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Abstract: To build a portable and sensitive method for monitoring the concentration of the flavonoid
rutin, a new electrochemical sensing procedure was established. By using nitrogen-doped car-
bonized polymer dots (N-CPDs) anchoring few-layer black phosphorene (N-CPDs@FLBP) 0D-2D
heterostructure and gold nanoparticles (AuNPs) as the modifiers, a carbon ionic liquid electrode
and a screen-printed electrode (SPE) were used as the substrate electrodes to construct a conven-
tional electrochemical sensor and a portable wireless intelligent electrochemical sensor, respectively.
The electrochemical behavior of rutin on the fabricated electrochemical sensors was explored in
detail, with the analytical performances investigated. Due to the electroactive groups of rutin,
and the specific π-π stacking and cation–π interaction between the nanocomposite with rutin, the
electrochemical responses of rutin were greatly enhanced on the AuNPs/N-CPDs@FLBP-modified
electrodes. Under the optimal conditions, ultra-sensitive detection of rutin could be realized on
AuNPs/N-CPDs@FLBP/SPE with the detection range of 1.0 nmol L−1 to 220.0 µmol L−1 and the
detection limit of 0.33 nmol L−1 (S/N = 3). Finally, two kinds of sensors were applied to test the real
samples with satisfactory results.

Keywords: portable wireless intelligent electrochemical sensor; functionalized black phosphorene
nanocomposite; screen-printed electrode; rutin; electrochemistry

1. Introduction

Rutin (3’,4’,5,7-tetrahydroxyflavone-3-d-rutinoside) is a typical flavonoid with vari-
ous pharmacological activities such as anti-oxidant, anti-inflammatory, hypotensive, and
vascular elasticity [1], which has a protective effect on the nervous system and prevents
the progression of neurodegenerative diseases. It has been verified that in a variety of
experimental models of nervous system diseases in vivo and in vitro, rutin is expected to
be an appropriate neuroprotective agent for the treatment of ischemic stroke and other
neurodegenerative diseases [2]. Therefore, it is of great significance to establish a fast
and portable method for detecting the content of rutin. Different techniques have been
reported for the determination of rutin such as high-performance liquid chromatography
(HPLC) [3,4], chemiluminescence [5], capillary electrophoresis [6], and the electrochemical
method [7–11]. Among them, electrochemical methods have generated great research
interest over the past decade due to the merits of the fast response, high sensitivity, and
minimal sample requirements. In recent years, portable wireless intelligent electrochemical
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sensors have been attracting tremendous attention in both fundamental studies and practi-
cal applications in various areas, including point-of-care testing (POCT), environmental
monitoring, and national defense [12–16].

As a two-dimensional material with many unusual properties, black phosphorene
(BP) exhibits a honeycomb motif similar to that of graphene [17]. However, the layers are
buckled and highly anisotropic, which endows BP with many interesting properties that
are distinct from those of graphene, with many future applications [18,19]. BP and BP-
related composites used to improve the electrochemical sensing performance have become
a research hotspot [20–22]. Nevertheless, because the lone-pair of electrons on its surface
is strongly reactive with oxygen upon exposure to ambient conditions to form phosphate
(PxOy), BP has intrinsic defects with environmental instability [23]. Therefore, our group
previously developed noncovalent functionalization with a poly (3,4-ethylenedioxythio-
phene)-poly (styrene sulfonic acid) hybrid film as capping layers to enhance the air stability
of BP on an electrochemical hemin sensor [24]. Besides, we also designed and synthe-
sized nitrogen-doped carbonized polymer dots (N-CPDs) anchoring few-layer BP (N-
CPDs@FLBP) 0D–2D heterostructure, which was applied to build a DNA electrochemical
sensor for the determination of Escherichia coli O157: H7 with excellent electrochemical
performance and good stability [25]. The nanohybrid between FLBP and N-CPDs via the
covalent interaction could resolve the aggregation of N-CPDs and environmental insta-
bility of BP with synergetic effects. N-CPDs have a polycyclic aromatic structure coated
with rich hydrophilic groups, and FLBP is approximately 3 to 5 layers of single-layer BP.
N-CPDs@FLBP formed a 0D-2D heterostructure that could enhance electron transport with
highly ambient stability due to the formation of P-C or P-O-C bonds [26,27].

