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Artificial intelligence for 
morphology-based function 
prediction in neovascular age-
related macular degeneration
Leon von der Emde1, Maximilian Pfau   1,2, Chantal Dysli1,3, Sarah Thiele1,2, 
Philipp T. Möller1,2, Moritz Lindner   4, Matthias Schmid5, Monika Fleckenstein1,2, 
Frank G. Holz1,2 & Steffen Schmitz-Valckenberg1,2

Spatially-resolved mapping of rod- and cone-function may facilitate monitoring of macular diseases 
and serve as a functional outcome parameter. However, mesopic and dark-adapted two-color 
fundus-controlled perimetry (FCP, also called “microperimetry”) constitute laborious examinations. 
We have devised a machine-learning-based approach to predict mesopic and dark-adapted (DA) 
retinal sensitivity in eyes with neovascular age-related macular degeneration (nAMD). Extensive 
psychophysical testing and volumetric multimodal retinal imaging data were acquired including 
mesopic, DA red and DA cyan FCP, spectral-domain optical coherence tomography and confocal 
scanning laser ophthalmoscopy infrared reflectance and fundus autofluorescence imaging. With 
patient-wise leave-one-out cross-validation, we have been able to achieve prediction accuracies of 
(mean absolute error, MAE [95% CI]) 3.94 dB [3.38, 4.5] for mesopic, 4.93 dB [4.59, 5.27] for DA cyan 
and 4.02 dB [3.63, 4.42] for DA red testing. Partial addition of patient-specific sensitivity data decreased 
the cross-validated MAE to 2.8 dB [2.51, 3.09], 3.71 dB [3.46, 3.96], and 2.85 dB [2.62, 3.08]. The 
most important predictive feature was outer nuclear layer thickness. This artificial intelligence-based 
analysis strategy, termed “inferred sensitivity”, herein, enables to estimate differential effects of retinal 
structural abnormalities on cone- and rod-function in nAMD, and may be used as quasi-functional 
surrogate endpoint in future clinical trials.

Age-related macular degeneration (AMD) is the most common cause for severe visual loss in industrialized 
countries1. The introduction of anti-vascular endothelial growth factor (anti-VEGF) therapy has markedly 
improved visual outcomes in patients with choroidal neovascularization (CNV) secondary to AMD2. However, 
clinical trials investigating combined therapeutic approaches (e.g. anti-VEGF in combination with anti- Pigment 
epithelium-derived factor (PEDF) beyond anti-VEGF monotherapy have yet failed to demonstrate superi-
ority (e.g. CAPELLA, [clinicaltrials.gov identifier: NCT02418754], OPH1002 [NCT01944839], OPH1003 
[NCT01940900])3. While the negative trial results may be explained by the lack of biological effectiveness, they 
may also be a result of limitations of the utilized structural surrogate and functional endpoints. In a worst-case 
scenario, this may lead to disregarding a candidate drug that in fact actually was efficient.

Best-corrected visual acuity (BCVA) is the most commonly used functional endpoint in ophthalmological 
trials. However, it has limited accuracy with regard to subtle therapeutic effects, as it only measures photopic 
function at central retinal fixation and exhibits considerable retest-variability4,5. In this regard, fundus-controlled 
perimetry (FCP, ‘microperimetry’) offers information over and beyond BCVA. FCP is a established 
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psychophysical assessment allowing for spatially resolved probing of retinal sensitivity even in patients with 
instable fixation due to eye tracking6–10. Recently, the refined probing of rod function by dark-adapted (DA) 
two-color FCP has become possible with the introduction of a novel device (S-MAIA, Centervue, Padua, Italy)11–

14. However, the test requires dedicated equipment, is rather time consuming and the number of test-points and 
consequently the spatial-resolution is limited due to fatigue of the patient. Spectral-domain optical coherence 
tomography imaging (SD-OCT), which allows for axially resolved imaging of the retina, infrared reflection (IR) 
imaging and fundus autofluorescence (FAF) imaging, which enables mapping of retinal fluorophores, are now 
widely available15. Hereby, the en face resolution of these modalities (11.4 or 5.7 µm/pixel for the Spectralis OCT 
2 device, Heidelberg Engineering, Germany) is by more than one log unit higher as compared to FCP testing 
(128 µm [Goldmann III] stimulus for the S-MAIA device). However, the currently used imaging biomarkers 
have limited informative value. For example in neovascular AMD, a decrease in central (full) retinal thickness 
could represent both, positive (e.g. reduction of macular edema) or negative (e.g. outer retinal atrophy) treatment 
effects. It has recently been demonstrated, that artificial intelligence (AI) algorithms, including machine learning 
techniques such as random forest regression, may be applied in neovascular AMD to predict future BCVA based 
on previous BCVA and structural SD-OCT data16. Yet, similar to BCVA, “inferred BCVA” would be expected to 
be rather insensitive to localized - particularly extrafoveal - alterations in the retinal structure.

The aim of this study was to predict retinal senstivity based on retinal microstructure in neovascular AMD 
using machine-learning algorithms. The analysis was based on multimodal, volumetric state-of-the-art ret-
inal imaging and differential mesopic, dark-adapted cyan and dark-adapted red FCP testing. To potentially 
improve the accuracy of the applied models, we also estimated the additional predictive value provided by 
“patient-reliability indices” that may account for patient-specific behavioral factors. Finally, we designed this 
study with the aim to explore the utility of “inferred sensitivity” mapping as a quasi-functional surrogate endpoint 
for future clinical trials. Hereby, we introduce the term “inferred sensitivity” to describe the spatially-resolved 
prediction of retinal sensitivity based on clinically feasible multimodal retinal imaging and with subsequent appli-
cation of AI algorithms.

