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Abstract

Background: Computational prediction of drug-target interactions (DTI) is vital for drug discovery. The experimental
identification of interactions between drugs and target proteins is very onerous. Modern technologies have mitigated
the problem, leveraging the development of new drugs. However, drug development remains extremely expensive
and time consuming. Therefore, in silico DTI predictions based on machine learning can alleviate the burdensome
task of drug development. Many machine learning approaches have been proposed over the years for DTI prediction.
Nevertheless, prediction accuracy and efficiency are persisting problems that still need to be tackled. Here, we propose
a new learning method which addresses DTI prediction as a multi-output prediction task by learning ensembles of
multi-output bi-clustering trees (eBICT) on reconstructed networks. In our setting, the nodes of a DTI network (drugs
and proteins) are represented by features (background information). The interactions between the nodes of a DTI
network are modeled as an interaction matrix and compose the output space in our problem. The proposed approach
integrates background information from both drug and target protein spaces into the same global network framework.

Results: We performed an empirical evaluation, comparing the proposed approach to state of the art DTI prediction
methods and demonstrated the effectiveness of the proposed approach in different prediction settings. For
evaluation purposes, we used several benchmark datasets that represent drug-protein networks. We show that
output space reconstruction can boost the predictive performance of tree-ensemble learning methods, yielding more
accurate DTI predictions.

Conclusions: We proposed a new DTI prediction method where bi-clustering trees are built on reconstructed
networks. Building tree-ensemble learning models with output space reconstruction leads to superior prediction
results, while preserving the advantages of tree-ensembles, such as scalability, interpretability and inductive setting.

Keywords: Drug-target networks, Network reconstruction, Interaction prediction, Tree-ensembles, multi-output
prediction

Background
Predicting accurately drug-target interactions (DTI) is
vital for the development of new drugs. Accurate and effi-
cient identification of interactions between drugs and tar-
get proteins can accelerate the drug development process
and reduce the required cost. In addition, the identifica-
tion of drug-target interactions can unveil hidden drug
or protein functions and shed light to enigmatic disease
pathology mechanisms [1]. It can also provide scientists
with insights which help in foreseeing adverse effects of
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drugs [2, 3]. Furthermore, apart from discovering new
drugs, DTI prediction can also leverage drug reposition-
ing [2, 4–6], which aims at revealing new uses for already
approved drugs. However, despite the persisting efforts
made by the scientific community, experimentally iden-
tifying DTIs remains extremely demanding in terms of
both time and expenses [7, 8]. The employment of com-
putational methods and especially machine learning for in
silico DTI prediction is thereby crucial for drug discovery
and repositioning. Machine learning models can direct
experiments, reveal latent patterns in large scale drug
or protein data collections and extract unprecedented
knowledge in drug-target networks.
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Machine learning has shown great potential when
employed in medicine and bioinformatics, especially in
prediction or clustering tasks [9–11]. The most appealing
field of machine learning is the supervised learning, where
the learningmodels are constructed on an input setX and
an output set Y , (f : X → Y). The instances (e.g., drugs,
proteins) are represented by a set of feature vectors and
they are also associated with an output variable. The goal
is the learning of a function, based on the features of a
training set of instances, which predicts the output [12]. In
inductive modelling, when this function (model) is built,
one can employ it to predict the output of new instances.
The task is called regression in cases where the output is
numeric and classification when it is categorical.

Multi-output prediction in drug discovery
An interesting extension of typical classification or regres-
sion problems is the task of multi-output (multi-target)
prediction [13]. In this case, the model learns to predict
multiple output variables at the same time. Subcategories
of multi-target prediction are multi-target classification
(i.e., the targets have categorical values) and multi-target
regression [14]. A distinctive condition is multi-label clas-
sification [15, 16]. This can be translated as multi-target
regression with only zero and one as numeric values for
each target, or as multi-target classification, with only
binary values for each target.
Multi-output prediction models learn from multiple

outputs simultaneously. They are often benefited from
exploiting possible correlations between the targets,
improving this way their prediction performance. In par-
ticular, when it comes to drug discovery, the interest in

multi-output models is even greater. In the past, the learn-
ing methods proposed for DTI prediction aimed at per-
forming predictions for a specific target protein, admitting
the old paradigm of ‘one target, one drug, one disease’. This
strategy led to inferior performance as the drug-disease
relation complexity is far greater [17, 18]. The majority
of known diseases are usually associated with multiple
proteins [19]. It has been generally admitted that drugs
which interact with multiple target proteins (polypharma-
cology) are more effective [20–22]. Multi-output learning
can also contribute to investigating the off-target drug
activity (i.e., unintended function of a drug). The investi-
gation of such activities can lead to new uses for existing
drugs (drug repositioning) or contrarily, the identification
of unwanted side-effects. Such adverse reactions of drug
candidates are usually identified at a later stage of the drug
development process, leading to extremely expensive late
stage failures.

DTI networks
A drug-protein interaction network is a heterogeneous
network (also referred to as bi-partite graph) that can be
formulated as a collection of two sets of items that inter-
act with each other. Each item set is described by its own
features which compose the background information in
our problem. The interactions are the links connecting
the nodes of the network and are often represented as a
matrix, often denoted as interaction, adjacency, or con-
nectivity matrix. In this paper, we use the term interaction
matrix. In Fig. 1, an illustration of a DTI network in the
aforementioned setting is displayed. One can follow two
learning strategies in this framework: the local [23] and

Fig. 1 Illustration of a (bi-partite) DPI interaction network
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the global [24]. A discussion of these two strategies took
place originally in [25] and later in [26, 27].
Traditional DTI prediction models based on the local

approach handle the two sets of the DTI network sep-
arately. In particular, they first divide the DTI net-
work into different (traditional) feature sets, the drug-
based set and the protein-based one. Next, each set’s
learning task is tackled separately and then the results
are combined. Often, in the absence of information
on both sides, local models are built on a single fea-
ture space, ligand (drug) space or target protein space.
Ligand-based models are built on the known ligands
that interact with the target proteins. However, the per-
formance of these models is impaired when it comes
to target proteins with only a really small number (or
even none) of known binding ligands [28]. Alterna-
tively, target-based models are built on the target pro-
teins using protein (3D) structure information. Neverthe-
less, the 3D structure of many target proteins is often
unavailable.
Due to these bottlenecks, the interest of the scientific

community was shifted towards a global setting referred
to as chemogenomics [29, 30]. The underlying idea behind
the global setting is that drug information is integrated
with target protein information and thereby complement
each other. However, this setting also suffers from weak-
nesses. Global approaches are mostly based on matrix
factorization or graph learning, following the transductive
setup (i.e., the test instances are needed in the training
phase). Alternatively, there are other approaches which
are based on inductive classifiers. In these cases, DTI
prediction is treated as a binary classification problem
where classifiers are trained over the Cartesian product
of drug-related and target-related feature sets. This Carte-
sian product often leads to an enormous data matrix.
Thus, these approaches are computationally very expen-
sive and not particularly scalable. Furthermore, in this
global setting, one assumes that rich background informa-
tion (feature vectors) is always available for both all drugs
and all their targets, which is not always the case. Despite
these disadvantages, global approaches remain the most
promising.

