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The synaptic inputs to single cortical neurons exhibit substantial diversity in their sensory-
driven activity. What this diversity reflects is unclear, and appears counter-productive
in generating selective somatic responses to specific stimuli. One possibility is that
this diversity reflects the propagation of information from one neural population to
another. To test this possibility, we bridge population coding theory with measurements
of synaptic inputs recorded in vivo with two-photon calcium imaging. We construct
a probabilistic decoder to estimate the stimulus orientation from the responses of a
realistic, hypothetical input population of neurons to compare with synaptic inputs onto
individual neurons of ferret primary visual cortex (V1) recorded with two-photon calcium
imaging in vivo. We find that optimal decoding requires diverse input weights and
provides a straightforward mapping from the decoder weights to excitatory synapses.
Analytically derived weights for biologically realistic input populations closely matched
the functional heterogeneity of dendritic spines imaged in vivo with two-photon calcium
imaging. Our results indicate that synaptic diversity is a necessary component of
information transmission and reframes studies of connectivity through the lens of
probabilistic population codes. These results suggest that the mapping from synaptic
inputs to somatic selectivity may not be directly interpretable without considering input
covariance and highlights the importance of population codes in pursuit of the cortical
connectome.

Keywords: synapse, two-photon imaging, population coding, visual cortex, input - output analysis

INTRODUCTION

Cortical neurons are driven by large populations of excitatory synaptic inputs. Synaptic
populations ultimately shape how sensory signals are encoded, decoded, or transformed. The
sensory representation or functional properties of an excitatory input population will define
and constrain the operations a neuron can perform and reflects the rules neurons use to form
connections. Electrophysiological and anatomical studies suggest that connections between
excitatory neurons exhibit functional specificity, where inputs are tuned for similar features as the
soma (Reid and Alonso, 1995; Ko et al., 2011; Cossell et al., 2015; Lee et al., 2016). In contrast,
synaptic imaging techniques have revealed that synaptic populations exhibit functional diversity,
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deviating from canonical connectivity rules, such as ‘‘like-
connects-to-like’’ (Scholl and Fitzpatrick, 2020). This functional
diversity within input populations has been observed in a variety
of mammalian species, from rodents to primates, and for a
variety of sensory cortical areas (Jia et al., 2010, 2011; Chen et al.,
2011, 2013; Wertz et al., 2015; Wilson et al., 2016, 2018; Iacaruso
et al., 2017; Scholl et al., 2017; Kerlin et al., 2019; Ju et al., 2020).
This apparent discrepancy challenges our understanding of how
synaptic inputs drive the selective outputs of cortical neurons and
lead to a simple fundamental question: if the goal is to produce
selective somatic responses, why would a neuron have excitatory
synaptic inputs tuned far away from the somatic preference?

To explore this question, we turn to population coding theory;
starting with the idea that to accurately represent sensory signals,
cortical neurons integrate across or decode the activity of neural
populations upstream. Many studies have examined how sensory
variables might be decoded from cortical populations (Butts
and Goldman, 2006; Jazayeri and Movshon, 2006; Shamir and
Sompolinsky, 2006; Graf et al., 2011), an endeavor increasingly
applied to larger population sizes with innovative recording
techniques (Stringer et al., 2019; Rumyantsev et al., 2020). These
decoding approaches are often used as a tool to quantify the
information about a stimulus available in a neural population,
carrying the assumption that downstream areas could perform
such a process (Berens et al., 2011; DiCarlo et al., 2012). In real
brain circuits, decoders must be composed of individual neurons,
driven by sets of synaptic inputs, akin to a decoder’s weights over
a given input population. To date, few studies have explicitly
examined the weight structure of population decoders (Jazayeri
and Movshon, 2006; Rust et al., 2006; Zavitz and Price, 2019).

In this article, we examine how the functional diversity of
synaptic inputs measured in vivo compares to the weights of
a simple population decoder. Focusing on a single sensory
variable, orientation, we derive the maximum-likelihood readout
for a simulated input population that encodes stimuli with
noisy tuning curves (e.g., Ecker et al., 2011). Under reasonable
assumptions, the decoder weights can be interpreted as simple
synaptic wiring from the input population to the downstream
decoder neurons. This allows a direct comparison of population
decoders to synaptic input measured in vivo. We then test
a hypothesis that an optimal decoder will show substantial
heterogeneity in its synaptic weights given a biologically
realistic input population. We find that when input populations
are shifted copies of the same tuning curve (homogenous),
the synaptic excitatory inputs closely resemble the somatic
output. However, with a biologically realistic input population
(heterogenous), the expected inputs onto readout neurons
exhibit functional diversity. We then compare the orientation
tuning of simulated inputs with large populations of dendritic
spines (excitatory synaptic inputs) onto individual neurons of
ferret primary visual cortex (V1), recorded with two-photon
calcium imaging in vivo. This revealed similar diversity in the
orientation tuning of dendritic spines on ferret V1 neurons
and simulated decoder weights. The similarity between the
synaptic populations of actual V1 neurons and the optimal neural
decoder suggests that diversity and heterogeneity observed in
dendritic spines across sensory cortices are, in fact, expected

when considering how information propagates through neural
circuits.