Results
Cohort characteristics.  Fifty eyes of 50 patients with CNV secondary to AMD (age [mean ± SD] 76.1 ± 7.6 
years [range: 54.6–90.2 years]) and 40 eyes of 40 controls (55.8 ± 17.4 years [21.8–82.1 years]) were included in 
this study (Table 1). The median BCVA was logMAR 0.38 ± 0.34 [Snellen equivalent approximately 20/50] for 
patients and 0.03 ± 0.07 [Snellen equivalent approximately 20/20] for controls. For all following analyses, the 
normal data was exclusively used to standardize patient data in consideration of the spatial differences in retinal 
sensitivity as well as layer thicknesses and reflectivities (cf. Methods and Fig. 1). Accordingly, only patient data 
were used to derive the estimates for the prediction accuracies to obtain as much as possible conservative esti-
mates. A single observation (i.e. single test-point within one patient) for all three types of FCP testing had to be 
excluded due to missing SD-OCT data. This left a total of 3049 observations for predictive modeling for each type 
of testing (i.e. 50 patients with 61 point-wise observations for mesopic, DA cyan and DA red testing).

Prediction model for retinal sensitivity in an unknown patient (scenario 1).  The prediction accu-
racies of the machine learning models were determined in two clinically meaningful scenarios. Firstly, scenario 
1 (patient-wise leave-one-out cross-validation [LOO-CV], Fig. 2) represents the prediction accuracy for a com-
pletely unknown patient with only imaging data available. For mesopic sensitivity, the prediction accuracy for 
scenario 1 based on imaging data only (S1A) reached a mean absolute error (MAE [95% CI]) of 4.22 dB [3.72, 
4.72], which is markedly better as compared to the MAE of the corresponding null model (Table 2). A likelihood 
ratio test revealed, that the prediction accuracies varied significantly in dependence of the feature set (P < 0.001). 
With additional inclusion of “patient reliability indices” as predictors (S1B), to control for potential confounding 
factors such as the patient-specific false-positive response rate, the MAE could be further reduced to 4.06 dB 
[3.52, 4.6] (P < 0.001). Of note, fixation stability was not considered as “patient reliability indices” in this study, 

Characteristic Overall cohort (N = 50) Retest subgroup (N = 28)

Age (mean ± SD) 76.1 ± 7.6 years 76.5 ± 7.3 years

Sex
30 female 18 female

20 male 10 male

BCVA (mean ± SD) 0.38 ± 0.34 logMAR 0.38 ± 0.33 logMAR

CNV subtype

32 active CNV 18 active CNV

11 silent CNV 6 silent CNV

7 quiescent CNV 4 quiescent CNV

Retest reliability (MAE [95% CI])

Mesopic testing

n/a

2.00 dB [1.81, 2.19]

Dark-adapted cyan testing 1.89 dB [1.56, 2.22]

Dark-adapted red testing 2.20 dB [1.95, 2.46]

Table 1.  Cohort characteristics. The cohort characteristics are outlined. The randomly sampled subgroup 
of patients that underwent duplicate testing is highly representative of the overall cohort. The mean absolute 
error (MAE) between the first and second test for the retest subgroup were provided as a benchmark for the 
prediction results shown in Table 2.
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since it could be partially informative of function. Additional inclusion fixation stability (S1C) allowed for a 
further slight reduction of the MAE to 3.94 dB [3.38, 4.5] as shown in Fig. 2 (P < 0.001). Similar prediction accu-
racies were reached for S1A for dark-adapted cyan sensitivity (5.15 dB [4.68, 5.62]) and dark-adapted red testing 
(4.05 dB [3.66, 4.43]). Again, the prediction accuracy varied in dependence of the feature set for both types of 
testing (likelihood ratio test, P < 0.001). Hereby, inclusion of “patient reliability indices” likewise improved the 
prediction accuracies markedly for dark-adapted cyan testing to 4.89 [4.55, 5.24] (P < 0.001). For dark-adapted 
red testing, the prediction accuracy did not improve through inclusion of “patient reliability indices” as predic-
tors. Inclusion of fixation stability did not further improve the prediction accuracies significantly for both types 
of testing (Fig. 2, Table 2).

Prediction model for retinal sensitivity in a patient with prior perimetry data (scenario 2).  
Since potentially influential factors (e.g. lens opacity) may not be directly deducible from retinal imaging data, we 
assessed whether data from a brief FCP exam, which would be feasible in the context of a multicenter trial, (i.e. 30 

Figure 1.  Image registration and grading. As shown in panel A, spectral-domain optical coherence tomography 
was semi-automatically annotated. The herein used definition for the full-retina (turquoise overlay) ranged 
from the internal limiting membrane (ILM) to Bruch’s membrane (BM), the inner retina (purple overlay) from 
the ILM to the outer plexiform layer (OPL) outer nuclear layer (ONL) boundary, the ONL (blue layer) from 
the OPL/ONL boundary to the external limiting membrane (ELM), the inner photoreceptor segments (IS, red 
overlay) from the ELM to band 2 (ellipsoid zone [EZ]), the outer photoreceptor segments (OS, green overlay) 
from EZ to band 3 (interdigitation zone) or upper boundary of the retinal-pigment-epithelium-drusen-complex 
(RPEDC, red overlay). RPE, drusen, reticular drusen and subretinal hyperreflective material were defined as 
RPEDC. Subretinal fluid was included in the here used definition of the OS layer. As shown in panel B, fundus-
controlled perimetry data was registered to the multimodal imaging data based on vessel bifurcations to extract 
imaging features corresponding precisely to the test-point location and area (0.43°). For each test-point, 26 
imaging features (fundus autofluorescence [FAF] intensity, infrared reflection [IR] intensity as well as thickness, 
minimum- mean- and maximum-intensity projections for the SD-OCT layers [full retina, inner retina, ONL, 
IS, OS, RPEDC]) were extracted.