Introduction to the proposedmethod
Major problems in DTI prediction are the present noise
in the output space, the existence of no true negative
interactions and the extreme class imbalance. These prob-
lems are not easily surpassed and they often devastate the
predictive performance of even powerful learning meth-
ods. There is a plethora of studies aiming at feature space
transformation, removing noise or revealing latent mani-
folds in the data. However, to the best of our knowledge,
there is almost nothing on integrating supervised learning
methods with output space reconstruction. An intelligent

reconstruction can remove the existing noise, reveal latent
patterns and mitigate class imbalance in the output space.
In this paper, we propose a new DTI prediction frame-

work that provides great predictive performance while
being computationally efficient and scalable. We pro-
pose that building multi-output learning models on
reconstructed networks leads to superior predictive per-
formance. Our approach addresses DTI prediction as
a multi-output prediction task, building tree-ensemble
learning models and specifically ensembles of bi-
clustering trees (eBICT) [27, 31], on reconstructed net-
works. Although other inductive learning models could
have been employed, we designate eBICT because it
inherits the merits of tree-ensembles, such as scalability,
computational efficiency, and interpretability. eBICT also
provides bi-clustering [32] of the interaction matrix as a
side product.
Reconstructing a DTI network is a challenging prob-

lem and various approaches have been proposed over the
years. The most effective approaches are typically related
to matrix factorization. Scientists have extended the tra-
ditional optimization problem of matrix factorization
including multiple constraints. Recently, a neighborhood
regularized logistic matrix factorization (NRLMF) [33]
method was presented, integrating logistic matrix factor-
ization (LMF) with neighborhood regularization taking
also into account class imbalance. The authors obtained
outstanding results, naming their method a state of the art
in DTI prediction. Here, we employ NRLMF for recon-
structing the target space in our problem andwe show that
the predictive performance of inductive learning mod-
els is particularly boosted when they are integrated with
output space reconstruction. The proposed multi-output
prediction framework combines great prediction per-
formance with scalability, computational efficiency, and
interpretability. The proposed method offers bi-clustering
of a drug-target network as a side product and also fol-
lows the inductive setup. The latter means that neither the
test instances are needed in the training process nor the
training instances are required to perform predictions for
new instances. Furthermore, the proposed method is apt
to perform predictions for new candidate drugs, a setting
applied to drug discovery, new target proteins, a setting
more applied to drug repositioning, or new drug-protein
pairs.

Related work
Recently, great interest has been witnessed in developing
machine learning models for DTI prediction [34]. Kernel
learning was employed for DTI prediction in [35], where
the authors constructed kernels for drugs, target proteins
and the interaction matrix. DTI prediction was then per-
formed using the regularized least squares classifier. This
approach was later extended to handle new candidate
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drugs or target proteins in [36]. In [37], a semi-supervised
approach was proposed integrating similarities between
drugs and local correlations between targets into a robust
PCA model. Deep learning strategies for DTI prediction
were used in [38, 39]. An interesting multi-label classifica-
tion framework exploiting label partitioning was recently
proposed for DTI prediction in [40] as well as in the 7th
chapter of [41]. Furthermore, the authors in [42] employed
multi-domain manifold learning and semidefinite pro-
gramming for DTI prediction while in [43] it was handled
using label propagation with linear neighborhood infor-
mation. Moreover, Shi et al. [44] presented an MLkNN
[45] driven approach to predict interactions between new
candidate drugs and target proteins. The method was
based on clustering the features of the target proteins. A
second interaction matrix was constructed based on this
super-target clustering. The MLkNN was applied to both
interaction matrices and final predictions were yielded as
an integration of the individual prediction scores.MLkNN
was also used in [46] for drug side effect prediction. A
feature selection-based MLkNN method was presented,
which combined the construction of multi-label predic-
tionmodels with the determination of optimal dimensions
for drug-related feature vectors.
Many promising predictors were based on matrix fac-

torization [30]. For instance, in [47], graph regularization
was incorporated into matrix factorization. In particu-
lar, the proposed method consisted of two steps. First,
a weighted k Nearest Neighbor (k-NN) was employed,
converting the binary interaction scores into numeric
ones. Next, a graph regularization driven matrix factor-
ization method was applied. In [33], the authors proposed
a neighborhood regularized logistic matrix factorization
(NRLMF) approach. Their method incorporated neigh-
borhood regularization into logistic matrix factorization.
The performance of their approach was also enhanced by
applying a weighing scheme that favored the pairs where
an interaction occurs. In [29], another similar extension
to logistic matrix factorization (LMF) was presented. The
authors integrated LMF with multiple kernel learning and
graph Laplacian regularization.
Extensive work has been also noted in building ensem-

ble learning models. In more detail, a synergistic model
was built in [28]. It achieved a fair predictive performance
integrating predictions from multiple methods into a
Learning to Rank framework. In [48], ensemble learn-
ing was also used along with strategies tackling existing
class-imbalance in drug-target networks.
Moreover, several approaches emphasized on trans-

forming or extending the feature space, generating more
informative representations of the DTI network. Next, the
final predictions were yielded as the output of a com-
mon classifier. In [49], the authors used network (graph)
mining to extract features. Next, a Random Forest (RF)

[50] classifier was applied to predict the interactions. Sim-
ilarly in [51], the authors exploited the topology of the
DTI network to extract features. The final predictions
were performed using a Random Forest classifier. In addi-
tion, Liu et al. [52] proposed a strategy to identify highly
negative samples before applying a classifier.

Results
Evaluation metrics
In order to evaluate the proposed approach we employed
two metrics in a micro-average setup, namely area under
the receiver operating characteristic curve (AUROC)
and area under precision recall curve (AUPR). ROC
curves correspond to the true positive rate

(
TP

TP+FN

)

against the false positive rate
(

FP
FP+TN

)
at various thresh-

olds. Precision-Recall curves correspond to the Precision(
TP

TP+FP

)
against the Recall

(
TP

TP+FN

)
at various thresholds.