METHODS

All procedures were performed according to NIH guidelines and
approved by the Institutional Animal Care and Use Committee
at Max Planck Florida Institute for Neuroscience. This study is
reported in accordance with the ARRIVE guidelines.

Derivation for a Bayesian Probabilistic
Decoder
We construct a probabilistic decoder, represented by a
population of neurons, that reports or estimates the identity of
a stimulus from the spiking response of an input population of
neurons. We assume an input population with responses that are
a function of the stimulus, f (θk), plus Gaussian noise, f (θk), and
the covariance (Q) is equal for all stimulus conditions (Q) such
that Q = Qk = Qi. Then, the posterior distribution can be written
as

p(θk|R) =
p(θk)N(f (θk),Q)∑K
i p(θi)N(f(θi),Q)

where a multivariate Gaussian is

N(f (θk),Q) = 2π−
n
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p(θk|R) =
e(RT wk+βk)∑K
i e(RTwi+βi)

where

wk = Q−1f (θk)

βk = −

(
1
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f (θk)TQ−1f (θk)+ ln p(θk)

Here, w are the weights over k for each neuron in the decoder
population and β is a constant term for each k. Importantly,
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because we assume Gaussian input, with this formulation, w and
β are derived in closed form. More generally, w and β , can be
estimated numerically using multinomial logistic regression and
this form remains optimal for any input population statistics
within the exponential family (e.g., Poisson noise).

Input Population Model
To generate input populations (PIN), we simulated N neurons
responding to a stimulus characterized by orientation (θk ∈
[−π/2:π/2K:π/2]). The response of each neuron, ri, depends
on a tuning function, fi(θ ), and an additive noise term, εi,
describing trial-to-trial variability. Noise is correlated across the
population, generated from a multivariate Gaussian distribution
with zero mean and covariance C. Orientation tuning functions
were defined as:

fi(θ) = αi + βieκi[cos (θ−φi)
2
−1]

Here, α is the baseline firing rate, β scales the tuned response, κ
scales the tuning bandwidth, and φ is the orientation preference
of each neuron. For homogeneous PIN all parameters except
φ were fixed: (α, β, κ) = (0, 5, 4). For heterogenous PIN, we
sampled parameters to match measurements from macaque V1
(Ringach et al., 2002) and our ferret V1 data. Tuning bandwidth
was generated by converting half-width at 1/

√
2 height (γ) values

from a lognormal distribution (µ =−1, σ = 0.6):

κ = − log(
√
2)/(cos(γ 2)− 1)

Limited-range correlations were included so neural noise
correlation depends on tuning preference difference (Ecker et al.,
2011). A correlation matrix, C, was specified by the difference
between preferred orientations of neurons and the maximum
pairwise correlation, co:

Aij = coe−|δ(φi−φj)|

where δ is the circular difference and

Cij = Aij + (1− co)I

where I is the identity matrix of size N. We scaled the correlation
matrix by the mean firing rate of each neuron to produce
Poisson-like noise (Ecker et al., 2011).

Derived weights for a given PIN were artificially smoothed
using the following equation from Park and Pillow (2011):

S+ij = e
−

(
ρ1+

(
δ(φi−φj)
ρ2

))

Here, S+ is the pseudoinverse of S, δ(φi − φj) is the circular
difference between preferred orientations of neurons, ρ1 scales
the amplitude of smoothing, and ρ2 scales the functional range of
smoothing.

Population Decoder Estimation Accuracy
Decoding accuracy was calculated with the mean-squared-error
of the maximum a posterior probability (MAP) estimate across t
simulated trials of each stimulus (k):

error(k) =
(
1
t

) t∑
1

angle(ei(MAP(wk)−θk))2

Here, wk are the weights for a given decoder neuron and θk is the
true stimulus.

Viral Injections
Briefly, female ferrets aged P18–23 (Marshall Farms) were
anesthetized with isoflurane (delivered in O2). Atropine was
administered and a 1:1 mixture of lidocaine and bupivacaine
was administered SQ. Animals were maintained at an internal
temperature of 37◦C. Under sterile surgical conditions, a small
craniotomy (0.8 mm diameter) was made over the visual
cortex (7–8 mm lateral and 2–3 mm anterior to lambda).
A mixture of diluted AAV1.hSyn.Cre (1:25,000–1:50,000) and
AAV1.Syn.FLEX.GCaMP6s (UPenn) was injected (125–202.5 nl)
through beveled glass micropipettes (10–15 micron outer
diameter) at 600, 400, and 200 microns below the pia. Finally,
the craniotomy was filled with sterile agarose (Type IIIa, Sigma-
Aldrich) and the incision site was sutured.