Scenario 1: Leave One Out Cross Validation (LOO-CV) on patient-level Scenario 2: Cross Validation (CV) on test-point level

Random forest regression Random forest regression

Type of testing Null model Imaging data

Imaging data 
and reliability 
indices

Imaging data 
and reliability 
indices and 
fixation stability Null model Imaging data

Imaging data 
and reliability 
indices

Imaging data and 
reliability indices 
and fixation stability

Mesopic (MAE in dB) 5.29 [4.59, 6.00] 4.22 [3.72, 4.72] 4.06 [3.52, 4.6] 3.94 [3.38, 4.5] 3.74 [3.16, 4.31] 3.14 [2.85, 3.43] 2.8 [2.51, 3.09] 2.8 [2.51, 3.09]

Dark-adapted cyan (MAE in dB) 6.69 [6.25, 7.13] 5.15 [4.68, 5.62] 4.89 [4.55, 5.24] 4.93 [4.59, 5.27] 4.94 [4.6, 5.28]] 4.01 [3.76, 4.26] 3.73 [3.48, 3.98] 3.71 [3.46, 3.96]

Dark-adapted red (MAE in dB) 5.39 [4.76, 6.02] 4.05 [3.66, 4.43] 4.11 [3.7, 4.51] 4.02 [3.63, 4.42] 3.82 [3.41, 4.23] 3.15 [2.9, 3.41] 2.93 [2.71, 3.16] 2.85 [2.62, 3.08]

Table 2.  Prediction accuracies. The mean absolute error (MAE) estimates and 95% confidence interval for the 
MAE estimates are provided as measure of prediction error.
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test-points, duration of 5 minutes), could further enhance the prediction accuracy. For all three types of testing, 
the prediction accuracy was markedly improved for scenario 2 as compared to scenario 1 (P < 0.001). For all three 
types of testing, the prediction accuracy varied in dependence of the feature set (likelihood ratio test, P < 0.001). 
For mesopic sensitivity, the prediction accuracy for scenario 2 reached a MAE of 3.14 dB [2.85, 3.43]. Inclusion 
of “patient reliability indices” did further reduce the MAE (2.8 dB [2.51, 3.09]; P < 0.001), significantly while 
additional inclusion of fixation stability as predictor did not result in a further improvement of the prediction 
accuracy. Similarly, good prediction accuracies were reached for scenario 2A for dark-adapted cyan sensitivity 
(4.01 dB [3.76, 4.26]) and dark-adapted red testing (3.15 dB [2.9, 3.41]). Inclusion of “patient reliability indices” 
markedly improved the prediction accuracy for dark-adapted cyan sensitivity (3.73 [3.48, 3.98]; P < 0.001) and 
dark-adapted red testing (2.93 dB [2.71, 3.16]; P < 0.001). While inclusion of fixation stability as additional pre-
dictor did not further improve the prediction accuracy for dark-adapted cyan testing, the prediction accuracy for 
dark-adapted red-testing was further improved (2.85 dB [2.62, 3.08]; P < 0.001).

Feature importance and cone versus rod dysfunction.  Based on the permutation accuracy impor-
tance, ONL thickness (59.3% Inc MSE) followed by FAF intensity (51.3% Inc MSE) and inner retinal thickness 
(37.3% Inc MSE) constituted the most important features in predicting mesopic sensitivity (Fig. 3). For predic-
tion of dark-adapted cyan sensitivity, ONL thickness (87.8% Inc MSE) followed by IR intensity (55.2% Inc MSE) 
and OS thickness (49.9% Inc MSE) constituted the most important features. The feature importance order for 
dark-adapted red testing was similar to the feature importance for mesopic testing with ONL thickness (103.91% 
Inc MSE) followed by FAF intensity (71.5% Inc MSE) and IR intensity (44.9% Inc MSE). Moreover, graphical 
analysis (Fig. 3) underscores that the ONL thickness truly stands out in terms of feature importance across all 
three types of testing and similarly FAF intensity is separated in terms of importance from the other predictors for 
mesopic and dark-adapted red testing. Generally, thickness measurements exhibited a higher feature importance 
as compared to the layer intensities (Fig. 3).

Structure-function correlation.  The projections of feature contributions revealed distinctly different rela-
tionships between the retinal sensitivity and the ONL thickness for mesopic testing versus dark-adapted cyan 
testing (Fig. 4). For both types of testing, reduced ONL thickness indicating outer retinal atrophy was associated 
with decreased sensitivity, while normative ONL thickness was associated with normal function (Fig. 4). For 
mesopic and dark-adapted testing, ONL thickening exhibited no distinct effect on sensitivity. In contrast, an 
inverted-U relationship was observed for dark-adapted cyan sensitivity implying that ONL thickening is associ-
ated with a decreased dark-adapted cyan sensitivity (Fig. 4).