In Table 3 it can be seen that the interaction datasets are
very sparse, which makes the corresponding classification
task very class imbalanced. Generally, AUPR is considered
more informative than AUROC in highly imbalanced clas-
sification problems [53, 54]. Nevertheless, it is important
to note that in drug discovery the crucial value is to mini-
mize the false negatives (FN), these are interactions which
are positive but overlooked by the computational predic-
tor. Any positive in silico predictions will get validated in
the lab, whereas strong negative ones are rarely checked.

Evaluation protocol
A major point in our paper is to evaluate the contribution
of output space reconstruction to the predictive perfor-
mance of multi-output learning models. To this end, our
evaluation study begins with comparing the proposed DTI
approach (BICTR) against ensemble of bi-clustering trees
(eBICT) without output space reconstruction. Next, we
compare BICTR to three state of the art DTI prediction
methods, BLMNII [36], STC [44], and NRLMF [33]. The
method in [36] is denoted as BLMNII and is a kernel-
based local approach. The method in [44] is denoted
as super target clustering (STC). It uses MLkNN in a
target clustering-driven strategy. The methods are com-
pared in the three prediction settings presented in the
“Method” section, namely Td × Lp, Ld × Tp, and Td × Tp.
We performed comparisons independently for every set-
ting. Both BLMNII and STC are local models and the
predictions between pairs of new drugs and new targets
were performed following the standard two step approach
proposed in [26, 55].
In Td × Lp and Ld × Tp we used 10-fold cross valida-

tion (CV ) on nodes (i.e., CV on drugs and CV on targets,
respectively). It is important to clarify that when a drug
di is included in the test set of the Td × Lp setting the
whole interaction profile of di should not be present in
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the training set. The same holds for the target proteins in
the Ld × Tp setting. In Td × Tp, we used CV on blocks
of drugs and targets. For every iteration, we removed one
fold corresponding to drugs and one fold corresponding
to proteins from the learning set and used their combined
interactions as test set. When a drug-target pair (di, pj) is
included in the test set this means that the whole interac-
tion profile of both di and pj should not be present in the
training set. In Td × Tp, we used 5-fold CV over blocks of
drugs and targets (i.e., 5 × 5 = 25 folds). This was done
because the data are very sparse and the application of a
10-fold CV setting was difficult.
The number of trees in tree-ensemble algorithms was

set to 100 without tree-pruning. The parameter c in
Eq.2, which defines the weight of the positive (interact-
ing) drug-target pairs, was set equal to 5 as in [33]. All
the other parameters of NRLMF, shown in Eq. 2, were
optimized in a 5-fold CV inner tuning process (nested
CV) following grid search. More specifically, parame-
ters λd , λp,α,β as well as the optimal learning rate were
selected from a range of {2−2, 2−1, 20, 21}. The number
of nearest neighbors was selected from {3, 5, 10} and the
number of latent factors from {50, 100}. For BLMNII, we
used the rbf kernel as proposed in the corresponding
paper and tuned the linear combination weight through
5-fold CV inner tuning (nested CV), picking values in
{0.1, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5}. The number of nearest
neighbors in STC was also tuned through 5-fold CV inner
tuning (nested CV), picking values in {3, 5, 7, 9, 11}.

Obtained results
The AUROC and AUPR results are presented in Tables 1
and 2, respectively. Best results are shown in bold faces
and * indicates that the results between BICTR and its
competitor were found statistically significantly different
(p < 0.05) based on a Wilcoxon Signed-Ranks Test run
on the CV-folds. As it is reflected, BICTR outperforms
eBICT in all three prediction settings, in terms of both
AUROC and AUPR. Specifically, BICTR significantly out-
performs eBICT in every dataset in terms of AUROC. It
also achieves better AUPR results in every dataset and
setting. The only exceptions occur in the E dataset in
Td × Lp and Td × Tp where nonetheless the differences
are not statistically significant. Thus, the original hypoth-
esis that network reconstruction can boost the predictive
performance of multi-output learning models is verified.
We next evaluated BICTR by comparing it against state

of the art DTI prediction approaches and the obtained
AUROC and AUPR results are also presented in Tables 1
and 2, respectively. BICTR overall outperforms its com-
petitors, affirming its effectiveness in DTI prediction.
More specifically, BICTR surpasses BLMNII and STC
in all prediction settings, both in terms of AUROC and
AUPR. When it comes to NRLMF, BICTR yields better

Table 1 AUROC results for the compared methods

AUROC

Data BICTR eBICT NRLMF BLMNII STC

Td × Lp
NR 0.875 0.787* 0.851* 0.807* 0.794*

GR 0.894 0.857* 0.867* 0.842* 0.847*

IC 0.811 0.780* 0.792 0.737* 0.783*

E 0.891 0.827* 0.777* 0.815* 0.794*

Avg 0.868 0.813 0.822 0.800 0.805

Ld × Tp
NR 0.905 0.614* 0.747* 0.667* 0.525*

GR 0.951 0.846* 0.861* 0.776* 0.800*

IC 0.968 0.931* 0.949* 0.887* 0.909*

E 0.973 0.924* 0.940* 0.904* 0.906*

Avg 0.949 0.829 0.874 0.809 0.785

Td × Tp
NR 0.676 0.634* 0.683 0.554* 0.469*

GR 0.811 0.792* 0.800* 0.475* 0.630*

IC 0.733 0.719* 0.731 0.466* 0.649*

E 0.812 0.785* 0.749* 0.490* 0.682*

Avg 0.758 0.733 0.741 0.496 0.608

results in terms of AUROC in all settings and AUPR in
Ld×Tp. The AUPR results obtained by BICTR are inferior
in Td × Lp and Td × Tp. Nevertheless, the differences are
statistically significant only for the E dataset. In a case like
that we could deduct that BICTR is better at maximizing
true negatives (TN) while NRLMF is better at minimiz-
ing false positives (FP). In drug discovery the elimination
of false positives, albeit important, is not as crucial as in
other tasks because the possible hits or leads (i.e., posi-
tive interactions) will anyway get validated in the lab by
(medicinal) chemists.

