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Abstract

Transcriptomic profiling of complex tissues by single-nucleus RNA-sequencing (snRNA-

seq) affords some advantages over single-cell RNA-sequencing (scRNA-seq). snRNA-seq

provides less biased cellular coverage, does not appear to suffer cell isolation-based tran-

scriptional artifacts, and can be applied to archived frozen specimens. We used well-

matched snRNA-seq and scRNA-seq datasets from mouse visual cortex to compare cell

type detection. Although more transcripts are detected in individual whole cells (~11,000

genes) than nuclei (~7,000 genes), we demonstrate that closely related neuronal cell types

can be similarly discriminated with both methods if intronic sequences are included in

snRNA-seq analysis. We estimate that the nuclear proportion of total cellular mRNA varies

from 20% to over 50% for large and small pyramidal neurons, respectively. Together, these

results illustrate the high information content of nuclear RNA for characterization of cellular

diversity in brain tissues.

Introduction

Cell types in mammalian brain have been defined based on various properties including their

morphology, electrophysiology, and gene expression [1–3]. scRNA-seq has emerged as a high-

throughput method for quantification of the majority of transcripts in thousands of cells [4].

Similarities and differences in gene expression at the single cell level characterized by scRNA-

seq have revealed diverse cell types in many mouse brain regions, including neocortex [5–7],

hypothalamus [8], and retina [9,10].

However, scRNA-seq profiling does not provide an unbiased survey of neural cell types.

Some cell types are more vulnerable to the tissue dissociation process and are underrepre-

sented in the final data set. For example, in mouse neocortex, fast-spiking parvalbumin-posi-

tive interneurons and subcortically projecting glutamatergic neurons in layer 5 are observed in
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lower proportions than expected and need to be selectively enriched using Cre-driver lines to

achieve sufficient sampling [6]. In adult human neocortex, non-neuronal cells survive dissocia-

tion better than neurons and are over-represented in single cell suspensions [11]. In contrast

to whole cells, nuclei are more resistant to mechanical assaults and can be isolated from frozen

tissue [12,13]. Individual nuclei have been shown to provide sufficient gene expression infor-

mation to define relatively broad cell classes in adult human brain [14,15] and mouse hippo-

campus [16].

However, previous studies have not investigated if individual nuclei contain sufficient

diversity and number of transcripts to enable discrimination of closely related cell types at a

resolution comparable to whole cells. A recent study compared clustering results for single

nuclei and whole cells isolated from the mouse somatosensory cortex [17], but it only showed

similar ability to distinguish two highly distinct cell classes: superficial- and deep-layer excit-

atory neurons. Additionally, a recent study using droplet-based high throughput sequencing

of human nuclei showed that broad cell classes in human brain could be successfully mapped

to corresponding broad classes in mouse [18].

In this study, we investigated differences in mRNA composition and information content

between nuclei and whole cells, and the ability to detect cell types by high-depth RNA-

sequencing of single cells and single nuclei. For this purpose, we focused on well-matched sets

of cells and nuclei: 463 nuclei and 463 whole cells from layer 5 of adult mouse primary visual

cortex (VISp). We selected VISp because it contains a known variety of distinguishable yet

highly similar cell types [5] that would reveal the cell type detection limit of RNA-seq data

obtained from single cells or nuclei. The cells and nuclei were processed by the same experi-

mental and computational methods. We find that although the nuclear content and propor-

tion of mRNA vary among cell types, nuclei contain enough informative transcripts to identify

highly related neuronal cell types with resolution similar to whole cells.

Results

RNA-seq profiling of single nuclei and single cells

We isolated 487 NeuN-positive single nuclei from layer 5 of mouse VISp using fluorescence

activated cell sorting (FACS). Anti-NeuN staining was performed to enrich for neurons. In

parallel, we isolated 12,866 tdT-positive single cells by FACS from all layers of mouse VISp

and a variety of Cre-driver lines. Whole cells were collected as part of a larger study on cortical

cell type diversity, which contains a complete description of all Cre-driver lines used for cell

collection [6]. For both single nuclei and cells, poly(A)-transcripts were reverse transcribed

and amplified with SMART-Seq v4, cDNA was tagmented by Nextera XT, and resulting librar-

ies were sequenced to an average depth of 2.5 million reads (Fig 1A). RNA-seq reads were

mapped to the mouse genome using the STAR aligner [19]. Gene expression was quantified as

the sum of intronic and exonic reads per gene and was normalized as counts per million

(CPM) and log2-transformed. For each nucleus and cell, the probabilities of gene detection

dropouts were estimated as a function of average expression level based on empirical noise

models [20].

463 out of 487 single nuclei (95%) passed quality control metrics. Each nucleus was

matched to the most similar nucleus and cell based on the maximum correlated expression of

all genes, weighted for gene dropouts based on noise models estimated for each nucleus and

cell. Nuclei had similarly high pairwise correlations to cells as to other nuclei, suggesting that

cells and nuclei were well matched (Fig 1B). As expected, matched cells were derived almost

exclusively from layer 5 and adjacent layers 4 and 6, and from Cre-driver lines that labeled

Single-nucleus and single-cell RNA-seq capture cortical neuron diversity
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cells in layer 5 (Fig 1C and S1 Fig). The small minority of matched cells isolated from superfi-

cial layers were GABAergic interneurons that have been detected in many layers [6].

Comparison of nuclear and whole cell transcriptomes

scRNA-seq profiles nuclear and cytoplasmic transcripts, whereas snRNA-seq profiles mostly

nuclear transcripts (although some transcripts may be attached to the rough endoplasmic

reticulum and partially retained in nuclear preps). Therefore, we expect that RNA-seq reads

will differ between nuclei and cells. In nuclei, more than 50% of reads that aligned to the

mouse genome did not map to known spliced transcripts but mapped within gene boundaries

but outside exons. They were therefore annotated as intronic reads (Fig 2A). In contrast, more

than half of cells had less than 30% intronic reads. A minority of cells had close to 50% intronic

reads, similar to nuclei. Median gene detection based on exonic reads was lower for nuclei

(~5,000 genes) than for cells (~9,500). Including both intronic and exonic reads increased

gene detection for nuclei (~7,000) and cells (~11,000), demonstrating that intronic reads pro-

vided additional information not captured by exons. Gene detection was largely saturated

using 2.5 million reads per sample and was consistently higher for cells than nuclei at lower

read depths (S2A Fig). Whole-brain control RNA displayed higher read mapping to exons and

Fig 1. Identification of an expression-matched set of single nuclei and whole cells from mouse primary visual cortex (VISp). (A) Whole brains

were dissected from transgenic mice, sectioned into coronal slices, and individual layers of VISp were microdissected. Nuclei were dissociated from

layer 5, stained with DAPI and against the neuronal marker NeuN. Single NeuN-positive nuclei were isolated by fluorescence-activated cell sorting

(FACS). In parallel, whole cells were dissociated from all layers, and single td-Tomato-positive cells were isolated from multiple different Cre-driver

lines. Single nucleus and cell mRNA were reverse-transcribed, amplified, and sequenced to measure genome-wide gene expression levels. (B) Left: 463

nuclei from layer 5 and 12,866 whole cells from all layers, which passed quality control metrics were used to determine expression correlation between

each nucleus and every other nucleus and cell. Expression similarity can vary based on sample quality, so nuclei were compared to each other to

provide a baseline expected similarity. For each nucleus, the best matching nucleus and cell were selected based on maximal correlation. Right: Cells

and nuclei displayed comparable expression similarities to all nuclei, with average correlation equal to 0.70 and 95% of correlations between 0.63 and

0.78. This suggested that nuclei and cells were well matched. (C) Chromogenic RNA in situ hybridization (ISH) for tdTomato mRNA in VISp of

transgenic mice (Cre-lines crossed to Ai14 Cre reporter [21]). Shown are the tissue sections from 4 Cre-driver lines from which the majority of the

best-matching cells to L5 nuclei were derived. As expected, all Cre-lines label cells in layer 5 and adjacent layers.

https://doi.org/10.1371/journal.pone.0209648.g001
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lower mapping to introns as compared to cells, showing that non-nuclear transcripts com-

posed a larger fraction of control RNA than cells (Fig 2A). Control RNA may include more

non-nuclear transcripts because this RNA is isolated from bulk tissue and may be dominated

by shared highly expressed cytoplasmic transcripts. Moreover, bulk RNA likely captures more

transcripts in distal processes that are lost in dissociated single cells.