Prediction accuracy and clinical utility.  Random forest (RF) regression allowed for accurate prediction 
of sensitivity for a wide variety of retinal structural alterations through the examination of their specific thickness- 
and reflectivity deviations (Fig. 5). This was confirmed for both, para-foveal as well as peripheral region enabling 

Figure 2.  Cross-validation and prediction accuracies. Panel A shows the “outer” resampling techniques used 
in this study to estimate the efficacy of the models. First, we used patient-wise leave-one-out cross-validation 
(LOO-CV) to estimate the prediction accuracy for an “unknown patient” (scenario 1 [S1]). Second (scenario 2 
[S2]), we evaluated the prediction accuracy for a patient with some available perimetry data (i.e. data of a brief 
exam that would be feasible in a multicentre trial [30 test-points, duration of approximately 5 minutes]). Both 
scenarios were probed with three different sets of predictor variables: (S1A or S2A) imaging data only, (S1B or 
S2B) imaging data and “patient reliability indices” and (S1C or S2C) imaging data, “patient reliability indices” 
and fixation stability. Panel B shows the mean absolute errors (MAE) between predictions and observations as 
a measure of prediction accuracy per patient in the background for the three types of testing (mesopic, dark-
adapted [DA] cyan and dark-adapted red). The red dots indicate the overall MAE (error bars indicate the 95% 
confidence intervals for the estimate of the MAE).
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a comprehensive prediction throughout the retina. Moreover, the algorithm could be used to predict the function 
for the whole imaged retina (Fig. 6). The patient in Fig. 6 exhibits centrally rather intact retinal sensitivity despite 
markedly increased central (full) retinal thickness while exhibiting parafoveally scotomata associated with slight 
retinal thinning. This patient clearly showcases the limitations of central full retinal thickness as surrogate end-
point since full retinal thinning could represent both, loss of function (outer retinal atrophy) and gain of function 
(reduction in retinal edema).

Discussion
Demonstrating therapeutic benefits of emerging combined treatment approaches tackling diferent pathways 
simultaneously constitutes a challenge, especially given that visual outcomes in patients with neovascular AMD 
were markedly improved with the introduction of anti-VEGF therapy. Adequate clinical trial design with selec-
tion of suitable endpoints constitutes a prerequisite towards clear assessment of additional potential therapeutic 
benefit by novel interventional approaches. Using machine learning algorithms, the present study outlines the 
possibility to predict retinal function, when (a) volumetric, multimodal retinal imaging data is obtained only or 
(b) additionally a short FCP exam is performed. For this AI-based analysis strategy, we have introduced the term 
“inferred sensitivity” that may serve as a functional surrogate endpoint in future clinical trials.

To date, BCVA constitutes the most common functional outcome parameter in clinical trials in ophthalmol-
ogy in general and specifically in studies for neovascular AMD. However, BCVA is primarily representative of 
cone-function and of function at the fovea or of the preferred retinal locus in eyes with extrafoveal fixation (i.e. no 
spatial resolution)4. Moreover, BCVA assessment represents a psychophysical test that is rather time-consuming 
and requires good patient cooperation. FCP may partially compensate these shortcomings by allowing for dif-
ferential testing of cone and rod function (dark-adapted FCP) and allowing for assessment of retinal loci outside 
the foveal center with moderate spatial resolution11,12. Disadvantages include the the duration of the examination, 
which limits the spatial resolution due to patient fatigue, and the need for specific equipment, i.e. a microper-
imetry device14. Hereby, surrogate endpoints represent a viable alternative to obtain quasi-functional results, 
especially with a high spatial resolution that could not be be achieved with psychophysical testing. This study 
demonstrates that it is possible to infer sensitivity based on routinely obtained structural imaging data. Using 
“inferred sensitivity” as a surrogate functional endpoint would provide five key advantages. “Inferred sensitivity” 
would (i) provide a much higher spatial resolution compared to current functional testing, (ii) be ubiquitously 
available and (iii) and could be obtained within a short time frame even in patient unfit for psychophysical testing. 
Moreover, (iv) “inferred sensitivity” could adequately represent potentially opposing treatment effect (e.g. edema 
reduction versus outer retinal atrophy), which would be inadequately represented by currently used SD-OCT 
surrogate endpoints such as central (full) retinal thickness. Finally, (v) “inferred sensitivity” could be compared 
across diseases to potentially facilitate objective cost-benefit analysis. All of these advantages would be relevant 
in interventional trials in neovascular AMD. Specifically, “inferred sensitivity” as an endpoint would allow for 
enrolment of patients with early extrafoveal or peripapillary CNV and/or concurrent macular atrophy in clinical 

Figure 3.  Feature importance. The panels display for all three types of testing the permutation accuracy as 
measure of feature importance (percentage increase in mean squared error [% Inc MSE]). Hereby, the outer 
nuclear layer (ONL) thickness was the most predictive feature for all three types of testing. Generally, thickness 
measurements exhibited higher feature importance as compare to the layer intensities. Abbreviations: infrared 
reflection (IR); retinal-pigment-epithelium-drusen-complex (RPEDC); photoreceptor outer segments (OS); 
inner segments (IS); inner retina (IRET); full retina (FRET); fundus-autofluorescence (FAF). The color indicates 
the putative structural correlates of the imaging features (red: inner retina; green: photoreceptors; blue: RPEDC; 
purple – summation images). Notably, information from all layers contributed towards the predictions.
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trials17–19. These large subgroups of patients were previously systematically excluded from trials due to the limita-
tions of BCVA as functional endpoint and of central [full] retinal thickness as a surrogate endpoint17–19.