Discussion
The obtained results indicate that output space recon-
struction can elevate the performance of multi-output
learning models, leading to more accurate DTI predic-
tions. The effectiveness of BICTR was affirmed in all
three DTI prediction settings. The contribution of the
NRLMF-based step is substantial as it reconstructs the
output space identifying potential non-reported drug-
target interactions in the training set. This especially mit-
igates the problem of class imbalance. The performance
improvement achieved by the output space reconstruc-
tion step was confirmed by conducted experiments, where
BICTR clearly outperformed eBICT.
One could identify a connection between the approach

presented in this chapter and the setting of Positive Unla-
beled data (PU) learning [56]. Here, similar to PU
learning, we acknowledge the lack of truly negative
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Table 2 AUPR results for the compared methods

AUPR

Data BICTR eBICT NRLMF BLMNII STC

Td × Lp
NR 0.480 0.444* 0.501 0.436 0.467

GR 0.334 0.329 0.349 0.312 0.324

IC 0.329 0.317* 0.329 0.213* 0.307

E 0.314 0.316 0.367* 0.255* 0.353

Avg 0.364 0.352 0.387 0.304 0.363

Ld × Tp
NR 0.555 0.424* 0.485* 0.338* 0.384*

GR 0.523 0.504* 0.406* 0.324* 0.365*

IC 0.808 0.791* 0.798 0.724* 0.779*

E 0.785 0.784 0.795* 0.735* 0.752*

Avg 0.668 0.626 0.621 0.530 0.570

Td × Tp
NR 0.160 0.151 0.168 0.100 0.080*

GR 0.156 0.156 0.168 0.042* 0.079*

IC 0.233 0.229 0.227 0.041* 0.198*

E 0.214 0.218 0.263* 0.016* 0.190*

Avg 0.191 0.189 0.207 0.050 0.137

drug-target pairs. In the first step of our approach
(matrix factorization-based) we reconstruct the interac-
tion matrix of the networks, identifying the likely positive
(interacting) drug-target pairs from the set of unlabeled
ones (zeros in the interaction matrix). The subsequent
supervised learning method is applied on a reconstructed
interaction matrix, which consists of zeros (i.e., strong
negative drug-target pairs), ones (i.e., interacting drug-
target pairs), and fuzzy values (i.e., ambiguous drug-target
pairs).
It should be also highlighted that the proposed method

follows the inductive setup as the reconstruction of the
output space takes place only in the training process. This
means that after the training process is complete, one
can perform predictions for new data (e.g., new candidate
drugs). In addition, the employed matrix factorization
step does not affect the interpretability of tree-ensemble
learning which is subsequently introduced in the pro-
posed DTI prediction method.
Furthermore, different from other approaches (e.g.,

NRLMF, STC, BLMNII), the proposed method does not
require the training instances (feature vectors) to be kept,
which can be vital for studies performed in large scale
DTI networks. BICTR is not a similarity-based method
and is perfectly applicable on other types of feature spaces.
For example, one could use GO annotations or PFAM
domains as protein related features and drug side effects
or chemical compound interactions as drug-related fea-
tures. Moreover, one could extract features from the net-
work topology. In addition, as BICTR is a tree-ensemble

method, it adopts all the advantages of decision tree
based learning. It is scalable, computationally efficient,
interpretable, and capable of handling missing values.
Moreover, synergistic learning approaches that employ

multiple classifiers to yield predictions are not consid-
ered as competitors. BICTR can be clearly integrated into
such mechanisms. The performance of BICTR can be also
boosted by feature construction methods based on graph
embeddings. Finally, we state that although matrix fac-
torization (NRLMF) was employed for reconstructing the
output space, other approaches could be used as well.

Conclusion
In this paper we have presented a new drug-target inter-
action prediction approach based on multi-output pre-
diction with output space reconstruction. We showed
that multi-output learning models can manifest supe-
rior predictive performance when built on reconstructed
networks. Tree-ensemble learning models and specifi-
cally ensembles of bi-clustering trees were deployed in
this framework, constructing an accurate and efficient
DTI prediction method. The proposed approach was
compared against state of the art DTI prediciton meth-
ods on several benchmark datasets. The obtained results
affirmed the merits of the proposed framework.
The learning method that was deployed here could be

used to perform in silico predictions on large scale drug-
target networks in the future. These predictions should
get verified later in the lab, potentially revealing novel
interactions.

Method
In this section, we first discuss about the general structure
of drug-target networks, present notations and describe
different prediction settings. We then provide a broad
description of tree-ensemble learning and multi-output
prediction. Next, we present the individual mechanisms
of bi-clustering trees and matrix factorization. Finally, the
proposed DTI prediction approach is presented.

Predicting drug-target interactions
Drug target interaction networks are heterogeneous net-
works, which are denoted as bi-partite graphs in graph
theory. A DTI network consists of two finite sets of nodes
D = {d1, · · · , d|D|} and P = {p1, · · · , p|P|}, that correspond
to drugs and target proteins, respectively. Each node is
represented by a feature vector. Drug-related features
may consist of chemical structure similarities, drug side
effects, or drug-drug interactions. Protein-related features
may consist of protein sequence similarities, GO annota-
tions, protein-protein interactions or protein functions. A
link between two nodes of a DTI network corresponds to
an existing interaction between the corresponding drug
and target protein. The set of existing or not existing
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network links form an interaction matrix Y ∈ �|D|×|P|.
Every item y(i, j) ∈ Y is equal to 1 if an interaction between
items di and pj exists and 0 otherwise.
DTI prediction, a task also denoted as DTI network

inference, can be handled as a supervised learning task
and especially as a classification task on pairs of nodes.
The goal is to build a model that receives a drug-target
pair as input and outputs a probability that an interaction
between these two pair nodes holds. In the most practical
inductive setup, the learning model is built on a training
set of drug-target pairs and after the learning process is
complete, it can perform predictions for unseen pairs.
One can perform DTI predictions for new drugs, new

target proteins, or new drug-target pairs. The latter is
clearly more challenging. Predicting interactions between
drugs and targets that are both included in the training
set is considered a semi-supervised learning task and is
not studied in this paper as we focus on supervised learn-
ing. The addressed prediction framework is demonstrated
in Fig. 2. The (Ld × Lp) is the interaction matrix Y. DTI
prediction tasks can be divided in 3 settings.

• Test drugs - Learned targets (Td × Lp): interactions
between new drug candidates and target proteins that
have been included in the learning procedure.

• Learned drugs - Test targets (Ld × Tp): interactions
between drugs that have been included in the
learning procedure and new target proteins.

• Test drugs - Test targets (Td × Tp): interactions
between new drug candidates and new target
proteins.

The aforementioned prediction setting was thoroughly
described in [26, 55, 57–59].