Gene expression levels measured in cells of the same type can vary due to biological factors,

for example differences in cell state and stochastic transcription [22–24], and due to missed

detection also known as “gene dropouts”. Gene dropouts were higher in nuclei than in cells

(S2B Fig), and expression correlations were higher and variability lower between pairs of cells

than between pairs of nuclei (Fig 2B). To assess the contribution of gene dropouts to expres-

sion variability, empirical noise models were fit to nuclei and cells, and correlations were

adjusted to account for dropouts. Correlations similarly increased for both cells and nuclei

suggesting that biological effects were a major contributor to higher expression variability

among nuclei, and this is consistent with nuclei acting as a transcriptional buffer to dampen

gene expression noise in the cell [25].

A majority of expressed genes (21,279; 63%) showed similar detection (<10% difference) in

nuclei and cells, whereas 7,217 genes (21%) were detected in at least 25% more cells than nuclei

(Fig 2C and S1 Table). For nuclei, including intronic reads increased detection of 1334 genes

by more than 25% compared to using exonic reads alone. Surprisingly, 83% of these genes

Fig 2. Comparison of nuclear and whole cell transcriptomes. (A) Left: Percentage of RNA-seq reads mapping to genomic regions for cells, nuclei, and whole-brain

control RNA. Bars indicate median and 25th and 75th quantiles. Among cells, exonic and intronic read percentages display bimodal distributions. Right: Gene detection

(counts per million, CPM> 0) based on read mapping to exons, introns, or both introns and exons. (B) Left: The most similar pair of cells have more highly correlated

gene expression (r = 0.92) than the most similar pair of nuclei (r = 0.76), due to fewer gene dropouts in cells. Right: Cells have consistently more similar expression to

each other than nuclei, even after correcting for gene dropouts based on expression noise models. (C) Left: Binned scatter plot showing all genes are detected (CPM> 0)

with equal or greater reliability in cells than in nuclei. Black lines show the variation in detection that is expected by chance (95% confidence interval). Right: Binned

scatter plot showing 0.4% of genes are significantly more highly expressed in nuclei, and 20.5% of genes are more highly expressed in cells (for both comparisons, fold

change> 1.5, adjusted P-value< 0.05). The log-transformed color scale indicates the number of genes in each bin. (D) Examples of nucleus-enriched transcripts

involved in neuronal connectivity, synaptic transmission, and intrinsic firing properties and cell-enriched transcripts related to mRNA processing and protein

translation and degradation. In addition, expression of immediate early genes is up to 10-fold higher in cells.

https://doi.org/10.1371/journal.pone.0209648.g002
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were protein-coding genes that were significantly enriched for neuronal functions, including

synaptic transmission, axon projection, and cell adhesion (data not shown). These genes had

low to medium expression in cells and were more likely to be markers of cell types than

expressed genes overall (S2C Fig).

8,614 genes have significantly higher expression in cells than nuclei (>1.5 fold expression;

FDR< 0.05), and many are involved in house-keeping functions such as mRNA processing

and translation (S2D Fig). Genetic markers of neuronal activity, such as immediate early genes

Fos, Egr1, and Arc also displayed up to 10-fold increased expression in cells, potentially a

byproduct of tissue dissociation [13]. 159 genes displayed significantly higher expression in

nuclei (Fig 2D and S2 Table), and they appear relevant to neuronal identity as they include

connectivity and signaling genes (S2D Fig and S3 Table). Based on the sum of intronic and

exonic reads, these 159 nucleus-enriched genes are on average more than 10-fold longer than

cell-enriched genes (S2E Fig). A similar observation was recently reported for mRNAs

enriched in single nuclei in mouse somatosensory cortex [17]. We did not normalize expres-

sion levels for gene length because effective lengths can be highly variable due to differential

transcript processing among cells. Therefore, these 159 genes may appear nucleus-enriched

because of many reads mapping to long intronic reads rather than an increase in the absolute

number of transcripts in the nucleus. Indeed, when only exonic reads were used to quantify

expression in nuclei and cells, a different set of 146 genes was significantly enriched in nuclei

(S4 Table). These genes were only slightly longer than cell-enriched genes, so likely reflected a

true nuclear enrichment of transcripts. They were not associated with neuron-specific func-

tions, and were significantly enriched for genes that participate in pre-mRNA splicing. These

differences in gene expression enrichment based on the inclusion of intronic reads highlighted

the need to more directly estimate the nuclear fraction of transcripts, which we address in a

later section.

Intronic reads are required for high-resolution cell type identification from

snRNA-seq

Next, we applied an iterative clustering procedure (see Methods and S3 Fig) to identify clusters

of single nuclei and cells that share gene expression profiles. To assess cluster robustness, we

repeated clustering 100 times using random subsets of 80% nuclei and cells and calculated the

proportion of clustering runs in which each pair of samples clustered together. Co-clustering

matrices were reordered by Ward’s hierarchical clustering and represented as heatmaps with

coherent clusters ordered as squares along the diagonal (Fig 3A and 3B).

Clustering includes two steps–selection of differentially expressed (DE) genes and distance

measurement–that are particularly sensitive to expression quantification. We repeated cluster-

ing using intronic and exonic reads or only exonic reads for these steps, and ordered co-cluster-

ing matrices to match the results using all reads for both steps. When using introns and exons,

we found 11 distinct clusters of nuclei and cells, and clusters had similar cohesion (average

within cluster co-clustering) and separation (average co-clustering difference with the closest

cluster) (Fig 3C). Including intronic reads for either clustering step increased the number of

clusters detected for nuclei but not cells and was likely due to improved detection of cell type

informative genes (S2C Fig). Therefore, accounting for intronic reads in snRNA-seq was critical

to enable high-resolution cluster detection comparable to that observed with scRNA-seq.

Comparable cell types identified with nuclei and cells

We used hierarchical clustering of median gene expression values for each cluster to determine

the relationships between clusters. This analysis revealed that cluster relationships represented

Single-nucleus and single-cell RNA-seq capture cortical neuron diversity

PLOS ONE | https://doi.org/10.1371/journal.pone.0209648 December 26, 2018 5 / 24

https://doi.org/10.1371/journal.pone.0209648


as dendrograms are similar for nuclei and cells (Fig 4A). We compared the 11 clusters identi-

fied from both the single nucleus and single cell datasets to previously reported cell types in

mouse VISp [5]. Based on highly correlated (r> 0.85) expression of hundreds of marker

genes, each cluster corresponds to a reported cell type (S4A Fig). Conserved marker gene

expression (Fig 4B and S4B Fig) confirmed that the same 11 cell types were identified with

nuclei and cells (Fig 4C). These cell types included nine excitatory neuron types from layers

4–6 and two inhibitory interneuron types. Matched cluster proportions were mostly consis-

tent, except that two closely related layer 5a subtypes were under- (L5a Batf3) or over-repre-

sented (L5a Hsd11b1) among cells (S4C Fig). This result demonstrated that the initial

matching of cells to nuclei was relatively unbiased.

Since most cytoplasmic transcripts are spliced, intronic reads should be derived from

nuclear transcripts. We hypothesized that we could estimate transcript abundance in nuclei

based on intronic reads from whole-cell RNA-seq. Indeed, average expression levels of genes

were highly correlated in cells and nuclei when using intronic but not exonic reads (S4D Fig).

Furthermore, matching pairs of nucleus and cell clusters were nearest neighbors in a dendro-

gram based on the median expression (quantified using only intronic reads), except for two

closely related layer 5b subtypes (Fig 4D). Therefore, intronic reads facilitate comparisons

between data sets derived from snRNA-seq and scRNA-seq, although some expression differ-

ences remain. A dendrogram based on exonic reads grouped clusters first by sample type

(nuclei and cells) and then by broad cell class (inhibitory and excitatory neurons). Grouping of

samples by type was likely due to differences in cytoplasmic transcripts that were profiled in

cells but not in nuclei.