Previous studies provided evidence for the close structure-function correlations between retinal sensitivity 
and multimodal imaging in AMD, albeit with only a limited number of narrowly selected predictors and/or 
application of linear models7,8,20–24. Building on this, by using a wide array of potentially predictive variables 

Figure 4.  Differential effects of outer nuclear layer (ONL) thickness on cone versus rod function. The panels 
show the cross-validated feature contribution (y-axis) for mesopic, dark-adapted (DA) cyan and DA red 
testing in dependence of outer nuclear layer thickness (ONL thickness, x-axis), the imaging feature with the 
highest predictor importance in all models. For visual purposes, the ONL thickness was further accentuated 
by the color gradient. Hereby, the ONL thickness is displayed as standard score in consideration of the 
spatial variability of the ONL thickness (i.e. the number of normative standard deviations by which a given 
observations deviates from the normative mean estimate). The goodness-of-visualization (R2) indicates that the 
high dimensional model structure can be well reconstructed from the shown low dimensional visualizations. 
Please note, for all three types of testing, ONL thinning was associated with reduced sensitivity, while normative 
ONL thickness was associated with normative function. Notably, only for DA cyan testing, the relationship 
between sensitivity and ONL thickness is inverted-U shaped. This suggests that DA cyan sensitivity is more 
severely susceptible to ONL thickening (i.e. macular edema) as compared to mesopic or DA red sensitivity.

Figure 5.  Prediction accuracy and differential effects of disease-associated lesions on cone versus rod function. 
The panels show exemplary spectral-domain optical coherence tomography for various lesion subgroups (retina 
with drusen, pigment epithelium detachment [PED], subretinal fluid [SRF], intraretinal fluid [IRF]). For each 
type of lesion a para-foveal and peripheral B-scan is provided as example. The measured sensitivities as well as 
the predicted sensitivities for mesopic, dark-adapted (DA) cyan and DA red testing are provided. Please note 
that DA cyan sensitivity was always lower (observations and predictions) for the para-foveal regions compared 
to the peripheral regions in agreement with the rod photoreceptor distribution. However, also in the peripheral 
regions, the (observed and predicted) sensitivities for dark-adapted cyan testing tend to be lower than the 
sensitivities for dark-adapted red testing indicating selective rod photoreceptor vulnerability.
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(26 imaging features) and non-linear models, it is demonstrated herein that the relationship between structure 
and function is indeed close. By electing a supervised machine learning approach using RF regression, we could 
evaluate the feature importance and graphically analyze the effect of these features. The fact that the ONL, which 
includes the cell bodies of the light-sensitive photoreceptor cells, was the most important feature for all three 
types of sensitivity predictions, underscores the biological plausibility of the models. However, importance of var-
iables in the models may differ from biological relevance. Especially in the setting of correlated features, features 

Figure 6.  Inferred sensitivity mapping. Based on the fundus autofluorescence (FAF), infrared reflection (IR, 
not shown) and spectral-domain optical coherence tomography (SD-OCT), mesopic as well as dark-adapted 
(DA) cyan and DA red sensitivity may be reliably predicted and topographically mapped. The arrows in the 
FAF image indicate the position of the SD-OCT B-scans. Multiple lines of evidence (besides of the quantitative 
analysis in Fig. 2) further support the accuracy of the predictions. For all three types of testing, angioscotoma 
are adequately predicted. Further, the central rod-free zone is also correctly predicted as indicated by the 
marked cyan-red sensitivity difference at the fovea (eccentricity of 0°, middle B-scan). Regions exhibiting 
increased FAF and absence of photoreceptor outer and inner-segments (upper and lower SD-OCT scan) show 
reduced function for all three types of testing. Yet, globally the degree of DA cyan dysfunction appears to exceed 
the degree of DA red dysfunction. Please note, that the inferred cyan-red sensitivity difference in the region of 
severe cone dysfunction (delimited by the dashed line) is an underestimation of the true cyan-red sensitivity 
difference due to the floor effects of the perimetry device used in this study that are inevitable reflected by the 
models.
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exhibiting less measurement variability will be given higher importance. This may for example explain why the 
ONL thickness, which is significantly thicker than the IS and OS and therefore (relatively) less prone to grading 
errors, exhibited highest feature importance.

A similar observation has been previously reported in patients with intermediate AMD in absence of late-stage 
disease25. Interestingly, FAF intensity exhibited a high feature importance for mesopic and dark-adapted red test 
exceeding all of the SD-OCT features with the exception of ONL thickness. In contrast to SD-OCT features, the 
FAF intensity may be analyzed without any prior image segmentation, which is especially attractive for clinical 
evaluation. Various previous studies in AMD could demonstrate that FAF imaging allows not only for precise 
demarcation of geographic atrophy26,27, but may provide indirect information with regard to outer retinal thin-
ning in the context of reticular pseudodrusen28,29, or loss of IS and OS in the context of persistently increased 
autofluorescence caused by prior subretinal fluid30.