Multi-output tree-ensembles
Decision tree induction algorithms [60] adopt a top-down
architecture. The first node is called the root node. Every

node is recursively split after applying a test to one of the
instance features. A split quality criterion (e.g., entropy,
variance reduction etc.) is employed to measure the qual-
ity of the split. The best split is selected and the tree
growing process continues until the data contained in a
node is pure w.r.t. the labels. The tree growing can also
stop if a stopping criterion is reached. The last nodes of
the tree are called leaves. Every leaf receives a label, which
is typically the average or the majority of the labels of the
containing instances. A new (unseen) instance will tra-
verse the tree and end up in a leaf node. The label that
corresponds to this leaf is then given as a prediction to the
new instance.
Single trees often suffer from the overfitting effect and

are considered as relatively unstable models. However,
when they are extended to tree-ensembles [50], they
often achieve state-of-the-art performance. The overfit-
ting effect is also tackled by tree-ensembles. Several tree-
ensemble approaches exist. Two of the most popular and
effective ones are the random forests (RF) [50] and the
extremely randomized trees (ERT) [61]. Typically, it is
more challenging to interpret a tree-ensemble model than
a single tree-based one. Nevertheless, there are strate-
gies [62] that transform a tree-ensemble to a single tree,
avoiding this way the loss of the interpretability advan-
tage. Another advantage of tree-ensembles is their ability
to rank the features, based on their contribution to the
learning procedure. Although the predictive performance
of tree-ensembles may slightly vary based on the different
randomization seeds, they are considered as very stable
predictors.
Moreover, most tree-based learning models can easily

be applied to multi-output tasks, for example multi-label
classification [63] or multi-target regression [14]. Multi-
output models learn to predict multiple output variables
simultaneously. In a DTI prediction task, the instances can

Fig. 2 The prediction setting of a DTI network



Pliakos and Vens BMC Bioinformatics           (2020) 21:49 Page 8 of 11

be the drugs and the outputs (labels) are the drug-target
interactions. When a new drug arrives, a set of labels is
assigned to it. Each label of this set corresponds to an
interaction between this drug and a target protein.

Ensembles of bi-clustering trees
Pliakos et al. [27] proposed a bi-clustering tree for interac-
tion prediction, extending a single multi-output decision
tree to the global network setting. That tree model is
shown in Fig. 3 [27]. The model is built on pairs of
instances and predicts the interactions between them.
This method was then extended to the tree-ensemble set-
ting in [31], utilizing the ERT mechanism. The trees grow
having a random sub-set of both row and column fea-
tures as split candidates, inducing therefore a bi-clustering
of the network. A split on a row feature corresponds to
a row-wise partitioning of the matrix while a split on
a column-feature to a column-wise one. The final pre-
dictions are generated as the average of the predictions
yielded by each one of the trees that form the ensemble
collection.

NRLMF
In matrix factorization the goal is to compute two matri-
ces that, when multiplied, approximate the input matrix.
More concretely, in DTI prediction, the interactionmatrix
Y ∈ �|D|×|P| is used as input and the task is to com-
pute two matrices, namely U ∈ �|D|×k and V ∈ �|P|×k ,
so UVT ≈ Y. Matrices U and V are considered as k-
dimensional latent representations of drugs and proteins,
where k � |D|, |P|.
The Neighborhood Regularized Logistic Matrix Fac-

torization (NRLMF) [33] is principally based on LMF,
modelling the probability ŷij that a drug di interacts with a
target protein pj as follows.

ŷij =
exp

(
uivTj

)

1 + exp
(
uivTj

) (1)

The k-dimensional vectors ui and vj are latent representa-
tions of di and pj, respectively. The original LMF expres-
sion is extended with two regularization terms which
contribute to avoid overfitting and two graph regular-
ization terms that capture the drug corresponding and
protein corresponding neighborhood information. More
thoroughly, the two regularization terms that appear in
the second line of Eq. (2) stem from the application of
zero-mean Gaussian priors on the latent vectors of all
drugs and targets. They prevent overfitting by favoring
simple solutions that consist of relatively small values.
The next two terms are graph regularization terms that
contribute to the optimization procedure by learning the
underlying manifolds in the data. The final objective func-
tion that is yielded is shown below:

min
U,V

|D|∑
i=1

|P|∑
j=1

(1 + cYij − Yij) ln
[
1 + exp

(
uivTj

)]
− cYijuivTj

+ λd||U||2F + λp||V||2F
+ αTr

(
UTLdU

)
+ βTr

(
VTLpV

)
(2)

Parameters λd, λp, α, and β control the regularization
terms while parameter c (c ≥ 1) expresses the weight
of observed interacting drug-target pairs to the optimiza-
tion process. The idea was that these interacting pairs
have been experimentally verified and are therefore more
important than unknown pairs (i.e., Yij = 0). By adjust-
ing c, we specify the importance level of interacting pairs
to the optimization process. Moreover, when c > 1 each
interaction pair is treated as c positive pairs. This con-
tributes to the mitigation of the class-imbalance problem.

Fig. 3 Illustration of a bi-clustering tree along with the corresponding interaction matrix that is partitioned by that tree. Let φd and φp be the
features of the row and column instances, respectively
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Bi-clustering trees with output space reconstruction
In our DTI task we assume that there are originally no
truly negative drug-target pairs but only positive and unla-
beled ones, which can be either positive (not reported yet)
or negative. This setting is often referred to as Positive-
Unlabeled (PU) learning setting [56]. The proposed
approach learns bi-clustering trees with output space
reconstruction (BICTR). This way tree-ensemble learn-
ing, a powerful supervised learning family of algorithms, is
integrated with semi-supervised driven approaches, such
as matrix factorization. Here, we promote ensembles of
bi-clustering trees and NRLMF.
We first reconstruct the output space, exploiting neigh-

borhood information, revealing underlying manifolds
in the topology of the DTI network (i.e., interaction
matrix) and alleviating class-imbalance. The input of our
approach is the drug-related feature space Xd, the target-
related feature space Xp, and the interaction matrix Y.
We reconstruct the DTI network by learning matrices
U and V based on Eq. 2. The new interaction matrix is
denoted as Ŷ and every ŷij ∈ Ŷ is computed as in Eq. 1.
Although actually interacting pairs of the network have
already received an increased level of importance through
the reconstruction process, we support even further the
verified interactions as follows:

ŷij =
{
1, if yij = 1
ŷij, otherwise. (3)