While we detected comparable cell types using nuclei and cells, we expected that gene

expression captured with cells likely included additional information from cytoplasmic tran-

scripts. We compared the separation of matched pairs of clusters based on co-clustering and

found that most nuclei and cell clusters were similarly distinct, but using single cell data signif-

icantly increased the separation of two pairs of similar types: 1. L4 Arf5 and L5a Hsd11b1, and

Fig 3. Single nuclei provide comparable clustering resolution to cells when intronic reads are included. (A) Co-clustering heatmaps show the proportion of 100

clustering iterations that each pair of nuclei were assigned to the same cluster. Clustering was performed using gene expression quantified with exonic reads or intronic

plus exonic reads for two key clustering steps: selecting significantly differentially expressed (DE) genes and calculating pairwise similarities between nuclei. Co-

clustering heatmaps were generated for each combination of gene expression values, and blue boxes highlight 11 clusters of nuclei that consistently co-clustered using

introns and exons (upper left heatmap) and were overlaid on the remaining heatmaps. The row and column order of nuclei is the same for all heatmaps. (B) Co-

clustering heatmaps were generated for cells as described for nuclei in (A), and blue boxes highlight 11 clusters of cells. (C) Cluster cohesion (average within cluster co-

clustering) and separation (difference between within cluster co-clustering and maximum between cluster co-clustering) are plotted for nuclei and cells and all

combinations of reads. Including introns in gene expression quantification dramatically increases cohesion and separation of nuclei but not cell clusters.

https://doi.org/10.1371/journal.pone.0209648.g003
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2. L5b Cdh13 and L5b Tph2 (Fig 4E). Next, we scored each gene for its ability to differentiate

cell types by defining a marker score. Briefly, for each gene, the proportion of nuclei or cells

with expression above background noise (CPM > 1) was calculated for each cluster, and the

Fig 4. Similar neuronal cell types identified with nuclei and cells. (A) Cluster dendrograms for nuclei and cells based on hierarchical

clustering of average expression of the top 1200 cluster marker genes. 11 clusters are labeled based on dendrogram leaf order and the

closest matching mouse VISp cell type described in based on correlated marker gene expression (see S4 Fig). (B) Pairwise correlations

between nuclear and cell clusters using average cluster expression of the top 490 shared marker genes. (C) Violin plots of cell type specific

marker genes expressed in matching nuclear and cell clusters. Plots are on a linear scale, max CPM indicates the maximum expression of

each gene, and black dots indicate median expression. (D) Hierarchical clustering of nuclear and cell clusters using the top 1200 marker

genes with expression quantified by intronic or exonic reads. Intronic reads group nine matching nuclear and cell clusters together at the

leaves, while two closely related deep layer 5 excitatory neuron types group by sample type. In contrast, exonic reads completely segregate

clusters by sample type. (E) Box plots of cluster separations for all samples in matched nuclear and cell clusters. Clusters are equally well

separated for all but two cell types, L4 Arf5 and L5b Cdh13, that are moderately but significantly (Wilcoxon signed rank unpaired tests;

Bonferroni corrected P-value< 0.05) more distinct with cells than nuclei. (F) Cell type marker genes are consistently detected in both

nuclei and cells, although marker scores (see Methods) are on average 15% higher for cells.

https://doi.org/10.1371/journal.pone.0209648.g004
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marker score was calculated as the sum of the squared differences in proportions divided by

the sum of the differences in proportions. Scores range from zero (ubiquitous or no expres-

sion) to one (perfectly binary expression in a subset of clusters). On average, marker scores

were 15% higher in cells than nuclei due to reduced expression dropouts in cells (Fig 4F). This

better detection of marker genes contributed to the mildly improved cluster separation when

single cell data were used.

Nuclear content varies among cell types and for different transcripts

We estimated the nuclear proportion of mRNA for each cell type in two ways. Transcripts in

the cytoplasm are spliced so intronic reads should be restricted to the nucleus. First, we esti-

mated the nuclear RNA proportion by calculating the ratio of the percentage of intronic reads

in cells to the percentage of intronic reads in nuclei (Fig 5A). Second, we estimated nuclear

proportions by selecting three genes (Malat1, Meg3, and Snhg11) with the highest expression

in nuclei (S4D Fig) and calculating the ratio of the average expression in cells versus nuclei

(Fig 5B and S5A Fig). Both methods predicted that L4 Arf5 and L5a Hsd11b1 had a signifi-

cantly larger proportion of transcripts located in the nucleus compared to other cell types (Fig

5C).

Based on the comparison of scRNA-seq and snRNA-seq data, we estimate that L4 types

have high nuclear to cell volume ratio (~50%), whereas L5 types have lower nuclear to cell vol-

ume (~20%). To evaluate this finding, we measured nucleus and soma sizes of different cell

types in situ. These types were labeled by fluorescent proteins in transgenic mice containing

different Cre-transgenes and a Cre-reporter. Nr5a1-Cre and Scnn1a-Tg3-Cre mice almost

exclusively label two cell types (L4 Arf5 and L5a Hsd11b1), whereas Rbp4-Cre mice label all

layer 5 cell types including L5a Hsd11b1 (S5B Fig and S5 Table) [5]. We measured the nucleus

and cell body sizes in situ, calculated their volumes, and derived the nuclear volume propor-

tion (S5C Fig). Nuclear proportions of layer 5 neurons were systematically higher than those

predicted based on RNA-seq data (Fig 5D, Rbp4), likely due to under-estimation of cell body

volume based on cross-sectional area measurements of these large non-spherical (pyramidal)

neurons. Despite this, we found that layer 5 neurons had lower average nuclear volume pro-

portions than layer 4 neurons (Fig 5D), consistent with a lower nuclear transcript proportions

in layer 5 neurons (Fig 5C).

To test whether layer 5 neurons were exceptional compared to neurons in other layers, we

performed an unbiased survey of nuclear volume proportions across the full depth of the cor-

tex. We found that for most cortical cells the nucleus fills more than half (average 0.63; stan-

dard deviation 0.12) of the cell body (S5D Fig). A minority of neurons in deep layer 3 and

layer 5 have large cell bodies and proportionally smaller nuclei (proportion <0.4) than other

cortical neurons. Interestingly, layer 5 neurons with similar morphology were recently

described in rat primary visual cortex and found to be polyploid [26].

Next, we investigated transcript localization for individual genes independent of cell type.

The nuclear proportion of 11,932 transcripts was estimated by the ratio of nuclear to whole

cell expression multiplied by the overall nuclear fraction of each cell type and averaged across

cell types (S6 Table). Different functional classes of genes had strikingly different nuclear pro-

portions (Fig 5E). Many non-coding transcripts were localized in the nucleus, but some were

abundantly expressed in the cytoplasm, such as the long non-coding RNA (lncRNA) Tunar
that is highly enriched in the brain, is conserved across vertebrates, and has been associated

with striatal pathology in Huntington’s disease [27]. Most protein-coding transcripts were

expressed in both the nucleus and cytoplasm with a small number restricted to the nucleus,

including the Parkinson’s risk gene Park2. We found that many genes with transcripts

Single-nucleus and single-cell RNA-seq capture cortical neuron diversity
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restricted to the cytoplasm were involved in house-keeping functions including mitochondrial

genes and, surprisingly, pseudogenes. The functional paralogs of pseudogenes are often house-

keeping genes because many pseudogenes were inserted into the genome during mammalian

evolution by retrotransposition of house-keeping transcripts that are highly expressed during

embryonic development [28]. Finally, we found that 2550 gene transcripts shown to be local-

ized to remote neuronal dendrites [29] were not enriched in the nucleus. These transcripts

were similarly distributed between the nucleus and cytoplasm as transcripts overall and had a

median nuclear fraction of 27%.