The differential effect of retinal structure on mesopic versus dark-adapted cyan sensitivity further underscores 
the biological plausibility of our models. For example Fig. 3 shows that ONL thickening results in a more distinct 
reduction of dark-adapted cyan function as compared to mesopic function. Since all predictors were standard-
ized in consideration of the location-specific normative values and since sensitivity losses rather than absolute 
sensitivity values were used as outcome variable, the inverted U-shaped for dark-adapted cyan testing may not 
be explained by the physiological rod photoreceptor distribution or ONL thickness topography. Accordingly, 
rod photoreceptor function appears to be more affected by macular edema as compared to cone photoreceptor 
function. Further, subretinal fluid or disintegrity of the RPE in terms of predictions leads to a more severe loss 
dark-adapted cyan sensitivity than mesopic or dark-adapted red sensitivity (Fig. 5). This would be in accordance 
with the observation that rod-photoreceptors are strictly dependent on the canonical visual cycle via the RPE, 
while cone-photoreceptors may obtain their chromophores via an additional cone-specific visual cycle involving 
Muller cells31.

Moreover, our study also included “patient-reliability indices” in the modeling process, demonstrating that 
consideration of these increased the prediction accuracy for scenario 1. In terms of interpretation, inclusion of 
these features appears to correct for patient-specific tendencies such as false positive responses.

Based on criteria established by the International Conference on Harmonization (ICH) Guidelines on 
Statistical Principles for Clinical Trials, “evidence for surrogacy depends upon (i) the biological plausibility of 
the relationship, (ii) the demonstration in epidemiologic studies of the prognostic value of the surrogate for the 
clinical outcome and (iii) evidence from clinical trials that treatment effects on the surrogate correspond to effects 
on the clinical outcome”32. While the biological plausibility is established in this study (as aforementioned), the 
other two aspects warrant further consideration. The second criterion is only partially applicable to “inferred 
sensitivity” given its quasi-functional character, in contrast to traditional surrogate endpoints that do not directly 
represent function (e.g. intra-ocular pressure in glaucoma). However, the third criterion is highly relevant for 
“inferred sensitivity” as a surrogate endpoint, since models are strictly limited by their applicability domain (i.e. 
predictor space where the model makes prediction with a given reliability). Clearly, the models developed here 
would be expected to perform sub-optimally in eyes with more rare forms of neovascular AMD including retinal 
angiomatous proliferation (RAP) due to the lack of corresponding training data in our cohort. In longitudinal 
clinical trials (third ICH criterion), it would be even more difficult to define the appropriate applicability domain 
as exemplified below.

Limitations.  Due to the exclusion of optic nerve diseases in our training data, the inner retinal features 
exhibit only a low feature importance in our models. The same consideration would apply for significant changes 
in media opacification (i.e. cataract). Therefore, “inferred sensitivity” based on our models would be unsuitable 
of reflecting certain potential side-effects such as optic neuropathy and glaucoma. To avoid such fallacies, at least 
a subset of patients in clinical trials, that evaluate change in “inferred sensitivity” as a surrogate endpoint, should 
undergo longitudinal FCP testing. Then, longitudinal accuracy of the models could be confirmed based on this 
subset prior to inferring sensitivity data for the remaining patients. Further, the discrepancy between the MAE of 
test and retest measurement differences versus the MAE for the prediction accuracy suggest that a larger training 
data set would have been beneficial (cf. Tables 1 and 2). Potentially, application of more complex AI approaches 
(e.g. convolutional neural network) to the raw imaging data could have further improved the prediction accura-
cies. However, the latter would have come at the cost of interpretability as well as an increased need for training 
data. Last, the study used the MAE as a conceptually simple and easily interpretable measure of model accuracy. 
Nevertheless, the root mean squared error, which penalizes particularly large errors that would be undesirable for 
inferred sensitivity, was also provided (Supplementary Table S2).

In summary, we have introduced the AI-based analysis strategy of “inferred sensitivity” to estimate differential 
effects of retinal structural abnormalities on cone- and rod-function in nAMD. This method constitutes a poten-
tial valuable tool to predict macular visual field losses at high-spatial resolution in future nAMD cohorts with-
out the need for extensive psychophysical examinations. In the potential future application, individual subjects 
would undergo standard ophthalmological assessment and non-invasive retinal imaging in a relative rapid and 
straight-forward examination, while FCP testing only includes a limited number of test stimuli or can even com-
pletely be waived. The findings of this study suggest that “inferred sensitivity” opens the possibility for a refined 
investigation of treatment effects in nAMD superior to standard BCVA testing, particularly in order to differen-
tiate functional outcomes of different treatment strategies. This technique may also be expanded in the future for 
high-resolution mapping of localized functional impairment in other macular and retinal conditions in order to 
investigate the functional impact of progressive structural abnormalities or to assess new therapeutical interven-
tions. The notion of “inferred sensitivity” as a quasi-functional outcome measure might be further applicable to 
other retinal diseases including diabetic retinopathy, retinal vein occlusion as well as inherited retinal diseases.
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Methods
Subjects.  Subjects with neovascular AMD were recruited from injection clinics of the Department of 
Ophthalmology, University of Bonn. The inclusion and exclusion criteria have been published previously33. 
Inclusion criteria were age ≥50 years, a CNV lesion proven in OCT angiography (OCTA), fluorescein angiog-
raphy (FA) and/or indocyanine green angiography (ICGA). Exclusion criteria for the study eye included refrac-
tive errors ≥5.00 diopters of spherical equivalent and >1.50 diopters of astigmatism assessed by autorefraction 
(ARK-560A; Nidek, Gamagori, Japan), a history of glaucoma or relevant anterior segment diseases with media 
opacities and no history of any intraocular surgery except cataract extractions <3 months ago. If both eyes met 
the inclusion criteria, the eye with better BCVA was included. Apart from taking the medical history, all subjects 
underwent routine ophthalmological examinations, including BCVA, slit-lamp and funduscopic examination. 
Control eyes were recruited from the hospital wards among patients with a healthy fellow eye and patient’s com-
panions. The study protocol was in accordance with the relevant guidelines and regulations and approved by the 
Institutional Review Board of the University of Bonn (ethics approval ID: 191/16). Written informed consent 
conforming to the tenets of the Declaration of Helsinki was acquired from all participants.

