mortality which both reflected and 
exacerbated existing social inequalities.3 4

An enormous literature has evolved over the 
course of the pandemic on individual predictors 
of COVID- 19- related outcomes.5 6 A smaller body 
of work has also emerged looking at area- level 
predictors of COVID- 19 outcomes and exposures 
(eg, ref 7–9). Such spatial investigations have, 
however, largely focused on COVID- 19 case status 

which is subject to temporally varying testing prior-
ities.10 Population testing was limited in the early 
pandemic, when testing was more likely for severely 
ill or hospitalised individuals. We therefore assume 
data on COVID- 19- related mortality are less likely 
to be severely biased than case numbers as, condi-
tional on life- threatening conditions, COVID- 19 
status will be more accurately reported among 
those in critical care.

We conceptualise COVID- 19 mortality as a 
function of two processes: the risk of infection, 
and the risk of death given infection. Each of these 
is unlikely to have a uniform spatial distribution. 
Spatial analyses of aggregated mortality data are 
critical to epidemiological triangulation efforts as 
they give (fallible) measures of population param-
eters not subject to the same selection processes 
as individual- level analyses.11 We suggest predic-
tors of aggregate mortality may primarily reflect 
risk of infection, as evidence does not suggest 
viral evolution has affected disease prognosis12 13 
and restricted migration patterns (given suppres-
sion measures) are unlikely to explain short- term 
monthly differences within an age- adjusted popu-
lation structure.

Investigation into COVID- 19 inequalities has 
largely been restricted to analyses at a single, aggre-
gated spatial scale, predominantly governmental 
office region (GOR; n=10 in England and Wales) 
(eg, ref 14) or smaller Middle- Layer Super Output 
Areas (MSOAs; n=7201 in England and Wales) (eg, 
ref 8 15 16). However, limited spatial scope may 
bias results of such aggregated analyses as, when 
higher level clustering is omitted from a model, 
higher level phenomena are necessarily expressed 
at the included spatial scale.17 Restricting policy- 
relevant ecological analysis to a single geographical, 
administrative scale risks overstating the impor-
tance of the included scale and missing structural 
exposures at which to target interventions and 
resources. Locally targeted resource allocation 
presents a key UK policy intervention which may be 
acted on to reduce health inequalities (eg, ref 18). 
We provide a simple vignette outlining this problem 
in box 1 and figure 1. Thus, the higher order 
spatial nature of processes driving between area 
inequalities in COVID- 19 mortality is currently 
underinvestigated. To better understand area- level 
mortality differences, we must interrogate regional 
COVID- 19 mortality inequality net of lower level 
variation, and investigate at what stage of the 
pandemic it emerged.
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Overview
In this article, we use publicly available MSOA- level mortality 
for the period of March to June 2020 to unpack the geograph-
ical scale at which inequality in COVID- 19 mortality was most 
keenly experienced. We rerun all analyses using non- COVID- 
19- related mortality figures to contextualise inference about 
whether observed spatial processes are unique to COVID- 19. 
Having established area- level differences, we explore area- level 
characteristics which may explain these inequalities.

We structure our analysis via the following three research 
questions:
1. What is the geographical scale at which mortality inequali-

ty (both COVID- 19 related and non- COVID- 19 related) is 
most strongly expressed between March and July 2020?

2. Is spatial patterning consistent over the study period?
3. To what extent are these inequalities explained by local area 

deprivation?

METHODS
Data
All data used for this analysis are publicly available from the 
Office for National Statistics (ONS), Environmental Systems 
Research Institute (ESRI) or derived data sets made available in 
existing published research.

Outcome
Mortality data are counts of MSOA- level mortality from 
COVID- 19 and non- COVID- 19 sources.19 These data provide 
provisional counts of number of deaths involving COVID- 19 
(defined by the ONS and UK government as COVID- 19 being 
mentioned on the death certificate19 20) for each MSOA in 
England and Wales between 1 March and 31 July 2020. They 
also provide a total count of deaths from which the number of 
non- COVID- 19 deaths can be calculated.