We compared our estimates of nuclear transcript proportions in cortex to mouse liver and

pancreas [25]. We found moderately high correlation (r = 0.61) between 4,373 mostly house-

keeping genes that were expressed in all three tissues (S5E Fig). Moreover, the shapes of the

distributions of nuclear transcript proportions were highly similar between tissues with slightly

Fig 5. Nuclear transcript content varies among cell types and genes. (A) Box plots showing median (bars), 25th and 75th quantiles (boxes), and range (whiskers)

of percentages of reads mapping to introns for matched nuclei and cell clusters. (B) Box plots of log2-transformed expression of the nuclear non-coding RNA,

Malat1, in matched nuclei and cell clusters. (C) The nuclear fraction of transcripts in cell types was estimated with two methods: the ratio of intronic read

percentages in cells compared to nuclei; and the average ratio of expression in cells compared to nuclei of three highly expressed genes (Snhg11,Meg3, andMalat1)

that are localized to the nucleus. The relative ranking of nuclear fractions was consistent (Spearman rank correlation = 0.84), although estimates based on the

intronic read ratio were consistently 50% higher. (D) Estimated nuclear proportion (ratio of nucleus and soma volume) of neurons labeled by three mouse Cre-lines

in Layers 4 and 5 (see S5D Fig). Single neuron measurements (grey points) were summarized as violin plots, and average nuclear proportions (black points) were

compared to the range of estimated proportions (blue lines) based on intronic read ratios and nuclear gene expression. (E) Histograms of nuclear fraction estimates

for 11,932 genes expressed (CPM> 1) in at least one nuclear or cell cluster and grouped by type of gene. (F) Violin plots of marker score distributions with median

and inter-quartile intervals. Non-coding genes and pseudogenes are on average better markers of cell types than protein-coding genes. Kruskal–Wallis rank sum

test, post hoc Wilcoxon signed rank unpaired tests: �P< 1 x 10−50 (Bonferroni-corrected), NS, not significant. (G) Box plots of cell type marker scores for genes

grouped by estimated nuclear transcript proportion. (H) Validation of the estimated nuclear proportion of transcripts for Calb1, Grik1, and Pvalb using multiplex

fluorescent in situ hybridization (mFISH). Top: For each gene, transcripts were labeled with fluorescent probes and counted in the nucleus (white) and soma

(yellow). Bottom: Probe counts in the nucleus and soma across all cells with linear regression fits to estimate nuclear transcript proportions for each gene. Estimated

proportions based on mFISH and RNA-seq data are summarized on the right.

https://doi.org/10.1371/journal.pone.0209648.g005

Single-nucleus and single-cell RNA-seq capture cortical neuron diversity

PLOS ONE | https://doi.org/10.1371/journal.pone.0209648 December 26, 2018 9 / 24

https://doi.org/10.1371/journal.pone.0209648.g005
https://doi.org/10.1371/journal.pone.0209648


higher proportions estimated in this study (S5F Fig). These results suggest that the mecha-

nisms regulating the intracellular localization of these transcripts–for example, rates of nuclear

export and cytoplasmic degradation [25]–are generally conserved across disparate cell types.

We investigated if marker score varied based on gene function or subcellular transcript

localization. Surprisingly, non-coding genes and pseudogenes are better markers of cell types,

on average, than protein-coding genes (Fig 5F). lncRNAs are known to have specific expres-

sion among diverse human cell lines [30], and we show that this is also true for neuronal types

in the mouse cortex. Many pseudogene transcripts, most of which are enriched in the cyto-

plasm (Fig 5E), were selectively depleted in the two cell types, L4 Arf5 and L5a Hsd11b1. This

is consistent with our previous analysis that showed that neurons of these types have relatively

less cytoplasm. Transcript localization does not appear to be correlated with marker score (Fig

5G).

Finally, we compared nuclear transcript proportions determined by RNA-seq for three

genes–Calb1, Grik1, and Pvalb–to proportions estimated by RNA fluorescence in situ hybrid-

ization (FISH). Despite differences in the absolute values for nuclear transcript proportions

between the two methods, we found the same trend for the three genes (Fig 5H). Both methods

confirmed that Pvalb transcripts were mostly excluded from the nucleus, and this explained

why 2 out of 35 nuclei in the Pvalb-positive interneuron type (Pvalb Wt1) had no detectable

Pvalb mRNA expression, whereas all cells of this cell type had robust Pvalb mRNA expression.

Discussion

As large scale initiatives begin to characterize transcriptomic cell types in the whole brain [33]

and whole organism [34], it is important to understand the strengths and limitations of differ-

ent mRNA profiling techniques. Unlike scRNA-seq, snRNA-seq enables transcriptomic profil-

ing of tissues that are refractory to whole-cell dissociation and of archived frozen specimens

(e.g., banked human tissue). snRNA-seq is also less susceptible to perturbations of gene expres-

sion that occur during cell isolation, such as increased expression of immediate early genes

that can obscure transcriptional signatures of neuronal activity [13]. Nuclear profiling is likely

to be less cell type biased than scRNA-seq. For example, single cell profiling of adult human

cortex isolated 75% interneurons and 25% excitatory neurons [11], whereas single nucleus

profiling of the same tissue type isolated 30% interneurons and 70% excitatory neurons [14],

close to the proportions found in situ. However, these advantages come at the cost of profiling

less mRNA, and it was unclear if the nucleus contained sufficient number and diversity of

transcripts to distinguish highly related cell types.

To directly address this question, we profiled a well-matched set of 463 nuclei and 463 cells

from layer 5 of mouse primary visual cortex and identified 11 matching neuronal types: 2

interneuron types and 9 excitatory neuron types. Including intronic reads in gene expression

quantification was necessary to achieve high-resolution cell type identification from single

nuclei. Intronic reads substantially increased gene detection to 7000 genes per nucleus, includ-

ing cell type-informative genes with robust expression in whole cells. In addition, intronic

reads were more frequently derived from long genes that are known to have brain-specific

expression [31] and that help define neuronal connectivity and signaling. Intronic reads may

also reflect other cell type specific features, such as retained introns or alternative isoforms.

For example, intron retention provides a mechanism for the nuclear storage and rapid transla-

tion of long transcripts in response to neuronal activity [32].

We found that nuclei contain at least 20% of all cellular transcripts, and this percentage var-

ies among cell types. These findings are consistent with our in situ measurements of nuclear

volumes and proportions relative to cell volumes. For example, two small pyramidal neuron
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types have large nuclei relative to cell size, and these nuclei contain more than half of the cellu-

lar transcripts captured by scRNA-seq.

On average, we detect 4000 more genes in a single cell than a single nucleus, yet over 20,000

genes are detected equally well in matched cells and nuclei. Cell type marker scores were 15%

higher in cells than nuclei due to reduced expression dropouts in cells (Fig 4F). This better

detection of marker genes in cells contributed to mildly improved cluster separation between

two pairs of highly similar cell types when using scRNA-seq data. However, sampling more

nuclei may potentially compensate for decreased gene detection and result in comparable sep-

aration of cell types. In summary, we show that deep snRNA-seq is well suited for large-scale

surveys of cellular diversity in various tissues as it provides similar resolution for cell type

detection to scRNA-seq.

Materials and methods

Animals and tissue preparation

All procedures were approved by the Institutional Animal Care and Use Committee at the

Allen Institute for Brain Science (Protocol no. 1511). Animals were provided food and water

ad libitum and were maintained on a regular 12-h day/night cycle. Mice were housed at no

more than 5 adults per cage, with various enrichment materials added, including nesting mate-

rials, gnawing materials, and plastic shelters. Nutritional and foraging enrichment was pro-

vided in the form of foods such as sunflower seeds and sucrose pellets. Mice were maintained

on the C57BL/6J background.

Tissue samples were obtained from adult (postnatal day (P) 53–59)) male and female trans-

genic mice carrying a Cre transgene and a Cre-reporter transgene. Prior to euthanasia, to

avoid pain and distress, mice were anesthetized with 5% isoflurane. While still under anesthe-

sia, they were intracardially perfused with either 25 or 50 ml of ice cold, oxygenated artificial

cerebral spinal fluid (ACSF) at a flow rate of 9 ml per minute until the liver appeared clear, or

the full volume of perfusate had been flushed through the vasculature. The ACSF solution con-

sisted of 0.5mM CaCl2, 25mM D-Glucose, 98mM HCl, 20mM HEPES, 10mM MgSO4,

1.25mM NaH2PO4, 3mM Myo-inositol, 12mM N-acetylcysteine, 96mM N-methyl-D-gluca-

mine, 2.5mM KCl, 25mM NaHCO3, 5mM sodium L-Ascorbate, 3mM sodium pyruvate,

0.01mM Taurine, and 2mM Thiourea. The brain was then rapidly dissected and mounted for

coronal slice preparation on the chuck of a Compresstome VF-300 vibrating microtome (Pre-

cisionary Instruments). Using a custom designed photodocumentation configuration (Mako

G125B PoE camera with custom integrated software), a blockface image was acquired before

each section was sliced at 250 μm intervals. The slice was then hemisected along the midline,

and both hemispheres were then transferred to chilled, oxygenated ACSF.

Each slice-hemisphere was transferred into a Sylgard-coated dissection dish containing 3

ml of chilled, oxygenated ACSF. Brightfield and fluorescent images between 4X and 20X were

obtained of the intact tissue with a Nikon Digital Sight DS-Fi1 or a Sentech STC-SC500POE

camera mounted to a Nikon SMZ1500 dissecting microscope. To guide anatomical targeting

for dissection, boundaries were identified by trained anatomists, comparing the blockface

image and the slice image to a matched plane of the Allen Reference Atlas. In general, three to

five slices were sufficient to capture the targeted region of interest, allowing for expression

analysis along the anterior/posterior axis. The region of interest was then dissected and both

brightfield and fluorescent images of the dissections were acquired for secondary verification.