Imaging protocol.  Based on previous publications, standardized retinal imaging was performed includ-
ing combined confocal scanning laser ophthalmoscopy (cSLO) and spectral-domain optical coherence tomog-
raphy (SD-OCT) imaging (30° × 25°, ART 25, 121 B-scans, Spectralis HRA-OCT 2, Heidelberg Engineering, 
Heidelberg, Germany)33. Further, 30° fundus autofluorescence (FAF) and multicolor imaging as well as 55° FAF 
imaging were performed on the same device. OCTA was performed using a swept-Source OCT (SS-OCT) device 
(3 × 3 mm, 6 × 6 mm, 9 × 9 mm OCTA scan, PLEX Elite 9000, Carl Zeiss Meditec AG, Jena, Germany). Color 
fundus photography (CFP) was performed (Visucam 500, Carl Zeiss Meditec AG). Both OCT-A and CFP were 
not included for prediction of inferred sensitivity.

Fundus- controlled perimetry.  FCP testing was carried out based on our previous experience with the 
S-MAIA (CenterVue, Padova, Italy) device in normal subjects and patients with intermediate and atrophic late 
stage AMD11,13,14,25,33–35. It was performed after dilating pupils using 2.5% phenylephrin and 0.5% tropicamide to 
facilitate fundus tracking. Patients with no prior perimetry experience underwent a short mesopic practice FCP 
test to accustom them to the procedure. Patients underwent duplicate (28 of 50 patients) or singular (22 of 50 
patients) mesopic (achromatic stimuli, 400–800 nm) FCP, with subsequent 30 minutes of dark adaptation (light 
level <0.1 lux), followed by duplicate or singular dark-adapted cyan (505 nm) and dark-adapted red (627 nm) 
FCP using the S-MAIA device. Testing was performed with the pre-set 4–2 dB staircase strategy. The stimu-
lus size was 0.43° (Goldmann III). The test grid consisted of 61 stimuli covering the central 18° of the retina. 
The test points were evenly distributed in five rings at 1°, 3°, 5°, and 9° around a central test-point. In terms of 
“patient-reliability indices”, false-positive responses were measured through presentation of suprathreshold stim-
uli to the optic nerve head (i.e. Heijl-Krakau method). Further, the rate of wrong pressure events was measured 
as the number of pressure events outside of the response window of the S-MAIA device36. Last, the 95% bivar-
iate contour ellipse area (BCEA) encompassing 95% of the fixation points was recorded as measure of fixation 
stability37.

Image analysis and grading.  A proprietary approach for image analysis and non-linear registration 
was implemented as previously descriped12. Volumetric SD-OCT data were automatically segmented as imple-
mented in the manufacturer’s software (Spectralis Viewing Module 6.3.2.0, Heidelberg Engineering, Heidelberg, 
Germany). Thereafter, the segmentation was reviewed and – if indicated - manually corrected by two consecutive 
readers. We defined all layers between the internal limiting membrane (ILM) and the outer plexiform layer (OPL) 
outer nuclear layer (ONL) boundary as inner retina12,38. Henle fiber layer (HFL) was counted towards the ONL in 
analogy to Sadigh et al.12,39. The inner photoreceptor segments (IS) ranged from band 1 (external limiting mem-
brane [ELM]) to band 2 (ellipsoid zone [EZ]). The outer photoreceptor segments (OS) ranged from band 2 (EZ) 
to band 3 (putative interdigitation zone)38. The RPE-drusen complex (RPEDC) ranged from band 3 to Bruch’s 
membrane. As defined by Chiu et al., the RPEDC encompassed all drusen material, whether below the RPE 
(soft drusen and cuticular drusen) or above the RPE (reticular drusen, vitelliform debris)40. Subretinal fluid was 
included in the here used definition of the OS layer. The thickness from ILM to Bruch’s membrane was defined as 
full retinal thickness (Fig. 1).

Volumetric thickness maps for each layer were transferred as a tab-delimited file to ImageJ (U.S. National 
Institutes of Health, Bethesda, Maryland, USA) together with an outer retinal en-face image (mean intensity 
projection, 50 µm thick slab centered on IS/OS). To account for eye tilt and eye rotation between the FCP and 
SD-OCT examinations, the FCP data was registered to the outer retinal en face image using the moving least 
squares (non-linear) method (alpha 1.0, mesh resolution 64, affine transformation) as implemented in ImageJ 
(Fig. 1)12. FAF and IR images were aligned in the same manner. The mean thickness and reflectivity values 
(minimum-, mean- and maximum-intensity projection for each layer) of the volumetric SD-OCT data as well as 
the normalized FAF and IR intensity values topographically corresponding to the test-point locations and area 
(diameter of 0.43°) were semi-automatically extracted using ImageJ. In summary, 26 imaging features, as listed 
in supplementary table S1, were available for each test-point (FAF intensity, IR intensity as well as thickness, 
minimum- mean- and maximum-intensity projections for the SD-OCT layer [full retina, inner retina, ONL, IS, 
OS, RPEDC]).