Structural levels
Investigating higher level spatial inequalities requires specifica-
tion of plausible administrative, geographical scales at which 
mortality inequalities may be expressed. We select three analyt-
ical levels, chosen to represent plausible scales for spatial process, 
and also pragmatic levels for intervention.

The lowest level unit is the MSOA (n=7201), a commonly 
used parameterisation of local neighbourhood exposure rele-
vant to COVID- 19 transmission.7 8 We assume local neighbour-
hood scale captures neighbourhood migration and consumption 
patterns. MSOAs are hierarchically nested within ONS Travel to 
Work Areas (TTWAs, n=173). These are designed to approxi-
mate local labour market areas, and thus represent commuting 
patterns to local cities, a highly relevant context for COVID- 19 
transmission.21 22 Finally, each TTWA is nested within one of 10 
GORs. These provide an intuitive representation of the macro-
scale health exposures which have been reported to predict 

Box 1 : Why care about spatial clustering?

The degree of spatial inequality which exists with respect to a 
given phenomenon depends on the spatial scale at which the 
question is asked.42 43 This is often referred to as the modifiable 
area unit problem (MAUP). A guided explanation of this is 
provided in figure 1.

The map displays South Yorkshire. The smaller areal units 
are Middle- Layer Super Output Areas (MSOAs), and the areas 
outlined in thicker black lines are local authority districts (LADs). 
In a single- level model of MSOA mortality, the two maps below 
are identical. More explicitly, Poisson overdispersion (and 
residual error variation in linear regression) is assumed to be 
spatially random. This assumption is commonly violated, as it is 
in figure 1B, where residuals are clearly spatially structured.

To meaningfully decompose this variation, we must consider 
both between and within interpretations of inequality. In 
figure 1A, the majority of variation is within LAD, between 
MSOA. Net of any higher level geography—this is close to 
spatially random, and we may assume that any spatial processes 
occurring in the data are at the MSOA level. In figure 1B, 
however, most variation is between LAD, with very low between- 
MSOA, within- LAD variation.

If we only take account of the MSOA clustering (for instance, 
by only including MSOA mortality counts) we would conclude, 
consistently across both plots, that MSOA is the level at 
which spatial processes are most likely to be occurring. Thus, 
in the scenario in figure 1B we would fail to recognise that 
LAD context may inform a structural exposure. However, if 
we simultaneously account for both MSOA and LAD, we can 
investigate the relative importance of each. Interrogating the 
relative importance of multiple geographical levels may better 
inform the likely exposures driving spatial inequalities, and 
hence inform potential interventions.

Figure 1 A map of South Yorkshire Middle- Layer Super Output Areas 
(MSOAs), with four larger local authority districts (LADs) highlighted by 
darkened bounds. (A) Shows a hypothetical scenario in which the large 
majority of inequality is truly between MSOA, within LAD. (B) Shows a 
hypothetical scenario in which the large majority of inequality is truly 
between LAD, with very little within- LAD variation.
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COVID- 19 mortality throughout the pandemic, particularly 
throughout summer 2020.2 14

Due to the relative infrequency of TTWA use in analyses we 
also rerun models using local authority districts as a sensitivity 
analysis for spatial parameterisation (see online supplemental 
figures 1 and 2). We also test the importance of a cross- classified 
unit using National Health Service Sustainable Transformation 
Partnerships (online supplemental figures 3 and 4).

Covariates
Older age has been established as the strongest individual 
predictor of COVID- 19- specific mortality,5 23 24 with 74% of 
COVID- 19 deaths in the period March to July being among 
those over 75.19 Care home population has also been suggested 
the strongest area- level predictor of COVID- 19 mortality.8 15 We 
wish to estimate spatial inequalities between the average units 
at each geographical context, net of these known risk factors, 
so adjust for them in all analyses. ONS midyear population esti-
mates for 2019 are used to account for MSOA age structure.25 
MSOA- level care home data are taken from the open- access 
ESRI COVID- 19 dashboard Geolytix data set which was made 
available for COVID- 19 researchers. Care homes are included as 
raw counts at MSOA level.