The dissected regions were transferred in ACSF to a microcentrifuge tube, and stored on ice.

This process was repeated for all slices containing the target region of interest, with each region

of interest deposited into a new microcentrifuge tube.
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For whole cell dissociation, after all regions of interest were dissected, the ACSF was

removed and 1 ml of a 2 mg/ml pronase in ACSF solution was added. Tissue was digested at

room temperature (approximately 22˚C) for a duration that consisted of adding 15 minutes to

the age of the mouse (in days; i.e., P53 specimen had a digestion time of 68 minutes). After

digestion, the pronase solution was removed and replaced by 1 ml of ACSF supplemented with

1% Fetal Bovine Serum (FBS). The tissue was washed two more times with the same solution

and the sample was then triturated using fire-polished glass pipettes of decreasing bore sizes

(600, 300, and 150 μm). The cell suspension was incubated on ice in preparation for fluores-

cence-activated cell sorting (FACS). FACS preparation involved adding 4’-6-diamidino-2-

phenylindole (DAPI) at a final concentration of 4 μg/ml to label dead (DAPI+) versus live

(DAPI-) cells. The suspension was then filtered through a fine-mesh cell strainer to remove

cell aggregates. Cells were sorted by excluding DAPI positive events and debris, and gating

to include red fluorescent events (tdTomato-positive cells). Single cells were collected into

strip tubes containing 11.5μl of collection buffer (SMART-Seq v4 lysis buffer 0.83x, Clontech

#634894), RNase Inhibitor (0.17U/μl), and ERCCs (External RNA Controls Consortium,

MIX1 at a final dilution of 1x10-8) [35,36]. After sorting, strip tubes containing single cells

were centrifuged briefly and then stored at -80˚C.

For nuclei isolation, dissected regions of interest were transferred to microcentrifuge tubes,

snap frozen in a slurry of dry ice and ethanol, and stored at -80˚C until the time of use. To iso-

late nuclei, frozen tissues were placed into a homogenization buffer that consisted of 10mM

Tris pH 8.0, 250mM sucrose, 25mM KCl, 5mM MgCl2, 0.1% Triton-X 100, 0.5% RNasin Plus

RNase inhibitor (Promega), 1X protease inhibitor (Promega), and 0.1mM DTT. Tissues were

placed into a 1ml dounce homogenizer (Wheaton) and homogenized using 10 strokes of the

loose dounce pestle followed by 10 strokes of the tight pestle to liberate nuclei. Homogenate

was strained through a 30μm cell strainer (Miltenyi Biotech) and centrifuged at 900xg for 10

minutes to pellet nuclei. Nuclei were then resuspended in staining buffer containing 1X PBS

supplemented with 0.8% nuclease-free BSA and 0.5% RNasin Plus RNase inhibitor. Mouse

anti-NeuN antibody (EMD Millipore, MAB377, Clone A60) was added to the nuclei at a final

dilution of 1:1000 and nuclei suspensions were incubated at 4˚C for 30 minutes. Nuclei sus-

pensions were then centrifuged at 400xg for 5 minutes and resuspended in clean staining

buffer (1X PBS, 0.8% BSA, 0.5% RNasin Plus). Secondary antibody (goat anti-mouse IgG (H

+L), Alexa Fluor 594 conjugated, ThermoFisher Scientific) was applied to nuclei suspensions

at a dilution of 1:5000 for 30 minutes at 4˚C. After incubation in secondary antibody, nuclei

suspensions were centrifuged at 400xg for 5 minutes and resuspended in clean staining buffer.

Prior to FACS, DAPI was applied to nuclei suspensions at a final concentration of 0.1μg/ml

and nuclei suspensions were filtered through a 35μm nylon mesh to remove aggregates. Single

nuclei were captured by gating on DAPI-positive events, excluding debris and doublets, and

then gating on Alexa Fluor 594 (NeuN) signal. Strip tubes containing FACS isolated single

nuclei were then briefly centrifuged and frozen at -80˚C.

RNA amplification and library preparation for RNA-seq

The SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing (Clontech #634894) was used

per the manufacturer’s instructions for reverse transcription of single cell RNA and subsequent

cDNA synthesis. Single cells were stored in 8-strips at -80˚C in 11.5 μl of collection buffer

(SMART-Seq v4 lysis buffer at 0.83x, RNase Inhibitor at 0.17 U/μl, and ERCC MIX1 at a final

dilution of 1x10-8 dilution). Twelve to 24 8-well strips were processed at a time (the equivalent

of 1–2 96-well plates). At least 1 control strip was used per amplification set, containing 2 wells

without cells but including ERCCs, 2 wells without cells or ERCCs, and either 4 wells of 10 pg
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of Mouse Whole Brain Total RNA (Zyagen, MR-201) or 2 wells of 10 pg of Mouse Whole

Brain Total RNA (Zyagen, MR-201) and 2 wells of 10 pg Control RNA provided in the Clon-

tech kit. Mouse whole cells were subjected to 18 PCR cycles after the reverse transcription step,

whereas mouse nuclei were subjected to 21 PCR cycles. AMPure XP Bead (Agencourt AMPure

beads XP PCR, Beckman Coulter A63881) purification was done using the Agilent Bravo NGS

Option A instrument. A bead ratio of 1x was used (50 μl of AMPure XP beads to 50 μl cDNA

PCR product with 1 μl of 10x lysis buffer added, as per Clontech instructions), and purified

cDNA was eluted in 17 μl elution buffer provided by Clontech. All samples were quantitated

using PicoGreen on a Molecular Dynamics M2 SpectraMax instrument. A portion of the sam-

ples, and all controls, were either run on the Agilent Bioanalyzer 2100 using High Sensitivity

DNA chips or the Advanced Analytics Fragment Analyzer (96) using the High Sensitivity NGS

Fragment Analysis Kit (1bp-6000bp) to qualify cDNA size distribution. An average of 7.3 ng of

cDNA was synthesized across all non-control samples. Purified cDNA was stored in 96-well

plates at -20˚C until library preparation.

Sequencing libraries were prepared using NexteraXT (Illumina, FC-131-1096) with Nexter-

aXT Index Kit V2 Set A (FC-131-2001). NexteraXT libraries were prepared at 0.5x volume, but

otherwise followed the manufacturer’s instructions. An aliquot of each amplified cDNA sample

was first normalized to 30 pg/μl with Nuclease-Free Water (Ambion), then this normalized

sample aliquot was used as input material into the NexteraXT DNA Library Prep (for a total of

75pg input). AMPure XP bead purification was done using the Agilent Bravo NGS Option A

instrument. A bead ratio of 0.9x was used (22.5 ul of AMPure XP beads to 25 ul library product,

as per Illumina protocol), and all samples were eluted in 22 μl of Resuspension Buffer (Illu-

mina). All samples were run on either the Agilent Bioanalyzer 2100 using High Sensitivity DNA

chips or the Advanced Analytics Fragment Analyzer (96) using the High Sensitivity NGS Frag-

ment Analysis Kit (1bp-6000bp) to for sizing. All samples were quantitated using PicoGreen

using a Molecular Dynamics M2 SpectraMax instrument. Molarity was calculated for each sam-

ple using average size as reported by Bioanalyzer or Fragment Analyzer and pg/μl concentration

as determined by PicoGreen. Samples (5 μl aliquot) were normalized to 2–10 nM with Nucle-

ase-free Water (Ambion), then 2 μl from each sample within one 96-index set was pooled to a

total of 192 μl at 2–10 nM concentration. A portion of this library pool was sent to an outside

vendor for sequencing on an Illumina HS2500. All of the library pools were run using Illumina

High Output V4 chemistry. Covance Genomics Laboratory, a Seattle-based subsidiary of Lab-

Corp Group of Holdings, performed the RNA-Sequencing services. An average of 229 M reads

were obtained per pool, with an average of 2.0–3.1 M reads/cell across the entire data set.