Statistical analysis.  Statistical analyses were performed using the software environment R, version 
3.5.141. Visual acuity measurements were converted to the logarithm of the Minimum Angle of Resolution 
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(logMAR). Data from normal eyes was used to obtain for each test-point (i.e. location-specific) normal 
sensitivity, layer-thickness and layer-reflectivity values. Hereby, linear regression analysis was used to obtain 
both, age-adjusted normative mean estimates and standard deviation estimates. The age was set to 76 years 
in consideration of the mean age of patients. Sensitivity measurements of patients were standardized by 
calculating the point-wise sensitivity loss as compared to the spatially corresponding normative value. If 
two sensitivity measurements were available for a patient, then the results of the test and retest were first 
averaged in a point-wise manner. Imaging features of patients were standardized by computing the z-scores 
(i.e. the number of normative standard deviations by which a given observation deviates from the normative 
mean estimate).

=
−

z
x x

Sf e a
f e a

, ,
, , f,e,a

f,e,a

For predictive modeling, we used Random Forest (RF) regression as implemented in the R packages ran-
domForest and caret42. RF regression is a multivariable modeling technique that accounts for non-linear 
predictor-response relationships effects and possible interactions between predictors. In all models we used 1000 
trees that were fitted to bootstrap samples of the training data. Two “outer” resampling techniques were used 
to assess the model accuracy. First, we used patient-wise leave-one-out cross-validation (LOO-CV) as scenario 
1. Hereby, data of one patient (61 observations) served as test set, while the data of the remaining patients (49 
patients with 61 observations each) served as training set. This procedure was repeated until the data of every 
patient served as a test set exactly once (i.e. 50 folds, cf. Fig. 2). Further, we used test-point-wise CV by addition-
ally adding half of the perimetry data (30 or 31 observations) of a given patient to the training set and using only 
the remaining half of the perimetry data of that given patient as test set as in scenario 2. Again, this procedure 
was repeated until each half-dataset of every patient served as a test set exactly once (i.e. total of 100 folds, Fig. 2). 
The parameter mtry (denoting the number of candidate variables at each split of the procedure) was optimized 
using the tuneGrid argument in caret probing the values of 4, 6, 8, 10 (scenario 1) or 40, 50, 60, 70 (scenario 2) 
using “inner” resampling (5-fold CV) on the training data. For both scenarios (S1, S2), three sets of predictor 
variables were evaluated: (A) imaging data only (26 candidate variables), (B) imaging data and “patient reliability 
indices” (30 candidate variables) and (C) imaging data, “patient reliability indices” and fixation stability (31 can-
didate variables). Moreover, for all variants of scenario 2, the eye ID was added by one-hot encoding as predictor. 
The mean absolute difference (MAE) between predictions and measured observations was used as measure of 
prediction error (additionally, root mean squared error [RMSE] estimates are presented in Table S2). Hereby, the 
MAE and 95% confidence interval for the MAE estimates were calculated considering the hierarchical structure 
of the data (test-point nested in eye). The MAE values for the retest-variability for the subset of patients with 
two tests were provided as benchmark. Further, the MAE values for null models, which constitute covariate-free 
models with a single numeric outcome, were provided for both scenarios. For Scenario 1 the null model was 
fitted using patient-wise LOO-CV and thus produces as output the mean sensitivity loss of the training data of 
each fold. For Scenario 2, the null model produces the patient-specific mean obtained by half of the perimetry 
data to predict the sensitivity losses for the other half of the data (cross-validated with 100 folds [2 per patient]). 
The prediction accuracies were compared with mixed models using the R package lme443. Hereby, the prediction 
accuracy (absolute errors) was considered as outcome variable and test-points nested in patients as random effect. 
First, a “global” likelihood ratio test was used to assess, whether the model type (i.e. S1A, S1B […] S2C) had an 
influence as fixed effect on the prediction accuracy. Then, post-hoc pair-wise comparisons (Tukey contrasts) were 
used to determine which MAE values differed significantly from each other significantly. The feature importance 
was evaluated based on permutation of out-of-bag (OOB) data and measured as percentage of increase in mean 
squared error (% Inc MSE). For visual inspection of the models, we used the R package forestFloor44. This package 
allows for plotting of the out-of-bag cross validated feature contributions (y-axis) in dependence of each predictor 
variable (x-axis). Further, a measure of goodness-of-visualization (R2) is provided, to describe the variance of the 
feature contribution for a given predictor explained by the plot.

Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.

Symbol Meaning

zf,e,a
z-score for imaging feature (f) at the eccentricity (e) and angular 
position (a)

xf,e,a
Observation in a patient for imaging feature (f) at the 
eccentricity (e) and angular position (a)

x f,e,a
Age-adjusted normative mean value for a given imaging feature 
(f) at a given eccentricity (e) and angular position (a)

Sf,e,a
Age-adjusted normative standard deviation for a given imaging 
feature (f) at a given eccentricity (e) and angular position (a)
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