Cranial Window
After 3–5 weeks of expression, ferrets were anesthetized with
50 mg/kg ketamine and isoflurane. Atropine and bupivacaine
were administered, animals were placed on a feedback-controlled
heating pad to maintain an internal temperature of 37◦C, and
intubated to be artificially respirated. Isoflurane was delivered
throughout the surgical procedure to maintain a surgical plane of
anesthesia. An intravenous cannula was placed to deliver fluids.
Tidal CO2, external temperature, and internal temperature were
continuously monitored. The scalp was retracted and a custom
titanium headplate adhered to the skull (Metabond, Parkell).
A craniotomy was performed and the dura retracted to reveal
the cortex. One piece of custom cover-glass (3 mm diameter,
0.7 mm thickness, Warner Instruments) adhered using optical
adhesive (71, Norland Products) to custom insert was placed
onto the brain to dampen biological motion during imaging.
A 1:1 mixture of tropicamide ophthalmic solution (Akorn)
and phenylephrine hydrochloride ophthalmic solution (Akorn)
was applied to both eyes to dilate the pupils and retract the
nictating membranes. Contact lenses were inserted to protect the
eyes. Upon completion of the surgical procedure, isoflurane was
gradually reduced and pancuronium (2 mg/kg/h) was delivered
IV.

Visual Stimuli
Visual stimuli were generated using Psychopy (Peirce, 2007).
The monitor was placed 25 cm from the animal. Receptive
field locations for each cell were hand mapped and the spatial
frequency optimized (range: 0.04–0.25 cpd). For each soma and
dendritic segment, square-wave drifting gratings were presented
at 22.5 degree increments (2 s duration, 1 s ISI, 8–10 trials for
each field of view).

Two-Photon Imaging
Two-photon imaging was performed on a Bergamo II
microscope (Thorlabs) running Scanimage (Pologruto
et al., 2003; Vidrio Technologies) with 940 nm dispersion-
compensated excitation provided by an Insight DS+
(Spectraphysics). For spine and axon imaging, power after
the objective was limited to <50 mW. Cells were selected
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for imaging on the basis of their position relative to large
blood vessels, responsiveness to visual stimulation, and lack of
prolonged calcium transients resulting from over-expression of
GCaMP6s. Images were collected at 30 Hz using bidirectional
scanning with 512 × 512 pixel resolution or with custom
ROIs (frame rate range: 22–50 Hz). Somatic imaging was
performed with a resolution of 2.05–10.24 pixels/micron.
Dendritic spine imaging was performed with a resolution of
6.10–15.36 pixels/micron.

Two-Photon Imaging Analysis
Imaging data were excluded from analysis if motion along
the z-axis was detected. Dendrite images were corrected for
in-plane motion via a 2D cross-correlation-based approach in
MATLAB or using a piecewise non-rigid motion correction
algorithm (Pnevmatikakis and Giovannucci, 2017). ROIs (region
of interest) were drawn in ImageJ; dendritic ROIs spanned
contiguous dendritic segments and spine ROIs were fit with
custom software. Mean pixel values for ROIs were computed
over the imaging time series and imported into MATLAB
(Sage et al., 2012; Hiner et al., 2017). ∆F/Fo was computed by
computing Fo with time-averaged median or percentile filter
(10th percentile). For spine signals, we subtracted a scaled
version of the dendritic signal to remove back-propagating action
potentials as performed previously (Wilson et al., 2016). ∆F/Fo
traces were synchronized to stimulus triggers sent from Psychopy
and collected by Spike2. Spines were included for analysis if the
SNR of the preferred response exceeded two median absolute
deviations above the baseline noise (measured during the blank)
and were weakly correlated with the dendritic signal (Spearman’s
correlation, r < 0.4). Some spine traces contained negative
events after subtraction, so correlations were computed ignoring
negative values. We then normalized each spine’s responses so
that each spine had equal weight. The preferred orientation for
each spine was calculated by fitting responses with a Gaussian
tuning curve using lsqcurvefit (Matlab). Tuning selectivity was
measured as the vector strength index (v) for each neuron’s
response:

vi =

√∑
(ri cos θk)2 +

∑
(ri sin θk)2∑

ri

Here r is the mean responses over the orientations (θk) presented
for each spine (i). Note, this same index is used to characterize
simulated input selectivity.

Analysis
To compare input tuning (derived synaptic population or
measured dendritic spine population) with output tuning
(downstream readout or measured somatic tuning) we computed
the Pearson Correlation coefficient (Matlab). This correlation
was computed on trial-averaged responses across different
orientations. For dendritic spines and soma, measured responses
across stimulus presentation trials were averaged. For simulated
synaptic populations and corresponding downstream readout
neurons, we simulated trials by adding noise to each synaptic
tuning curve.