We also wish to see whether local deprivation- related expo-
sures explain any structural inequalities we observe. Local 
deprivation is associated with increased overcrowding, service 
industry jobs and intergenerational housing, which have been 
shown to be relevant exposures for COVID- 19 mortality.1 8 To 
estimate contextual effects between similarly deprived units, 
we adjust for the Index of Multiple Deprivation (IMD) as an 
indicator of the intersecting disadvantage shown to be associ-
ated with worse COVID- 19 outcomes.5 7 As the IMD is country 
specific we would not be able to compare England and Wales, 
so we use the equivalised UK IMD.26 This functions as an area- 
level indicator of disadvantage comparable across UK countries. 
Local healthcare was severely strained over the study period, so 
we decompose deprivation into between and within geograph-
ical components (ie, regional average IMD, TTWA minus region 
IMD, MSOA minus TTWA IMD). This offers us insight into 
whether between- area differences in IMD are similarly predic-
tive of excess mortality as within- area differences. Between and 
within elements of IMD are standardised. As these data were 
generated from 2015 IMD results for UK countries we rerun 
analyses excluding Wales and using 2019 IMD scores (see online 
supplemental figures 5 and 6).

Statistical analysis
To analyse multiscale inequality, we specify multilevel Poisson 
models with a geographically invariant, month- specific log 
offset. The offset term indicates expected COVID- 19 mortality 
and is calculated by taking the total COVID- 19 mortality across 
England and Wales in each month and dividing by the total 
population. This is then multiplied by MSOA population to give 
an expected count were mortality rates spatially invariant. The 
same was done for non- COVID- 19- related mortality. Models 
were stratified by mortality classification and were run for both 
COVID- 19 and non- COVID- 19- related mortality. Covariates 
were interacted with a categorical month term to allow effects 
to vary over time (full detail on model specification in online 
supplemental material).

Any overdispersion in random coefficients over and above 
this spatially consistent offset can be used to infer clustering, 
or spatial inequality.27 We summarise the relative contribution 

of level- specific variance using variance partitioning coefficients 
(VPCs), which estimate the proportion of supraindividual, unex-
plained heterogeneity present at each structural level.28 29 We 
summarise the variation in random coefficients at a given level 
using median rate ratios (MRRs).29 30 Transforming the variance 
from a typical interpretation (exp(σ)) allows for comparisons 
between standardised rates, without needing to consider effects 
in terms of an SD increase in random effects:

 MRR = e
√(
2∗σ2

)
∗0.6745  

The MRR is interpreted as the median relative change in the 
mortality rate between randomly sampled pairs of lower level 
units within a higher level unit.29 30 For instance, an MSOA MRR 
of 1 would imply that there is no difference between risks of 
death in different MSOAs within the same TTWA. An MSOA 
MRR of 2 implies that in general, comparing between MSOAs 
where all else is equal (ie, within the same higher level unit, and 
balanced covariates), we would expect one of the MSOAs to 
have a mortality rate double that of the other. Where multiple 
higher levels are included in a model, it is important to note that 
MRRs are an estimated net of one another, such that inequality 
at each level is estimated separately from that in another.

We use Markov chain Monte- Carlo (MCMC) estimation for 
all models. Restricted iterative generalised least squares estimates 
were taken as starting values. After a discarded burn- in of 50 000 
iterations, all models were run for 500 000 iterations. Credible 
intervals for all estimated quantities are the 2.5th and 97.5th 
percentiles of posterior parameter distributions. All models were 
run in MLwiN V.3.09.

RESULTS
Results are presented for COVID- 19 and non- COVID- 19 
mortality. All models include fixed effects adjustment for MSOA 
age structure and number of care homes. Our first and second 
research questions regard the spatial and temporal variation in 
relative mortality risk over the study period and the relative 
contribution of each spatial scale. Monthly mortality counts are 
provided in online supplemental table 1. Results for the first pair 
of models are presented in figure 2.