RNA-Seq data processing

Raw read (fastq) files were aligned to the GRCm38 mouse genome sequence (Genome Reference

Consortium, 2011) with the RefSeq transcriptome version GRCm38.p3 (current as of 1/15/2016)

and updated by removing duplicate Entrez gene entries from the gtf reference file for STAR pro-

cessing. For alignment, Illumina sequencing adapters were clipped from the reads using the

fastqMCF program [37]. After clipping, the paired-end reads were mapped using Spliced Tran-

scripts Alignment to a Reference (STAR) [19] using default settings. STAR uses and builds its

own suffix array index which considerably accelerates the alignment step while improving sensi-

tivity and specificity, due to its identification of alternative splice junctions. Reads that did not

map to the genome were then aligned to synthetic constructs (i.e. ERCC) sequences and the E.coli
genome (version ASM584v2). Quantification was performed using summerizeOverlaps from the

R package GenomicAlignments [38]. Read alignments to the genome (exonic, intronic, and inter-

genic counts) were visualized as beeswarm plots using the R package beeswarm.
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Expression levels were calculated as counts per million (CPM) of exonic plus intronic

reads, and log2(CPM + 1) transformed values were used for a subset of analyses as described

below. Gene detection was calculated as the number of genes expressed in each sample with

CPM > 0. CPM values reflected absolute transcript number and gene length, i.e. short and

abundant transcripts may have the same apparent expression level as long but rarer transcripts.

Intron retention varied across genes so no reliable estimates of effective gene lengths were

available for expression normalization. Instead, absolute expression levels were estimated as

fragments per kilobase per million (FPKM) using only exonic reads so that annotated tran-

script lengths could be used. CPM expression values were used for all analyses, figures, and

tables except for calculating the average expression (FPKM) of clusters with maximum expres-

sion for each gene listed in S6 Table.

Selection of single nuclei and matched cells

463 of 487 (95%) of single nuclei isolated from layer 5 of mouse VISp passed quality control

criteria: >500,000 genome-mapped reads, >75% reads aligned, and>50% unique reads.

12,866 single cells isolated from layers 1–6 of mouse VISp passed quality control criteria:

>200,000 transcriptome mapped reads and>1000 genes detected (CPM> 0).

Gene expression was more likely to drop out in samples with lower quality cDNA libraries

and for low expressing genes. To estimate gene dropouts due to stochastic transcription or tech-

nical artifacts [20], expression noise models were fit separately to single nuclei and cells using

the “knn.error.models” function of the R package scde (version 2.2.0) with default settings and

eight nearest neighbors. Noise models were used to calculate a dropout weight matrix that rep-

resented the likelihood of expression dropouts based on average gene expression levels of simi-

lar nuclei or cells using mode-relative weighting [39]. The probability of dropout for each

sample (s) and gene (g) was estimated based on two expression measurements: average expected

expression level of similar samples, pðx�g Þ, and observed expression levels, p(xsg), using the

“scde.failure.probability” and “scde.posteriors” functions. The dropout weighting was calculated

as a combination of these probabilities: Wsg ¼ 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðxsgÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðxsgÞ � pðx�g Þ

qr

:

Dropout weighted Pearson correlations were calculated between all pairs of nuclei and cells

using 42,003 genes expressed in at least one nucleus and one cell. The cell with the highest cor-

relation to any nucleus was selected as the best match, and this cell and nucleus were removed

from further analysis. This process was repeated until 463 best matching cells were selected,

and the expression correlations were compared to correlations of the best matching pairs of

nuclei (Fig 1B). The Cre-lines and dissected cortical layers of origin of the best matching cells

were summarized as bar plots (S1 Fig). Unweighted Pearson correlations were also calculated

between all pairs of nuclei and cells to test the effect of accounting for dropouts on sample sim-

ilarities (Fig 2B).

Differential expression analysis

Gene detection was estimated as the proportion of cells and nuclei expressing each gene

(CPM> 0). In order to estimate the expected variability of gene detection as a result of popula-

tion sampling, cells were randomly split into two sets of 231 and 232 cells and genes were

grouped into 50 bins based on detection in the first set of cells. For each bin of genes, the 97.5

percentile of detection was calculated for the second set of cells. A 95% confidence interval of

gene detection was constructed by reflecting this these binned quantiles across the line of

unity. Data were summarized with a hexagonal binned scatter plot and a log-transformed

color scale using the R package ggplot2 [40].
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Differential expression between nuclei and cells was calculated with the R package limma
[41] using default settings and log2(CPM + 1) expression defined based on two sets of reads:

introns plus exons and only exons. Significantly differentially expressed were defined as having

>1.5-fold change and a Benjamini-Hochberg corrected P-value < 0.05. Gene expression dis-

tributions of nuclei or cells within a cluster were visualized using violin plots, density plots

rotated 90 degrees and reflected on the Y-axis.

Differences in alignment statistics and gene counts were calculated between cells, nuclei,

and total RNA controls (or just cells and nuclei) with analysis of variance using the “aov” func-

tion in R [42]. P-values for all comparisons were P<10−13.

Two sets of nucleus- and cell-enriched genes (introns plus exons and exons only) were

tested for gene ontology (GO) enrichment using the ToppGene Suite [43]. Significantly

enriched (Benjamini-Hochberg false discovery rate< 0.05) GO terms were summarized as

tree maps with box sizes proportional to -log10(P-values) using REVIGO [44] (S2 Fig).

Clustering

Nuclei and cells were grouped into transcriptomic cell types using an iterative clustering pro-

cedure based on community detection in a nearest neighbor graph as described in Levine et al.

[45]. Clustering was performed using gene expression quantified with exonic reads only or

intronic plus exonic reads for two key clustering steps: selecting significantly variable genes

and calculating pairwise similarities between nuclei. Four combinations of expression quantifi-

cation for nuclei and cells resulted in eight independent clustering runs.

For each gene, log2(CPM + 1) expression was centered and scaled across samples. Noise

models were used to select significantly variable genes (adjusted variance > 1.25). Dimension-

ality reduction was performed with principal components analysis (PCA) on variable genes,

and the covariance matrix was adjusted to account for gene dropouts using the product of

dropout weights across genes for each pair of samples. A maximum of 20 principal compo-

nents (PCs) were retained for which more variance was explained than the broken stick null

distribution, a conservative method of PC retention [46].

Nearest-neighbor distances between all samples were calculated using the “nn2” function of

the R package RANN, and Jaccard similarity coefficients between nearest-neighbor sets were

computed. Jaccard coefficients measured the proportion of nearest neighbors shared by each

sample and were used as edge weights in constructing an undirected graph of samples. Lou-

vain community detection was used to cluster this graph with 15 nearest neighbors. Consider-

ing more than 15 neighbors reduced the power to detect small clusters due to the resolution

limit of community detection [47]. Considering fewer than 15 neighbors increased over-split-

ting, as expected based on simulations by [48]. Fewer nearest neighbors were used only when

there were 15 or fewer samples total.

Clustering significance was tested by comparing the observed modularity to the expected

modularity of an Erdös-Rényi random graph with a matching number of nodes and average

connection probability. Expected modularity was calculated as the maximum estimated by two

reported equations [48,49]. Samples were split into clusters only if the observed modularity

was greater than the expected modularity, and only clusters with distinct marker genes were

retained. Marker genes were defined for all cluster pairs using two criteria: 1) significant differ-

ential expression (Benjamini-Hochberg false discovery rate< 0.05) using the R package limma
and 2) either binary expression (CPM > 1 in>50% samples in one cluster and<10% in the

second cluster) or >100-fold difference in expression. Pairs of clusters were merged if either

cluster lacked at least one marker gene.
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Clustering was applied iteratively to each sub-cluster until the occurrence of one of four

stop criteria: 1) fewer than six samples (due to a minimum cluster size of three); 2) no signifi-

cantly variable genes; 3) no significantly variable PCs; 4) no significant clusters.

To assess the robustness of clusters, the iterative clustering procedure described above was

repeated 100 times for random sets of 80% of samples. A co-clustering matrix was generated

that represented the proportion of clustering iterations that each pair of samples were assigned

to the same cluster. Average-linkage hierarchical clustering was applied to this matrix followed

by dynamic branch cutting using “cutreeHybrid” in the R package WGCNA [50] with cut

height ranging from 0.01 to 0.99 in steps of 0.01. A cut height was selected that resulted in the

median number of clusters detected across all 100 iterations. Cluster cohesion (average within

cluster co-clustering) and separation (difference between within cluster co-clustering and

maximum between cluster co-clustering) was calculated for all clusters. Marker genes were

defined for all cluster pairs as described above, and clusters were merged if they had a co-clus-

tering separation <0.25 or either cluster lacked at least one marker gene.