CODE AVAILABILITY

Matlab code to generate input and readout populations used are
provided: https://github.com/schollben/SpineProbablisticModel
2020.

RESULTS

Following several decades of work on population coding theory,
we derive a Bayesian decoder to report the probability of a
visual stimulus given inputs from a neural population (Figure 1).
With this framework, and given the specifics of the encoding
population, we can analytically derive the optimal decoding
weights of a population of readout neurons. Here, we use
‘‘optimal’’ to refer to the maximum-likelihood solution. Previous
work has shown that a population of neurons could perform such
probabilistic decoding with weighted summation and divisive
normalization, as long as their inputs exhibit Poisson-like noise
(Jazayeri and Movshon, 2006; Ma et al., 2006). Starting from
that basic framework, we derived a decoder that represents
the probability that each possible stimulus orientation was
present given the responses of a large population of upstream,
input neurons (PIN). This is effectively a categorical decoder,
where each possible orientation is a different category. Similar
decoders have been used throughout the literature to estimate
how much information is in a neural recording and suggest
how downstream neurons might read it out (Graf et al., 2011;
Stringer et al., 2019). Our decoder has weight vectors for
each possible stimulus orientation, which integrate across PIN
and are passed through a static nonlinearity (the exponential
function) and normalized. As we will show below, given specific
assumptions about the variability in PIN, the weights over PIN

FIGURE 1 | A population decoding framework to study synaptic diversity.
An upstream population of neurons is tuned for a single stimulus variable
(orientation; top). This input population is readout by downstream decoder
neurons (bottom). Downstream neurons decode stimulus identification by
reading out spikes from the upstream input population. Each decoder neuron
is defined by set weights (middle) over the upstream population, which are
summed and rectified to produce an output.

Frontiers in Synaptic Neuroscience | www.frontiersin.org 4 July 2022 | Volume 14 | Article 888214

https://github.com/schollben/SpineProbablisticModel2020
https://github.com/schollben/SpineProbablisticModel2020
https://www.frontiersin.org/journals/synaptic-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/synaptic-neuroscience#articles


Yates and Scholl Synaptic Diversity from Heterogeneous Populations

depend systematically on the tuning functions and covariance of
PIN. Following characterization of this decoding framework, we
will make direct comparisons with real data: defining an effective
‘‘synaptic input population’’ (PSYN) as nonzero, positive weights
over PIN. Although our strategy applies to any one-dimensional
stimulus variable, we describe this model in the context of the
orientation of drifting gratings presented to V1 neurons for a
direct comparison with in vivomeasurements.

A Neural Population as a Probabilistic
Decoder
A categorical probabilistic decoder reports the probability that a
particular stimulus orientation, θk, was present given the spiking
responses of an input population, R. This can be expressed as a
normalized exponential function of the log-likelihood plus the
log prior for each θk,

p(θk|R) =
p(R|θk)p(θk)∑
i p(R|θi)p(θi)

=
eL(θk)∑
i eL(θi)

where

L(θk) = ln(p(R|θk))+ ln(p(θk))

The likelihood, p(R|θk), is the probability of the observed
responses in an input population given the stimulus k and p(θk)
is the prior probability of that stimulus class. If p(R|θk) is in the
exponential family, then L(θk) can be written as a weighted sum
of the input population response vector plus an offset, which can
be estimated numerically viamultinomial logistic regression (Ma
et al., 2006). For simplicity, we assume the input population has a
response that is a function of the stimulus plus Gaussian noise
and equal covariance across all stimulus conditions. Although
this assumption about the covariance structure deviates from real
neural activity, this assumption means the weights and offset can
be solved analytically (see ‘‘Methods’’ Section), and as will be
shown below, such a simple model makes substantial headway in
explaining biological phenomena. Our goal here is to provide a
plausible alternative to ‘‘somatic selectivity’’ for the connectivity
rules in the cortex. Under the Gaussian assumption, the decoder
amounts to:

p(θk|R) =
e(RTwk+βk)∑K
i=1 e(R

T wi+βi)

wk = Q−1f (θk)

βk = −

(
1
2

)
f (θk)TQ−1f (θk)+ ln p(θk)

Here, f (θk) is the mean input population response to stimulus
orientation, k, K is the total number of orientations, and Q is the
covariance matrix. The covariance term captures the influence
of each neuron’s response variance (diagonal elements) and the
variability shared with other neurons (off-diagonal elements).
Intuitively, in the absence of covariability (i.e., off-diagonal
elements are zero), the weights are proportional to the signal-
to-noise ratio of the neuron (the mean divided by the variance).
The term RTwk is the dot product between the population
response and weights. The second term, βk, is an offset for each

stimulus. ln p(θk) is a constant reflecting the log prior probability
of stimulus k. It is worth noting that if the covariance depends on
the stimulus, the optimal readout is no longer a linear function
of R and is quadratic, which can be interpreted as a complex-cell
(Pagan et al., 2016; Jaini and Burge, 2017) and is a potentially
fruitful future direction.