Figure 2A illustrates the development over time of MRRs 
across different spatial scales. The COVID- 19 mortality MRR in 

Figure 2 Estimates of median COVID- 19 (A) and non- COVID- 19 
(B) median mortality rate ratio across three administrative scales, by 
month from March to July 2020. Shaded areas indicate 2.5th and 97.5th 
percentile credible intervals of posterior parameter distributions. MSOA, 
Middle- Layer Super Output Area; TTWA, Travel to Work Area.
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July for MSOA is 2.03 (95% CI 1.83 to 2.27), suggesting within- 
TTWA, between- MSOA differences typically imply a doubling of 
the rate of COVID- 19 mortality. We see considerable temporal 
heterogeneity, with inequality at all scales increasing after April 
and March. This coincides with a decline in national mortality 
rates (see online supplemental table 1). Regional MRR is largest 
in July (MRR 2.51, 1.85–4.74), having declined in April as 
mortality rates increased, where largest inequalities were seen 
within TTWA, between MSOA.

The contrast with figure 2B is stark. Mortality rates for non- 
COVID- 19 mortality are higher than those for COVID- 19 
mortality, yet they are far more spatially random, the highest rate 
ratio between areas at any of the scales is 1.32 (95% CI 1.30 to 
1.33) at MSOA level in April. Inequality over and above that 
predicted by stochastic variation is only seen in April for non- 
COVID- 19 mortality.

Spatial inequalities in COVID- 19 mortality have clearly not 
been temporally stable, but we are also interested in whether 
the residual patterning of mortality is consistent over time. That 
is, whether regions with high mortality in March have high 
mortality in subsequent months. figure 3 illustrates the correla-
tion between area- level residuals from March to July.

Correlations are broadly larger between adjacent months. 
However, this is not temporally consistent and we see area- 
level trends start to emerge, for instance, the highest correlation 
is between June and July for all levels for COVID- 19 mortality. 
Excluding TTWA, correlations for non- COVID- 19 deaths are 
uniformly high, suggesting that the small amount of clustering 
we see in non- COVID- 19 mortality is highly temporally autocor-
related. TTWA- level non- COVID- 19 mortality residuals are low, 
and suggest unusual spatial patterning in April. MSOA COVID- 19 
mortality correlations increase consistently over the study period.

Having established spatial patterns of mortality inequality, we 
investigate to what degree these inequalities are explained by 
contextual deprivation. Number of care homes and decomposed 
IMD estimates were all interacted with month. Results from fully 
adjusted models are displayed in figures 4 and 5. Fixed effects 
estimates can be seen in online supplemental table 2.

Figure 4 demonstrates that adjusting for IMD does not 
substantively change the variance structure of the model. The 
COVID- 19 mortality MRR in July for MSOA is 2.02 (95% 

CI 1.82 to 2.27). We still see area- level inequalities increase as 
national mortality rates decline. Regional MRR is still largest 
in July (MRR 2.41, 1.77–4.64). Non- COVID- 19 mortality still 
displays far less geographical inequality. The correlation plots 
presented in figure 5 are similarly consistent with plots prior to 
the introduction of area deprivation, showing a strong regional 
clustering as nationwide mortality declines.

To test whether higher level regional mortality residuals are a 
function of London’s abnormality, fully adjusted models were rerun 
with London omitted (see online supplemental figures 7 and 8). 
Results suggest that some higher level regional inequality, particu-
larly in March, may be driven by abnormally high age- standardised 
mortality observed in London, but that this does not appear to be 
the case in June/July. Omitting London reduces the magnitude of 
regional inequality to more in line with that of MSOA and TTWA. 
Omitting London also suggests that some of the temporal autocor-
relation in regional non- COVID- 19 mortality is driven by London, 
with smaller correlations in model SA1 than 2B.