Scoring marker genes based on cluster specificity

Many genes were expressed in the majority of nuclei or cells in a subset of clusters. A marker

score (beta) was defined for all genes to measure how binary expression was among clusters,

independent of the number of clusters labeled. First, the proportion (xi) of samples in each

cluster that expressed a gene above background level (CPM > 1) was calculated. Then, scores

were defined as the squared differences in proportions normalized by the sum of absolute dif-

ferences plus a small constant (ε) to avoid division by zero. Scores ranged from 0 to 1, and a

perfectly binary marker had a score equal to 1.

b ¼

Pn
i¼1

Pn
j¼1
ðxi � xjÞ

2

Pn
i¼1

Pn
j¼1
jxi � xjj þ �

:

Cluster dendrograms

Clusters were arranged by transcriptomic similarity based on hierarchical clustering. First, the

average expression level of the top 1200 marker genes (i.e. highest beta scores) was calculated

for each cluster. A correlation-based distance matrix (Dxy ¼
1� rðx;yÞ

2
) was calculated, and com-

plete-linkage hierarchical clustering was performed using the “hclust” R function with default

parameters. The resulting dendrogram branches were reordered to show inhibitory clusters

followed by excitatory clusters, with larger clusters first, while retaining the tree structure.

Note that this measure of cluster similarity is complementary to the co-clustering separation

described above. For example, two clusters with similar gene expression patterns but a few

binary marker genes may be close on the tree but highly distinct based on co-clustering.

Matching clusters based on marker gene expression

Nuclei and cell clusters were independently compared to published mouse VISp cell types [5].

The proportion of nuclei or cells expressing each gene with CPM > 1 was calculated for all

clusters. Approximately 400 genes were markers in both data sets (beta score> 0.3) and were

expressed in the majority of samples of between one and five clusters. Markers expressed in

more than five clusters were excluded to increase the specificity of cluster matching. Weighted

correlations were calculated between all pairs of clusters across these genes and weighted by

beta scores to increase the influence of more informative genes. Heatmaps were generated to

visualize all cluster correlations. All nuclei and cell clusters had reciprocal best matching clus-

ters from Tasic et al. and were labeled based on these reported cluster names.
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Next, nuclei and cell clusters were directly compared using the above analysis. All 11 clus-

ters had reciprocal best matches that were consistent with cluster labels assigned based on sim-

ilarity to published types. The most highly conserved marker genes of matching clusters were

identified by selecting genes expressed in a single cluster (>50% of samples with CPM > 1)

and with the highest minimum beta score between nuclei and cell clusters. Two additional

marker genes were identified that discriminated two closely related clusters. Violin plots of

marker gene expression were constructed with each gene on an independent, linear scale.

Nuclei and cell clusters were also compared by calculating average cluster expression based

only on intronic or exonic reads and calculating a correlation-based distance using the top

1200 marker genes as described above. Hierarchical clustering was applied to all clusters quan-

tified using the two sets of reads. In addition, the average log2(CPM + 1) expression across all

nuclei and cells was calculated using intronic or exonic reads.

Cluster separation was calculated for individual nuclei and cells as the average within clus-

ter co-clustering of each sample minus the maximum average between cluster co-clustering.

Separations for matched pairs of clusters were visualized with box plots and compared using a

Student’s t-test, and significance was tested after Bonferroni correction for multiple testing.

Finally, a linear model was fit to beta marker scores for genes that were expressed in at least

one but not all cell and nuclear clusters, and the intercept was set to zero.

Estimating proportions of nuclear transcripts

The nuclear proportion of transcripts was estimated in two ways. First, all intronic reads were

assumed to be from transcripts localized to the nucleus so that the proportion of intronic reads

measured in cells should decrease linearly with the nuclear proportion of the cell as nuclear

reads are diluted with cytoplasmic reads. For each cell type, the nuclear proportion was esti-

mated as the proportion of intronic reads in cells divided by the proportion of intronic reads

in matched nuclei. Second, the nuclear proportion was estimated as the average ratio of cell to

nuclear expression (CPM) using only exonic reads of three highly expressed nuclear genes

(Snhg11, Malat1, and Meg3). The standard deviation of nuclear proportion estimates were cal-

culated based on standard error propagation of variation in intronic read proportions and

expression levels. Nuclear proportion estimates were compared with linear regression, and the

estimate based on relative expression levels was used for further analysis.

The nuclear proportion of transcripts for all genes was estimated for each cell type as the

ratio of average expression (CPM) using only exonic reads in nuclei versus matched cells multi-

plied by the nuclear proportion of all transcripts. Estimated proportions greater than 1 were set

equal to 1 for each cell type, and a weighted average proportion was calculated for each gene

with weights equal to the average log2(CPM + 1) expression in each cell type. 11,932 genes were

expressed in at least one nuclear or cell cluster (>50% samples expressed with CPM> 1) and

were annotated as one of three gene types–protein-coding, protein non-coding, or pseudo-

gene–using gene metadata from NCBI (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO/

Mammalia/Mus_musculus.gene_info.gz; downloaded 10/12/2017). For each type, histograms

of gene counts with different nuclear proportions were generated. Next, beta marker score dis-

tributions were visualized as violin plots, and differences across gene types were compared with

a Kruskal-Wallis rank sum test followed by Wilcoxon signed rank unpaired tests. Finally, genes

were grouped into 10 bins of estimated nuclear proportions, from high cytoplasmic enrichment

to high nuclear enrichment, and beta marker score distributions were visualized as box plots. A

linear regression was fit to marker scores versus nuclear proportion.

Nuclear transcript proportions were compared to nuclear proportions estimated for mouse

liver and pancreatic beta cells based on data from Halpern et al. [25]. Ratios of normalized
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nuclear and cytoplasmic transcript counts were calculated in four tissue replicates. Average

ratios were calculated for genes with at least one count in either fraction in at least one tissue.

Nuclear proportion estimates for all genes with data from both data sets (n = 4373) were com-

pared with Pearson correlation, a linear model with intercept set equal to zero, and histograms

with a bin width of 0.02.

Colorimetric in situ hybridization

In situ hybridization data for mouse cortex was from the Allen Mouse Brain Atlas [51]. All

data is publicly accessible through www.brain-map.org. Data was generated using a semi-auto-

mated technology platform as described in Lein et al. [51]. Mouse ISH data shown is from pri-

mary visual cortex (VISp) in the Paxinos Atlas [52].

Multiplex fluorescence RNA in situ hybridization and quantification of

nuclear versus cytoplasmic transcripts

The RNAscope multiplex fluorescent kit was used according to the manufacturer’s instruc-

tions for fresh frozen tissue sections (Advanced Cell Diagnostics), with the exception that

16μm tissue sections were fixed with 4% PFA at 4˚C for 60 minutes and the protease treatment

step was shortened to 15 minutes at room temperature. Probes used to identify nuclear and

cytoplasmic enriched transcripts were designed antisense to the following mouse genes: Calb1,

Grik1, and Pvalb. Following hybridization and amplification, stained sections were imaged

using a 60X oil immersion lens on a Nikon TiE epifluorescence microscope.

To determine if spots fell within the nucleus or cytoplasm, a boundary was drawn around

the nucleus to delineate its border using measurement tools within Nikon Elements software.

To delineate the cytoplasmic boundary of each cell, a circle with a diameter of 15um was

drawn and centered over the cell (Fig 5). RNA spots in each channel were quantified manually

using counting tools available in the Nikon Elements software. Spots that fell fully within the

interior boundary of the nucleus were classified as nuclear transcripts. Spots that fell outside of

the nucleus but within the circle that defined the cytoplasmic boundary were classified as cyto-

plasmic transcripts. Additionally, if spots intersected the exterior boundary of the nucleus they

were classified as cytoplasmic transcripts. To prevent double counting of spots and ambiguities

in assigning spots to particular cells, labeled cells whose boundaries intersected at any point

along the circumference of the circle delineating their cytoplasmic boundary were excluded

from the analysis. A linear regression was fit to nuclear versus soma probe counts, and the

slope was used to estimate the nuclear proportion.