Next, we learn eBICT on the reconstructed target space.
In more detail, the input for every tree in our ensemble is
the drug-related feature space Xd, the target-related fea-
ture space Xp, and the reconstructed interaction matrix
Ŷ. The root node of every tree in our setting contains
the whole interaction network and a partitioning of this
network is conducted in every node. The tree growing
process is based on both vertical and horizontal splits
of the reconstructed interaction matrix Ŷ. The variance
reduction is computed as Var = ∑|P|

j Var
(
Ŷj

)
when the

split test is on φd ∈ Xd and Var = ∑|D|
i Var

(
ŶT
i

)
when

the split test is on a φp ∈ Xp.
The NRLMF-based target space reconstruction step of

the proposed DTI prediction strategy boosts the predic-
tive performance of the eBICT while preserving all the
advantages of tree-ensembles, such as scalability, com-
putational efficiency, and interpretability. An analysis of
the computational efficiency and interpretability of bi-
clustering trees took place in [27]. The approach that
is proposed here, despite being integrated with matrix
factorization, continues to follow the inductive setup. In
more detail, the output space reconstruction process takes
place only in the training process. After the trainingmodel
is complete, new instances that may arrive (e.g., new can-
didate drugs) just traverse the grown bi-clustering trees

Table 3 The drug-protein networks (DPN) used in the
experimental evaluation are presented

DPN |drugs| × |proteins| |Features| |interactions|
NR 54 × 26 54 − 26 90/1404 (6.4%)

GR 223 × 95 223 − 95 635/21185 (3%)

IC 210 × 204 210 − 204 1476/42840 (3.4%)

E 445 × 664 445 − 664 2926/295480 (1%)

and predictions are assigned to them based on the leaves
in which they end up.

Data
We employed 4 benchmark datasets that represent drug-
target interaction networks [64]. The characteristics of
each network are shown in Table 3. More specifically, this
table contains the number of drugs, proteins, and exist-
ing interactions in every network. The number of features
used to represent each sample (drug or protein) is also
displayed.
The datasets in [64] correspond to 4 drug-target inter-

action networks where the interactions between drugs
and target proteins are represented as binary values. In
these networks, compounds interact with proteins that
belong to 4 pharmaceutically useful categories: nuclear
receptors (NR), G-protein-coupled receptors (GR), ion
channels (IC), and enzymes (E). The features that describe
the drugs are similarities based on their chemical struc-
ture. The features representing the target proteins cor-
respond to similarities based on the alignment of pro-
tein sequences. The sequence similarities were calculated
according to the normalized Smith-Waterman score.
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13. Waegeman W, Dembczyński K, Hüllermeier E. Multi-target prediction: a
unifying view on problems and methods. Data Min Knowl Disc.
20181–32. https://doi.org/10.1007/s10618-018-0595-5.

14. Kocev D, Vens C, Struyf J, Džeroski S. Tree ensembles for predicting
structured outputs. Pattern Recog. 2013;46(3):817–33. https://doi.org/10.
1016/j.patcog.2012.09.023.

15. Tsoumakas G, Katakis I. Multi-label classification: An overview. Int J Data
Warehous Min. 2007;3(3):1–13.

16. Zhang ML, Zhou ZH. A review on multi-label learning algorithms. IEEE
Trans Knowl Data Eng. 2014;26(8):1819–37. https://doi.org/10.1109/TKDE.
2013.39.

17. Hopkins AL. Network pharmacology: the next paradigm in drug discovery.
Nat Chem Biol. 2008;4(11):682–90. https://doi.org/10.1038/nchembio.118.

18. Pei J, Yin N, Ma X, Lai L. Systems Biology Brings New Dimensions for
Structure-Based Drug Design. J Am Chem Soc. 2014;136(33):11556–65.
https://doi.org/10.1021/ja504810z.

19. Chen X, Yan CC, Zhang XX, Zhang XX, Dai F, Yin J, Zhang Y. Drug-target
interaction prediction: databases, web servers and computational models.
Brief Bioinforma. 2016;17(4):696–712. https://doi.org/10.1093/bib/bbv066.

20. Xie L, Xie L, Kinnings SL, Bourne PE. Novel Computational Approaches to
Polypharmacology as a Means to Define Responses to Individual Drugs.
Ann Rev Pharmacol Toxicol. 2012;52(1):361–379. https://doi.org/10.1146/
annurev-pharmtox-010611-134630.

21. Zimmermann GR, Lehár J, Keith CT. Multi-target therapeutics: when the
whole is greater than the sum of the parts. Drug Discov Today.
2007;12(1-2):34–42. https://doi.org/10.1016/j.drudis.2006.11.008.

22. Ding P, Yin R, Luo J, Kwoh CK. Ensemble Prediction of Synergistic Drug
Combinations Incorporating Biological, Chemical, Pharmacological and
Network Knowledge. IEEE J Biomed Health Inform. 2018. https://doi.org/
10.1109/JBHI.2018.2852274.

23. Bleakley K, Biau G, Vert J-P. Supervised reconstruction of biological
networks with local models,. Bioinformatics (Oxford, England).
2007;23(13):57–65. https://doi.org/10.1093/bioinformatics/btm204.

24. Vert J-P, Qiu J, Noble WS. A new pairwise kernel for biological network
inference with support vector machines. BMC Bioinformatics.
2007;8(Suppl 10):8. https://doi.org/10.1186/1471-2105-8-S10-S8.

25. Vert J-P. Reconstruction of Biological Networks by Supervised Machine
Learning Approaches. In: Elements of Computational Systems Biology.
Hoboken: John Wiley & Sons, Inc.; 2010. p. 163–188. https://doi.org/10.
1002/9780470556757.ch7. http://doi.wiley.com/10.1002/9780470556757.
ch7.

26. Schrynemackers M, Wehenkel L, Babu MM, Geurts P. Classifying pairs
with trees for supervised biological network inference,. Mol BioSyst.
2015;11(8):2116–25. https://doi.org/10.1039/c5mb00174a.

27. Pliakos K, Geurts P, Vens C. Global multi-output decision trees for
interaction prediction. Mach Learn. 2018;107(8-10):1257–81. https://doi.
org/10.1007/s10994-018-5700-x.

28. Yuan Q, Gao J, Wu D, Zhang S, Mamitsuka H, Zhu S. DrugE-Rank:
improving drug-target interaction prediction of new candidate drugs or
targets by ensemble learning to rank. Bioinformatics. 2016;32(12):18–27.
https://doi.org/10.1093/bioinformatics/btw244.

29. Bolgár B, Antal P. VB-MK-LMF: fusion of drugs, targets and interactions
using variational Bayesian multiple kernel logistic matrix factorization.
BMC Bioinforma. 2017;18(1):440. https://doi.org/10.1186/s12859-017-
1845-z.

30. Ezzat A, Wu M, Li X-L, Kwoh C-K. Computational prediction of
drug-target interactions using chemogenomic approaches: an empirical
survey. Brief Bioinforma. 2018. https://doi.org/10.1093/bib/bby002.

31. Pliakos K, Vens C. Network inference with ensembles of bi-clustering
trees. BMC Bioinforma. 2019;20(1):525. https://doi.org/10.1186/s12859-
019-3104-y.