In this study, we focus on the weights of this simple Gaussian,
equal covariance decoder in order to examine how synaptic
tuning from such a simple decoder would arise. Because the
optimal weights have an analytic solution (Equation 1), we can
see how they depend on the parameters of PIN. The simplifying
assumptions we use to derive the maximum-likelihood weights
help build intuitions about what can be expected in biological
circuits, and linear weights such as these could be learned by
real neural systems (Dayan and Abbott, 2001). A key difference
here from prior work is that rather than focus on discrimination
(Haefner et al., 2013), we treat orientation estimation as a
multiclass identification problem, discretizing θ such that for
each possible θk, there is a separate weight vector. Thus, in this
derivation, the optimal weights depend on the tuning curves
themselves, not the derivative.

Characteristics of a Neural Population
Decoder
To understand how synaptic weights depend on input statistics,
we derived maximum-likelihood weights for input populations,
PIN, with different tuning and covariance. To generate PIN
we simulated N neurons responding to K oriented stimuli
(θ=[−90o:K/180:+90o]). We briefly describe the construction
of PIN here (full details are described in the ‘‘Methods’’
Section). Each neuron is defined by a tuning function and noise
term, describing trial-by-trial variability, which are summed
to generate stimulus-driven responses. We compared two
fundamentally different types of input populations that have
been used in the literature, homogeneous and heterogenous,
as well as the role of correlated variability in shaping readout
weights. A homogeneous PIN consists of shifted copies of a
single tuning curve (Figure 2A). Heterogenous PIN have diverse
tuning functions and were generated to match measurements
from macaque V1 (Ringach et al., 2002). The heterogenous PIN
consisted of tuning curves closely resembling V1 physiology
in terms of the variation in peak firing rate, bandwidth, and
baseline firing rate (Figure 2D). Varying amounts of limited-
range correlations were included such that the noise correlation
between two neurons depends on the difference in their tuning
preferences (Ecker et al., 2011; Kohn et al., 2016).

The statistics of PIN responses, R, will dictate the weight
structure for neurons in a decoding population. For a
homogeneous PIN, the weights are smooth across orientation
space and exhibit three primary features: a prominent peak about
the preferred orientation of the output tuning, slight negative
weights for orientations just outside the preferred, and near-zero
weights at orthogonal orientations (Figure 2B). With more
realistic tuning diversity (heterogenous PIN), optimal weights are
no longer smooth (Figure 2E). While the optimal weights appear
to roughly have the same overall shape as for homogeneous
PIN, there is considerable positive and negative weighting across
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FIGURE 2 | Model simulations with homogenous and heterogeneous input
populations. (A) Orientation tuning of a homogenous input population. Shown
is a subset of the total population (n = 20/1,000). The ordinate is orientation
preference, restricted between −90 o and 90o. (B) Derived weights for a
single decoder neuron (preferring 0o) reading out the homogenous (blue)
input population in (A). Weights for homogenous populations smoothly vary
over orientation space. (C) Response output of the decoder neuron whose
weights are shown in (B). (D–F) Same as in (A–C) for a heterogeneous input
population with moderate correlation (co = 0.25). Note that decoder weights
for heterogeneous input populations are not smooth.

orientation space. Despite substantial changes in optimal weight
vectors, the decoder output (i.e., somatic response) tuning was
narrow (Figure 2F), similar to the output for the homogeneous
case (Figure 2C).

To explore the importance of decoding weight diversity,
we imposed a smoothing penalty on weight vectors (Park and
Pillow, 2011). We calculated cross-validated decoder accuracy
using themean-squared error between themaximum a posteriori
estimation and true stimulus (see ‘‘Methods’’ Section). Different
degrees of smoothing are shown for an example set of weights
in Figure 3A. We simulated a range of population sizes
(n = 2–2,048) and correlations (co= 0, 0.25, 0.50).

Without noise correlations, the accuracy of all decoders
increases with population size, with a homogenous PIN
performing best (Figure 3B). In the presence of noise
correlations, accuracy saturates for large homogenous PIN
(Figures 3C,D). As previously shown (Ecker et al., 2011),
accuracy for heterogeneous populations with limited-range
correlations does not saturate (Figures 3C,D). However, this

depends on weight diversity. Smoothing the weights for
heterogeneous PIN caused saturation and decreased accuracy
(Figures 3C,D), demonstrating that weight amplitude diversity
in analytically derived weights distributions are critical for the
decoder performance.