Figure 4 Estimates of median COVID- 19 (A) and non- COVID- 19 (B) 
median mortality rate ratio across spatial scales after inclusion of local 
area deprivation, by month from March to July 2020. Shaded areas 
indicate 2.5th and 97.5th percentile credible intervals of posterior 
parameter. MSOA, Middle- Layer Super Output Area; TTWA, Travel to 
Work Area.

Figure 5 Correlation between month- specific structured residuals 
at three administrative scales for COVID- 19 mortality (left) and non- 
COVID- 19 mortality (right) after adjusting for local deprivation. Colour 
indicates magnitude of correlation. MSOA, Middle- Layer Super Output 
Area; TTWA, Travel to Work Area.

Figure 3 Correlation between month- specific structured residuals 
at three administrative scales for COVID- 19 mortality (left) and non- 
COVID- 19 mortality (right). Colour indicates magnitude and sign of 
correlation. MSOA, Middle- Layer Super Output Area; TTWA, Travel to 
Work Area.
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To display how the importance of geographical context evolved 
over the period, figure 6 displays VPCs for each geographical level 
for COVID- 19 and non- COVID- 19 mortality over time from the 
unadjusted model (for deprivation- adjusted VPC estimates see 
online supplemental figure 9). In March and July, nearly half of the 
unexplained variation in MSOA- level COVID- 19 mortality is due 
to higher level spatial context (July MSOA VPC=0.55). For non- 
COVID- 19 mortality almost all variation is at local MSOA context 
across the study period (July MSOA VPC=0.98).

CONCLUSIONS
Our results highlight that spatial inequality in COVID- 19- related 
deaths at all scales is substantially higher than deaths due to other 
causes. Clearly, geography matters for COVID- 19 mortality and 
it matters more than it does for mortality from other causes.

The extent to which geography matters has changed over 
time. After April, the chance of someone dying with COVID- 19 
varied by where they lived to an increasing extent until July. We 
propose these changes likely reflect structural factors affecting 
risk of exposure or infection for two reasons. First, phylogenetic 
evidence suggests aetiological evolution over the summer of 2020 
impacted viral transmission, not disease progression.12 13 Thus, 
conditional on age structure, we anticipate mortality changes 
likely relate to changes in infection, not prognosis. Second, 
suppression measures make it unlikely that compositional migra-
tion patterns drove short- term mortality differences.

The geography of COVID- 19 mortality is structured at 
different scales. While this is often implicitly acknowledged in 
debate, particularly around North- South divides, we believe this 
is the first study to attempt to quantify and apportion this. We 
find inequalities at each examined scale but find particularly 
large inequalities at the largest (GOR) scale. Our results are 
consistent with other findings on clustered introduction of the 
virus producing large initial spatial inequalities, driven partially 
by high mortality in London. Monthly VPCs illustrate the 
continued importance of spatial context for COVID- 19 mortality 
over non- COVID- 19 mortality, but that regional inequalities 
are more important when overall COVID- 19 mortality is low. 
Excluding London, our findings remain consistent, with median 
comparisons between regions giving a twofold relative mortality 
increase by July (MRR=2.16, 1.59–4.41).

We adjust for IMD to explore how local, deprivation- related 
exposures affect the variance structure of the model, and find 
consistent with previous studies, deprived areas have greater 
COVID- 19 mortality than non- deprived areas. We do not find 
deprivation meaningfully alters the variance structure, although 
IMD captures many deprivation exposures rather than our 
specific exposures of interest, which may dilute an anticipated 
effect.31 There is some evidence supporting initial misclassifica-
tion of COVID- 19 mortality, as MSOA non- COVID- 19 MRR 
pre- empts that of the COVID- 19 MRR before declining, and 
care homes predicting non- COVID- 19 mortality in April, prior 
to the care home spike in COVID- 19 mortality in May. There is 
strong evidence of emerging regional trends by July. Moreover, 
such inequalities are not explained by deprivation, care homes 
or age structure. Results suggest that a devolved geographical 
approach to COVID- 19 support is likely useful. This approach 
must be multiscale with local community strategies embedded 
within regional frameworks and must consider pre- existing 
health and social inequalities.