32. Madeira SC, Oliveira AL. Biclustering algorithms for biological data
analysis: a survey. IEEE/ACM Trans Comput Biol Bioinforma. 2004;1(1):
24–45. https://doi.org/10.1109/TCBB.2004.2.

33. Liu Y, Wu M, Miao C, Zhao P, Li X-L. Neighborhood Regularized Logistic
Matrix Factorization for Drug-Target Interaction Prediction. PLOS Comput
Biol. 2016;12(2):1004760. https://doi.org/10.1371/journal.pcbi.1004760.

34. Zhang W, Lin W, Zhang D, Wang S, Shi J, Niu Y. Recent Advances in the
Machine Learning-Based Drug-Target Interaction Prediction. Curr Drug
Metab. 2019;20(3):194–202. https://doi.org/10.2174/
1389200219666180821094047.

35. van Laarhoven T, Nabuurs SB, Marchiori E. Gaussian interaction profile
kernels for predicting drug-target interaction. Bioinformatics. 2011;27(21):
3036–43. https://doi.org/10.1093/bioinformatics/btr500.

36. Mei J-P, Kwoh C-K, Yang P, Li X-L, Zheng J. Drug-target interaction
prediction by learning from local information and neighbors.
Bioinformatics. 2013;29(2):238–45. https://doi.org/10.1093/
bioinformatics/bts670.

37. Peng L, Liao B, Zhu W, Li Z, Li K. Predicting Drug-Target Interactions
with Multi-Information Fusion. IEEE J Biomed Health Inform. 2017;21(2):
561–72. https://doi.org/10.1109/JBHI.2015.2513200.

38. Zong N, Kim H, Ngo V, Harismendy O. Deep mining heterogeneous
networks of biomedical linked data to predict novel drug-target
associations. Bioinformatics. 2017;33(15):2337–44. https://doi.org/10.
1093/bioinformatics/btx160.

39. Wen M, Zhang Z, Niu S, Sha H, Yang R, Yun Y, Lu H.
Deep-Learning-Based Drug-Target Interaction Prediction. J Proteome.
2017;16(4):1401–9. https://doi.org/10.1021/acs.jproteome.6b00618.

40. Pliakos K, Vens C, Tsoumakas G. Predicting drug-target interactions with
multi-label classification and label partitioning. IEEE/ACM Trans Comput
Biol Bioinforma. 2019. https://doi.org/10.1109/TCBB.2019.2951378.

https://doi.org/10.1016/J.DRUDIS.2011.06.013
https://doi.org/10.1038/nature08506
https://doi.org/10.1038/nature11159
https://doi.org/10.1038/nrd1468
https://doi.org/10.1093/bib/bbw012
https://doi.org/10.1093/bib/bbv020
https://doi.org/10.1038/nrd3078
https://doi.org/10.1016/j.healthpol.2010.12.002
https://doi.org/10.1371/journal.pcbi.0030116
https://doi.org/10.1371/journal.pcbi.0030116
https://doi.org/10.1007/s10916-011-9710-5
https://doi.org/10.1007/s10916-011-9710-5
https://doi.org/10.1093/bioinformatics/btx438
http://arxiv.org/abs/arXiv:1011.1669v3
http://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1007/s10618-018-0595-5
https://doi.org/10.1016/j.patcog.2012.09.023
https://doi.org/10.1016/j.patcog.2012.09.023
https://doi.org/10.1109/TKDE.2013.39
https://doi.org/10.1109/TKDE.2013.39
https://doi.org/10.1038/nchembio.118
https://doi.org/10.1021/ja504810z
https://doi.org/10.1093/bib/bbv066
https://doi.org/10.1146/annurev-pharmtox-010611-134630
https://doi.org/10.1146/annurev-pharmtox-010611-134630
https://doi.org/10.1016/j.drudis.2006.11.008
https://doi.org/10.1109/JBHI.2018.2852274
https://doi.org/10.1109/JBHI.2018.2852274
https://doi.org/10.1093/bioinformatics/btm204
https://doi.org/10.1186/1471-2105-8-S10-S8
https://doi.org/10.1002/9780470556757.ch7
https://doi.org/10.1002/9780470556757.ch7
http://doi.wiley.com/10.1002/9780470556757.ch7
http://doi.wiley.com/10.1002/9780470556757.ch7
https://doi.org/10.1039/c5mb00174a
https://doi.org/10.1007/s10994-018-5700-x
https://doi.org/10.1007/s10994-018-5700-x
https://doi.org/10.1093/bioinformatics/btw244
https://doi.org/10.1186/s12859-017-1845-z
https://doi.org/10.1186/s12859-017-1845-z
https://doi.org/10.1093/bib/bby002
https://doi.org/10.1186/s12859-019-3104-y
https://doi.org/10.1186/s12859-019-3104-y
https://doi.org/10.1109/TCBB.2004.2
https://doi.org/10.1371/journal.pcbi.1004760
https://doi.org/10.2174/1389200219666180821094047
https://doi.org/10.2174/1389200219666180821094047
https://doi.org/10.1093/bioinformatics/btr500
https://doi.org/10.1093/bioinformatics/bts670
https://doi.org/10.1093/bioinformatics/bts670
https://doi.org/10.1109/JBHI.2015.2513200
https://doi.org/10.1093/bioinformatics/btx160
https://doi.org/10.1093/bioinformatics/btx160
https://doi.org/10.1021/acs.jproteome.6b00618
https://doi.org/10.1109/TCBB.2019.2951378


Pliakos and Vens BMC Bioinformatics           (2020) 21:49 Page 11 of 11

41. Pliakos K. Mining Biomedical Networks Exploiting Structure and
Background Information. Belgium: KU Leuven; 2019.

42. Cai R, Zhang Z, Parthasarathy S, Tung AKH, Hao Z, Zhang W.
Multi-domain manifold learning for drug-target interaction prediction. In:
16th SIAM International Conference on Data Mining 2016; 2016. p. 18–26.
https://doi.org/10.1137/1.9781611974348.3.

43. Zhang W, Chen Y, Li D. Drug-target interaction prediction through label
propagation with linear neighborhood information. Molecules.
2017;22(12):. https://doi.org/10.3390/molecules22122056.

44. Shi J-Y, Yiu S-M, Li Y, Leung HCM, Chin FYL. Predicting drug-target
interaction for new drugs using enhanced similarity measures and
super-target clustering. Methods. 2015;83:98–104. https://doi.org/10.
1016/J.YMETH.2015.04.036.