Simulating Excitatory Weight Tuning
In order to compare analytically derived weights with the
synaptic inputs onto V1 neurons measured in vivo, we
generated excitatory synaptic input populations (PSYN). Under
the assumption that synaptic integration is linear, two synapses of
equal weight are the same as one synapse with double that weight.
This creates a degeneracy where synapse count and size trade-
off. Because current spine imaging techniques typically capture
large synapses and there is no relationship between strength
and orientation preference (Scholl et al., 2021), we can assume
size is fixed and convert the derived weights into a frequency
distribution of ‘‘synaptic inputs’’ (Figure 4A). The tuning curve
for such a synapse is the tuning curve of the input and thus,
the synaptic input population, PSYN, is the input population
resampled with probabilities given by the derived weights. An
example PSYN for a single decoder neuron is shown in Figure 4B
(drawn from the heterogeneous PIN in Figure 2). PSYN in this
example displays some specificity in orientation tuning relative to
the somatic output, indicated by a larger proportion of simulated
synapses with similar orientation preference as the somatic
output (0o) of the decoder neuron.

Empirical Distribution of Dendritic Spine
Tuning Is Consistent With Decoding of a
Heterogeneous Input Population
We analyzed two-photon calcium recordings from soma and
corresponding dendritic spines on individual neurons in ferret
V1 during the presentation of oriented drifting gratings
(see ‘‘Methods’’ Section). While our model draws from a PIN
matched to measurements from macaque V1, the orientation
tuning of layer 2/3 neurons in ferret V1, as measured
by two-photon cellular imaging, exhibit a similar range in
selectivity (Wilson et al., 2016). Visually responsive and isolated
dendritic spines (see ‘‘Methods’’ Section) typically exhibit diverse
orientation tuning relative to the somatic output, although some
individual cells show greater overall diversity (Figure 5B) than
others (Figure 5A). To characterize PSYN diversity, both for real
dendritic spines and simulated inputs, we computed the Pearson
correlation coefficient between the tuning curves of individual
inputs and the corresponding somatic output (Scholl et al., 2021).
For these comparisons, we sampled orientation space in the
model spines to match our empirical measurements (22.5 deg
increments), and the number of total excitatory inputs recovered
for each simulated downstream neuron was set to 100, similar
to the average number of visually-responsive spines recorded for
each ferret V1 neuron (n = 45, n = 158.9 ± 73.2 spines/cell).
Simulations were run 10,000 times, with n = 1,000 for PIN and
co= 0.20.

Across all simulated inputs, input-output tuning correlation
was higher for homogeneous PSYN compared to heterogeneous
PSYN (median rhom = 0.60, median rhom = 0.18, n = 900,000;
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FIGURE 3 | Decoder performance of heterogeneous input populations depends on population size, correlations, and weight diversity. (A) Example weight
distribution for a decoder neuron reading out a heterogeneous input population (top). Shown are the effects of progressively smoothing weights. Smooth parameters
(see “Methods” Section) from top to bottom: (0, 0), (0.1, 1), (0.2, 2), (1, 10). The ordinate is orientation preference, restricted between −90o and 90o. (B) Decoder
performance (inverse mean-squared-error) plotted for homogenous and heterogeneous input populations of increasing size. Simulations here include no correlations
(co = 0). Shading indicates standard error. (C) Same as in (D) for input populations with moderate correlation (co = 0.25). (D) Same as in (B) for input populations
with stronger correlation (co = 0.50).

FIGURE 4 | Simulation of synaptic populations from decoder neuron weight distributions. (A) Example weight distribution for a single decoder neuron tuned to 0o

(left). Ordinates are orientation preference, restricted between −90o and 90o. The dashed line separates excitatory (positive) and inhibitory (negative) weights.
Excitatory weight distribution over the input population is transformed into a frequency distribution, whereby greater amplitude equates to a greater frequency of
occurrence (right). (B) Example simulated synaptic population (n = 100 spines) from the weight distribution in (A). Shown are the orientation tuning curves of each
simulated synapse (normalized).

Figure 5C). Tuning correlation between all imaged dendritic
spines and soma was low (median rcell = 0.31, n = 7,151 spines
from 45 cells), more closely resembling our model with a
heterogenous PIN. As somatic orientation selectivity (i.e., tuning
bandwidth) varies for single cells in ferret V1 (Goris et al.,
2015; Wilson et al., 2016), we next examined the average input-
output tuning correlation across individual cells (Figure 5D).
Here, the homogeneous model exhibited greater specificity
then the heterogeneous model (median rhom = 0.52; median
rhet = 0.18, n = 90,000). For ferret V1 cells, we observed
similar spine-soma correlation as the heterogeneous simulation
(median rcell = 0.20, n = 45). Ferret V1 cells were not
statistically different from neural decoders with a heterogeneous
PSYN (p = 0.19, Mann-Whitney test), while neural decoders
with a homogeneous PSYN were significantly more correlated