Our study has several limitations. Our model considers 
geography in a strictly hierarchical sense, where we know in 
which TTWA/region each MSOA/TTWA is situated. It does 
not consider spatial contiguity/proximity and spatial networks. 
Clearly for infectious diseases, connections between and within 
areas are important and may explain some of the patterns we see 
here. Moreover, we cannot report on the importance of spatial 
context relative to within- MSOA, between- individual differ-
ences, as individual- level data are not available. If and when such 
data become available, a suite of more informative analyses will 
become possible.32 33

We propose that our study informs outcomes beyond COVID- 
19, as the modelling approach is of clear utility for studying 
other health outcomes. First, our approach can help advise 
where and how to apportion funding for tackling nationwide 
health inequalities. Assuming our goal is to reduce absolute 
inequalities, this approach informs how we might effectively do 
so by providing a structured framework for prioritising health 
inequalities between regions; between cities, towns or areas 
within regions; or between neighbourhoods within these cities, 
towns and areas.

Second, the modelling approach aims explicitly to distinguish 
policy- relevant systemic differences from chance variation. 
Models necessarily require assumptions about the degree of 
stochasticity which truly represents uncertainty, indeed phylo-
genetic evidence suggests UK SARS- CoV- 2 evolution is a truly 
stochastic process.13 Spatial epidemiology, however, often fails 
to explicitly recognise chance variation as inherent in population 
health.34

Latent structural information contained in spatial data is being 
deployed across a wide range of geographical contexts to inves-
tigate spatial inequalities (eg, ref 35–39). Moreover, these data 
are providing important evidence in establishing effects of asso-
ciated structural exposures.16 40 41 Our method is readily extend-
able to such contexts in the presence of: existing, administrative; 
or bespoke, researcher- imposed higher level spatial identifiers.

Continued monitoring of area- level mortality will be a funda-
mental piece of the evidence base helping mitigate the impacts 
of the COVID- 19 pandemic. Mortality data at MSOA level are 
currently only available for the defined study period but analysing 
multiscale inequalities in mortality is critical to evaluating the 
impact and efficacy of viral suppression measures. Importantly, 
in periods of low overall mortality, we see large increases in 
regional inequalities in COVID- 19 mortality. Regional inequal-
ities in COVID- 19 mortality may be of increasing importance 

Figure 6 Unadjusted model monthly variance partitioning coefficients 
(VPCs) for three administrative scales for COVID- 19- related mortality 
(A) and non- COVID- 19 mortality (B). VPC units are proportions. MSOA, 
Middle- Layer Super Output Area; TTWA, Travel to Work Area.
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as countries begin to emerge from lockdown and vaccine 
roll- out contributes to reduction in COVID- 19 transmission 
and mortality. We suggest multiscale spatial inequalities which 
inform COVID- 19 mortality, predominantly via exposure and 
infection, likely represent a key potential structural intervention 
for virus suppression.

What is already known on this subject

 ► Mortality resulting from COVID- 19 has been strongly spatially 
patterned in the UK, with large regional inequalities observed 
and reported with the ‘second wave’ of infections in late 
2020. Inequalities have been observed at both regional level 
and neighbourhood level, but no studies have investigated 
the relative importance of these levels of inequality 
simultaneously.

What this study adds

 ► Regional inequalities declined from an initial peak in 
April before increasing again in June/July. Within- region 
inequalities increased steadily from March until July. Strong 
regional mortality trends are evident by June/July as overall 
mortality declines, prior to wider reporting of regional 
differences in ‘second wave’. Analogous inequalities are not 
observed for non- COVID- 19- related mortality, and are not 
explained by age structure, care homes or deprivation. As 
overall mortality declines, structural exposures at the regional 
level may present a key intervention target for reducing 
geographical inequalities in COVID- 19 mortality.
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