In situ quantification of nucleus and soma size

Coronal brain slices from Nr5a1-Cre;Ai14, Scnn1a-Tg3-Cre;Ai14, and Rbp4-Cre_KL100;Ai14
mice were stained with anti-dsRed (Clontech #632496) to enhance tdTomato signal in red

channel and DAPI to label nuclei. Maximum intensity projections from six confocal stacks of

1-μm intervals were processed for analysis. Initial segmentation was performed by CellProfiler

[53] to identify nuclei from the DAPI signal and soma from the tdTomato signal. Segmenta-

tion results were manually verified and any mis-segmented nuclei or somata were removed or

re-segmented if appropriate. Area measurement of segmented nuclei and somata was per-

formed in CellProfiler in Layer 4 from Nr5a1-Cre;Ai14 and Scnn1a-Tg3-Cre;Ai14mice, and in

Layer 5 from Rbp4-Cre_KL100;Ai14 mice. A linear regression was fit to nuclear versus soma

area to highlight the differences between Cre-lines.

For measurements of nucleus and soma size agnostic to Cre driver, we used 16 μm-tissue

sections from P56 mouse brain. To label nuclei, DAPI was applied to the tissue sections at a
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final concentration of 1mg/ml. To label cell somata, tissue sections were stained with Neuro-

trace 500/525 fluorescent Nissl stain (ThermoFisher Scientific) at a dilution of 1:100 in 1X PBS

for 5 minutes, followed by brief washing in 1X PBS. Sections were coverslipped with Fluoro-

mount-G (Southern Biotech) and visualized on a Nikon TiE epifluorescence microscope using

a 40x oil objective. Soma and nuclei area measurements were taken by tracing the boundaries

of the Nissl-stained soma or DAPI-stained nucleus, respectively, using cell measurement tools

available in the Nikon TiE microscope software. All cells with a complete nucleus clearly pres-

ent within the section were measured, except that we excluded glial cells which had very small

nuclei and scant cytoplasm. Measurements were taken within a 40x field of view across an

entire cortical column encompassing layers 1–6, and the laminar position of each cell (mea-

sured as depth from the pial surface) was tracked along with the nucleus and soma area mea-

surements for each cell.

For each cell in the experiments above, the nuclear proportion was estimated as the ratio of

nucleus and soma area raised to the 3/2 power. This transformation was required to convert

area to volume measurements and assumed that the 3-dimensional geometries of soma and

nuclei were reflected by their cross-sectional profiles. This is true for approximately symmetri-

cal shapes such as most nuclei and some somata, but will lead to under- or over-estimates of

nuclear proportions for asymmetrical cells. Therefore, the estimated nuclear proportion of any

individual cell may be inaccurate, but the average nuclear proportion for many cells should be

relatively unbiased.

Code availability

Data and code to reproduce figures are publicly available from GitHub at https://github.com/

AllenInstitute/NucCellTypes. Single-cell and single-nucleus transcriptomic data are available

at the NCBI Gene Expression Omnibus (GEO) under accession number GSE123454.

Supporting information

S1 Fig. Properties of 463 cells matched to nuclei. (A) Proportion of matched cells isolated

from transgenic mouse lines that label different subsets of cortical neurons. Note that a small

number of “virally labeled” cells (<5%) were FAC sorted from wild-type mice based on retro-

grade labeling by viral injections into various cortical and subcortical structures. (B) Propor-

tion of matched cells dissected from one or more adjacent layers of cortex. (C) ISH images

from additional mouse Cre-lines from which the best matching cells were most commonly

derived. ISH images show all cortical layers within VISp. All recombinase lines were crossed to

either Ai14 or Ai110 [54], except Chrna2-Cre_OE25;Pvalb-T2A-Dre;Ai66D [55], and Trib2--
F2A-CreERT2;Snap25-LSL-F2A-GFP [55], for which the reporters are indicated.

(TIFF)

S2 Fig. Nuclear versus whole cell transcript dropouts and intron retention. (A) Gene detec-

tion violin plots for nuclei and cells at different sub-sampled read depths. Note that while gene

detection does not fully saturate, 90% as many genes are detected with 1 million versus approx-

imately 2.5 million (“All”) reads. (B) Rate of gene dropouts in nuclei versus cells (i.e. propor-

tion of nuclei/cells with zero expression) as compared to the average gene expression level

across all nuclei and cells. Loess fits to dropout rates of genome-wide genes. (C) Density plots

showing the properties of all expressed genes (black lines) and 1334 genes (red lines) that have

>25% detection in nuclei using intronic plus exonic reads versus only exonic reads. Mean

expression was calculated using only exonic reads in cells, and beta marker scores were calcu-

lated for cell clusters as described in the Methods. (D) REVIGO summaries of gene ontology
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(GO) enrichment of genes enriched in cells or nuclei. Including introns dramatically changes

the functional categories of nuclear but not cell enriched genes. (E) Cumulative distribution of

genomic and transcript lengths for genes enriched in nuclei and cells (fold change> 1.5)

based on expression of exons or introns plus exons. Using introns plus exons, the median

genomic length of nuclear enriched genes is 16-fold longer than cell enriched genes. Using

exons only, there is no significant difference in genomic lengths (Kolmogorov-Smirnov test P-

value = 0.27).

(TIFF)

S3 Fig. Overview of single nucleus RNA-seq clustering pipeline. See methods for a detailed

description of clustering steps.

(TIFF)

S4 Fig. Nuclear and cell clusters are well matched based on marker gene expression. (A)

Pairwise correlations between previously reported mouse VISp cell type clusters and nuclear

and cell clusters using average cluster expression of the top shared marker genes. Heatmaps

show remarkably similar correlation patterns, supporting the existence of a well matched set of

nuclear and cell clusters. Nuclear and cell clusters were annotated based on the reciprocal best

matching published cluster name and mapped to two interneuron types and five of eight layer

5 excitatory neuron types. (B) Comparisons of the proportion of nuclei or cells expressing

marker genes (CPM > 1) for matched pairs of clusters. Correlations are reported at the top of

each scatter plot, and cell type specific markers are labeled. As expected based on Fig 2C, gene

detection is consistently higher in cells than nuclei. (C) Matched clusters have similar propor-

tions of nuclei and cells (except for two closely related cell types, L5a Hsd11b1 and L5 Batf3),

which supports the accuracy of the initial correlation based mapping of single nuclei to cells.

(D) Average gene expression quantified based on intronic reads is more highly correlated

between cells and nuclei than expression quantified based on exonic reads, particularly for

highly expressed genes. Malat1, Meg3, and Snhg11 are the three highest expressing genes in

nuclei and have consistently lower expression in cells, as expected based on their reported

nuclear localization.

(TIFF)

S5 Fig. Nuclear proportion estimates are supported by multiple genes and consistent with

previously reported values. (A) Box plots of log2-transformed expression of two nuclear tran-

scripts, Meg3 and the small nucleolar RNA Snhg11, in matched nuclear and cell clusters. (B)

Representative sections of VISp from three Cre-driver mouse lines with layer boundaries,

nuclei labeled with DAPI (blue), and subsets of neurons labeled with tdTomato (red). Scale bar

is 100 μm. (C) Nucleus and soma area measurements from three Cre-lines, and linear regres-

sions to estimate nuclear proportions. (D) Left: Section of VISp from wild type mouse labeled

with DAPI and Neurotrace 500 fluorescent Nissl stain with layer boundaries indicated by

white lines. Scale bar is 100 μm. Right: Nuclear volume proportion was quantified based on

nucleus and soma area measurements and plotted as a function of cortical depth. Size and

color of points are proportional to soma volume. (E) Average nuclear proportions of 4,373

genes (mostly house-keeping) also expressed in mouse pancreatic beta-cells and liver cells are

moderately correlated with and approximately 13% less than estimated proportions in this

study. (F) The distributions of nuclear proportions are highly similar with slightly higher

reported cytoplasmic enrichment for reported genes. Note that the matched set of genes

includes 99% protein-coding genes so the distributions more closely resemble those genes in

Fig 5D.

(TIFF)
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S1 Table. Average gene expression and detection in matched nuclei and cells.

(XLSX)

S2 Table. Differentially expressed genes in cells versus nuclei using intronic plus exonic

reads.

(XLSX)

S3 Table. Gene ontology (GO) enrichment of differentially expressed genes in cells and

nuclei based on intronic and exonic reads or only exonic reads.

(XLSX)

S4 Table. Differentially expressed genes in cells versus nuclei using only exonic reads.

(XLSX)

S5 Table. Cre-driver line composition of cell clusters.

(XLSX)

S6 Table. Gene properties including the number of clusters with any expression, maximum

cluster expression (FPKM of exonic reads only), cell type marker score (beta), and esti-

mated nuclear proportion of transcripts.

(XLSX)
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