with the inputs (p < 0.0001, Mann-Whitney test). A small
percentage of imaged cells (11.1%, n = 5/45) had synaptic
populations whose mean tuning correlation was within the 95%
confidence interval of the homogeneous model distribution.
This observation may be influenced by contamination from
back-propagating action potentials, the limited sensory space
probed, or indicate a true functional specialization of a
subpopulation of excitatory neurons. Additionally, some cells
had negative average correlations with their spines, which
never occurred in the models—potentially indicating linearities
between the spines and soma. It is also important to emphasize
that both synaptic populations and the heterogeneous model
exhibit a positive bias in tuning correlations, illustrating that
while inputs are functionally diverse, they are, on average, more
similarly tuned to the cell/decoder output.
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FIGURE 5 | Orientation tuning diversity of dendritic spine populations in ferret V1 match simulations with correlated, heterogeneous input populations. (A)
Two-photon standard deviation projection of example dendrite and spines recorded from a single cell (left). Inset: Two-photon standard-deviation projection of
corresponding soma. The scale bar is 10 microns. Orientation tuning of soma (top) and all visually-responsive dendritic spines from this single cell (n = 159) are
shown (right). Spine responses are normalized peak ∆F/F. Orientation preferences are shown relative to the somatic preference (aligned to 0o). (B) Same as in (A) for
another example cell (n = 162 visually-responsive spines). (C) Cumulative distributions of tuning correlation between individual dendritic spines or simulated synaptic
inputs with corresponding somatic tuning or decoder output. Shown are correlations of simulations of homogenous (blue) or heterogeneous (red) input populations,
compared to empirical data (gray). (D) Distributions of average tuning correlation between synaptic input and somatic output across measured cells (n = 45). Also
shown are distributions of average tuning correlation for simulated cells. Triangles denote median values for each distribution. (E) Comparison of Kullback-Leibler
divergence (DKL) between data and each model type. Each data point represents an individual cell’s population of dendritic spines.

Given the differences between ferret V1 neurons, we
quantified the degree to which synaptic populations on each
neuron matched tuning correlation distributions from models of
homogenous and heterogenous PIN, by calculating the Kullback-
Leibler divergence (DKL, bin size = 0.05, see ‘‘Methods’’ Section).
Across our population, imaged neurons more closely resembled
simulations with heterogenous, compared to homogenous, PIN
(93.3%, n = 42/45; Figure 5E) and DKL from a heterogenous
model was consistently larger (p < 0.0001, sign rank Wilcoxon
test). This trend held for a range of histogram bin sizes
(0.001–0.20). Importantly, the models are not fit to data. They
are derived entirely from the statistics of the input population,
so this correspondence between the heterogenous model and the
data results from no free parameters.

In addition to the similarity in input-output tuning
correlation, we observed several trends predicted by the
heterogeneous model that were evident in synaptic populations
imaged in vivo. Simulated excitatory inputs correlated with
the decoder output were not more selective for orientation (see
‘‘Methods’’ Section; bootstrapped PCA slope = 0.001± 0.004 s.e.,
n = 10,000 simulation runs). For two-photon data, a minuscule,
but significant, trend was evident (bootstrapped PCA
slope = 0.03 ± 0.1 s.e., n = 7,151). So while selective inputs
are proposed to provide more information about encoded
stimulus variables (Seriès et al., 2004; Shamir and Sompolinsky,
2006; Zavitz and Price, 2019) and unselective (or poorly
selective) inputs could convey information through their
covariance with selective neurons (Zylberberg, 2017), our model

and experimental data suggest co-tuned and orthogonally-tuned
inputs exhibit a wide range of tuning selectivity. Response
variability (i.e., standard deviation) across trials for simulated
excitatory inputs was significantly smaller for ‘‘null’’ orientations
(± 90 deg) than at the ‘‘preferred’’ (median = 0.30 and
IQR = 0.14, median = 0.38 and IQR = 0.22, respectively;
p < 0.001, Wilcoxon rank-sum test) and this trend was also
observed in our two-photon data (null: median = 0.13 and
IQR = 0.15; preferred: median = 0.23 and IQR = 0.31,
respectively; p < 0.001, Wilcoxon rank-sum test). As both
modeled and imaged neurons had ‘‘null’’-tuned excitatory inputs
that exhibited less response variability, these inputs may carry
useful information about when the preferred stimulus is not
present.