45. Zhang M-L, Zhou Z-H. ML-KNN: A lazy learning approach to multi-label
learning. Pattern Recog. 2007;40(7):2038–48. https://doi.org/10.1016/J.
PATCOG.2006.12.019.

46. Zhang W, Liu F, Luo L, Zhang J. Predicting drug side effects by
multi-label learning and ensemble learning. BMC Bioinforma. 2015;16(1):
365. https://doi.org/10.1186/s12859-015-0774-y.

47. Ezzat A, Zhao P, Wu M, Li X-L, Kwoh C-K. Drug-Target Interaction
Prediction with Graph Regularized Matrix Factorization, Vol. 14; 2017. p.
646–56.

48. Ezzat A, Wu M, Li X-L, Kwoh C-K. Drug-target interaction prediction via
class imbalance-aware ensemble learning. BMC Bioinforma. 2016;17(S19):
509. https://doi.org/10.1186/s12859-016-1377-y.

49. Olayan RS, Ashoor H, Bajic VB. DDR: efficient computational method to
predict drug-target interactions using graph mining and machine
learning approaches. Bioinformatics. 2017;34(7):1164–73. https://doi.org/
10.1093/bioinformatics/btx731.

50. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32. http://dx.doi.
org/10.1023/A:1010933404324.

51. Li Z-C, Huang M-H, Zhong W-Q, Liu Z-Q, Xie Y, Dai Z, Zou X-Y.
Identification of drug-target interaction from interactome network with
’guilt-by-association’ principle and topology features. Bioinformatics.
2016;32(7):1057–64. https://doi.org/10.1093/bioinformatics/btv695.

52. Liu H, Sun J, Guan J, Zheng J, Zhou S. Improving compound-protein
interaction prediction by building up highly credible negative samples.
Bioinformatics. 2015;31(12):221–9. https://doi.org/10.1093/
bioinformatics/btv256.

53. Davis J, Goadrich M. The relationship between Precision-Recall and ROC
curves. In: Proceedings of the 23rd International Conference on Machine
Learning - ICML ’06. New York: ACM Press; 2006. p. 233–240. https://doi.
org/10.1145/1143844.1143874.

54. Saito T, Rehmsmeier M. The Precision-Recall Plot Is More Informative than
the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets.
PLOS ONE. 2015;10(3):0118432. https://doi.org/10.1371/journal.pone.
0118432.

55. Stock M., Pahikkala T., Airola A., De Baets B., Waegeman W. Efficient
Pairwise Learning Using Kernel Ridge Regression: an Exact Two-Step
Method. arXiv preprint arXiv:1606.04275. 2016. http://arxiv.org/abs/1606.
04275.

56. Bekker J, Davis J. Learning From Positive and Unlabeled Data: A Survey.
2018. http://arxiv.org/abs/1811.04820.

57. Pahikkala T, Airola A, Pietilä S, Shakyawar S, Szwajda A, Tang J,
Aittokallio T. Toward more realistic drug-target interaction predictions,.
Brief Bioinforma. 2015;16(2):325–37. https://doi.org/10.1093/bib/bbu010.

58. Shi J-Y, Li J-X, Chen B-L, Zhang Y. Inferring Interactions between Novel
Drugs and Novel Targets via Instance-Neighborhood-Based Models,. Curr
Protein Pept Sci. 2018;19(5):488–97. https://doi.org/10.2174/
1389203718666161108093907.

59. Shi JY, Zhang AQ, Zhang SW, Mao KT, Yiu SM. A unified solution for
different scenarios of predicting drug-target interactions via triple matrix
factorization. BMC Syst Biol. 2018;12:. https://doi.org/10.1186/s12918-
018-0663-x.

60. Breiman L. Classification and Regression Trees; 1984. https://doi.org/10.
1201/9781315139470.

61. Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Mach Learn.
2006;63(1):3–42. https://doi.org/10.1007/s10994-006-6226-1.

62. Van Assche A, Blockeel H. Seeing the Forest Through the Trees: Learning
a Comprehensible Model from an Ensemble. In: Machine Learning: ECML

2007. Lecture Notes in Computer Science, Vol 4701. Springer; 2007. p.
418–429. https://doi.org/10.1007/978-3-540-74958-5_39.

63. Tsoumakas G, Katakis I, Vlahavas I. Mining Multi-label Data. Data Min
Knowl Discov Handbook. 2010667–685. https://doi.org/10.1007/978-0-
387-09823-4_34.

64. Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M. Prediction of
drug-target interaction networks from the integration of chemical and
genomic spaces. Bioinformatics. 2008;24(13):232–40. https://doi.org/10.
1093/bioinformatics/btn162.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1137/1.9781611974348.3
https://doi.org/10.3390/molecules22122056
https://doi.org/10.1016/J.YMETH.2015.04.036
https://doi.org/10.1016/J.YMETH.2015.04.036
https://doi.org/10.1016/J.PATCOG.2006.12.019
https://doi.org/10.1016/J.PATCOG.2006.12.019
https://doi.org/10.1186/s12859-015-0774-y
https://doi.org/10.1186/s12859-016-1377-y
https://doi.org/10.1093/bioinformatics/btx731
https://doi.org/10.1093/bioinformatics/btx731
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
https://doi.org/10.1093/bioinformatics/btv695
https://doi.org/10.1093/bioinformatics/btv256
https://doi.org/10.1093/bioinformatics/btv256
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1371/journal.pone.0118432
http://arxiv.org/abs/1606.04275
http://arxiv.org/abs/1606.04275
http://arxiv.org/abs/1811.04820
https://doi.org/10.1093/bib/bbu010
https://doi.org/10.2174/1389203718666161108093907
https://doi.org/10.2174/1389203718666161108093907
https://doi.org/10.1186/s12918-018-0663-x
https://doi.org/10.1186/s12918-018-0663-x
https://doi.org/10.1201/9781315139470
https://doi.org/10.1201/9781315139470
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/978-3-540-74958-5_39
https://doi.org/10.1007/978-0-387-09823-4_34
https://doi.org/10.1007/978-0-387-09823-4_34
https://doi.org/10.1093/bioinformatics/btn162
https://doi.org/10.1093/bioinformatics/btn162

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Multi-output prediction in drug discovery
	DTI networks
	Introduction to the proposed method
	Related work

	Results
	Evaluation metrics
	Evaluation protocol
	Obtained results

	Discussion
	Conclusion
	Method
	Predicting drug-target interactions
	Multi-output tree-ensembles
	Ensembles of bi-clustering trees
	NRLMF
	Bi-clustering trees with output space reconstruction

	Data
	Consent to publish
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	References
	Publisher's Note