Taken together, our decoding framework with realistic
(i.e., heterogenous orientation tuning), noisy input populations
suggests the collection of orthogonally-tuned excitatory inputs
in cortical neurons in vivo is not unexpected. Instead, the
synaptic architecture of layer 2/3 neurons in the ferret
visual cortex is likely optimized for the readout of upstream
populations tuned to orientation. As functional heterogeneity
and correlated noise are ubiquitous in sensory populations
(Jia et al., 2010, 2011; Chen et al., 2011, 2013; Wertz et al.,
2015; Wilson et al., 2016, 2018; Iacaruso et al., 2017; Scholl
et al., 2017; Kerlin et al., 2019; Ju et al., 2020), the fact
that simple linear model utilizes orthogonally-tuned excitatory
inputs suggests this is a general principle across mammal
species.
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DISCUSSION

We used a population decoding framework (Pouget et al., 2000;
Jazayeri and Movshon, 2006; Shamir, 2014; Kohn et al., 2016)
to elucidate a possible source of synaptic diversity in functional
response properties. We find that even simple decoders exhibit
substantial heterogeneity in their weights when the inputs
are noisy, correlated neural populations with heterogeneous
orientation tuning. This observation is consistent with several
studies that find benefits of heterogeneity for population coding,
computational capacity, and self-organization of global networks
(Tripathy et al., 2013; Weigand et al., 2017; Duarte and
Morrison, 2019). We argue that this could naturally explain
the heterogeneity in synaptic inputs measured in vivo if these
cortical neurons are decoding information from upstream
input populations. We compared two neural decoders: one
with homogenous input (Jazayeri and Movshon, 2006) and
one with heterogenous input (Ecker et al., 2011). We show
that empirical measurements from dendritic spines recorded
within individual cortical neurons in ferret V1 exhibit a similar
amount of diversity in orientation tuning as simulated inputs
(i.e., excitatory weights) from heterogeneous input populations.
It may appear trivial that heterogeneous input populations
would produce heterogeneous weights, but it was neither
immediately obvious that the weights would not be smooth
nor that excitatory weights would be evident for orthogonal
orientations. Orthogonally-tuned or non-preferred inputs are
often considered to be aberrant; to be pruned away during
experience-dependent plasticity or development (Holtmaat and
Svoboda, 2009). Our decoding approach suggests these inputs
are purposeful and could emerge through development as
cortical circuits learn the statistics of their inputs (Avitan
and Goodhill, 2018). Our approach also suggests that while
V1 does not exhibit strict ‘‘like-to-like’’ connectivity, there is
a functional bias in the distribution of inputs onto single
neurons. Taken together, our results shed light on synaptic
diversity that has been puzzling, suggesting that it is, in
fact, expected given the known properties of the input
population.

We believe our study is a step forward in combing
population coding theory (Pouget et al., 2000; Averbeck et al.,
2006) and functional connectomics (Scholl et al., 2021). The
ability to measure receptive field properties and statistics of
sensory-driven responses of synapses in vivo provides a new
testing bed for population codes. The individual neurons
which synapses converge on are the real components of
what has long been a hypothetical downstream population
decoder. While we did not set out to build a computational
or biophysical model of a neuron, we believe simplistic
approaches such as ours are fruitful for understanding basic
principles.

One limitation of our approach is that our model did not
account for many aspects of cortical networks such as stimulus-
dependent correlations, recurrent connections, biophysics,
inhibitory subnetworks, or nonlinear dendritic integration
(Polsky et al., 2004; Lavzin et al., 2012; Goetz et al., 2021;
Lagzi and Fairhall, 2022). The utility of our approach is that

it demonstrates that even a simple linear model can produce
heterogenous weights, without incorporating elements that
introduce nonlinearities. Under more realistic visual stimulus
conditions (e.g., natural or stimulus-dependent covariance), the
optimal decoder is no longer linear and can be modeled with
nonlinear subunits (Pagan et al., 2016; Jaini and Burge, 2017).
Extending a decoding framework to include realistic noise has
been used to capture many nonlinear features of neural responses
including divisive normalization, gain control, and contrast-
dependent temporal dynamics—all features which fall naturally
out from a normative framework (Chalk et al., 2017). These more
sophisticated approaches may be able to make predictions about
the synaptic organization itself, whereby local clusters of synapses
act as nonlinear subunits (Ujfalussy et al., 2018).

Our model does not describe a cortical transformation.
Instead, to limit complexity, we focused on the propagation
of orientation selectivity from one neural population to
another, akin to the propagation of basic receptive field
properties from V1 to higher-visual areas. Our approach
was chosen to provide a starting point for predicting the
tuning diversity of synaptic input populations as compared
to the tuning output or downstream cells. However, this
model could be modified to study the convergence and
transformation of cortical inputs. An obvious case study
would be complex cells in layer 2/3 V1 (Hubel and Wiesel,
1962; Movshon et al., 1978; Spitzer and Hochstein, 1988),
which are thought to integrate across presynaptic cells with
similar oriented receptive fields with offset spatial subunits
to produce polarity invariance. This extension would be
better suited for a nonlinear quadratic decoder (Pagan et al.,
2016; Jaini and Burge, 2017), rather than the linear one
used here. We hope that future studies build upon this
modeling framework, exploring quadratic decoders and work
towards using richer visual stimuli and neural models (Chalk
et al., 2017). We believe this will be critical for gaining
insight into how information propagates between cortical
areas and from large-scale measurements of cortical functional
connectivity.
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