In this work, the electrochemical performances of rutin on a conventional carbon
ionic liquid electrode (CILE, home-made in a laboratory) and a non-pretreated commer-
cially available screen-printed electrode (SPE, from Qingdao Poten Technology Co., Ltd.,
China) modified by a N-CPDs@FLBP heterostructure and AuNPs were investigated. Here,
AuNPs worked as signal amplifiers and rutin was selected as the analytical target due
to its electroactive group in the structure. Finally, the proposed portable wireless intel-
ligent electrochemical sensor and conventional CILE-based electrochemical sensor were
further successfully used to determine the rutin content in certain real samples, including
a rutin pharmaceutical tablet and flos sophorae immaturus (FSI). The synergetic effects
of N-CPDs@FLBP and AuNPs can provide a higher conductive interface. The cation–π
interaction between the aromatic imidazole rings and amine-cation of N-CPDs, the rich
π electrons of FLBP and AuNPs, and the aromatic skeleton of rutin could be favorable to
adsorb more rutin molecules [28]. All the above effects are beneficial to improving the
performance of the rutin electrochemical sensor. Figure 1 exhibits a diagram of the elec-
trochemical reaction mechanism of rutin on the NF/AuNPs/N-CPDs@FLBP/CILE (SPE)
interface, and a comparison between the conventional CILE-based sensor and portable
wireless intelligent SPE-based sensor.
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Figure 1. Diagram of electrochemical reaction mechanism of rutin on AuNPs/N-CPDs@FLBP/CILE
(SPE) interface, and the performance comparisons of the conventional CILE-based sensor and portable
wireless intelligent SPE-based sensor. (NF: nafion ethanol solution).

2. Results and Discussion
2.1. Electrochemical Behaviors of Rutin on NF/AuNPs/N-CPDs@FLBP/CILE

Cyclic voltammograms (CV) of rutin on the different modified electrodes were sur-
veyed in pH 3.0 PBS containing 20.0 µmol L−1 rutin (Figure 2a). A pair of redox peaks
were observed on bare NF/CILE at 554.0 mV (Epa) and 509.0 mV (Epc). The oxidation peak
current (Ipa) is 8.77 µA, and the ratio of redox peak currents (Ipa/Ipc) is calculated to be
3.7 (Figure S1, Supplementary Materials). Meanwhile, for NF/AuNPs/CILE and NF/N-
CPDs@FLBP/CILE, visible redox peaks were observed with Ipa of 10.1 µA and 20.14 µA, as
well as Ipa/Ipc of 1.12 and 1.01, showing the sensors had better electrochemical responses
towards rutin. As for NF/AuNPs/N-CPDs@FLBP/CILE, the Ipa (53.0 µA) is 6-fold higher
than that of NF/CILE. Furthermore, the ratio of Ipa/Ipc was 0.99, and the oxidation peak
and the reduction peak nearly coincided, indicating that the electrochemical redox process
of rutin on the surface of NF/AuNPs/N-CPDs@FLBP/CILE is more reversible [29]. The re-
sults proved that the N-CPDs@FLBP heterostructure and AuNPs can act as a more effective
medium to promote the redox reaction of rutin with synergistic effects. Therefore, the better
performance of rutin determination was realized on the N-CPDs@FLBP and AuNPs-based
electrochemical sensor.
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Figure 2. (a) Electrochemical behavior of 20.0 µmol L−1 rutin with different modified electrodes (scan
rate: 0.1 V s−1); (b) the effects of different pH (1.5, 2.0, 3.0, 4.0, 5.0, 6.0) on oxidation peak potentials
and oxidation peak currents for rutin on NF/AuNPs/N-CPDs@FLBP/CILE in 0.1 mol L−1 PBS;
(c) CV curves of 20.0 µmol L−1 rutin on NF/AuNPs/N-CPDs@FLBP/CILE at different scan rates
(0.03, 0.05, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 V s−1); DPV curves of rutin with NF/AuNPs/N-
CPDs@FLBP/CILE in 0.1 mol L−1 PBS containing rutin concentrations from (d) 0.01 µmol L−1 to
10.0 µmol L−1 and (e) 10.0 µmol L−1 to 180.0 µmol L−1; (f) the linear relationship between Ipa and
concentration of rutin (inset: The linear relationship from 0.01 µmol L−1 to 10.0 µmol L−1).

The electrochemical behavior of 20.0 µmol L−1 rutin on NF/AuNPs/N-CPDs@FLBP/
CILE was evaluated in detail. The influence of PBS pH from 1.5 to 6.0 was explored by
CV (Figure 2b). The oxidation peak potential (Epa) of rutin shows a downward trend
linearly with increasing pH, which confirms the participation of protons directly in the
oxidation process of rutin. On top of this, the linear equation of Epa (V) = 0.657 − 0.0525 pH
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(R2 = 0.991) was obtained between Epa and the pH value. As the slope (−52.5 mV pH−1)
is close to the theoretical value (−59.0 mV pH−1), one can draw the conclusion that equal
transfer numbers of protons and electrons are involved in the electrochemical redox of rutin,
which is due to the two-electron and two-proton oxidation of the o-diphenol structure in
the rutin molecule to the o-quinone structure [30]. With the increase in pH, the performance
of the oxidation peak current of rutin is constantly improved and becomes worse as the pH
becomes higher than 3.0. In an acidic solution, the electrochemical reaction of rutin is more
likely to occur due to the presence of more protons. The highest oxidation peak current
appeared at pH 3.0, which was selected as the optimal pH value.

The effects of scan rate (υ) on the CV responses were further investigated (Figure 2c).
Two linear equations were obtained between the redox peak current vs. υ as
Ipa (µA) = −18.82 − 356.41 υ (R2 = 0.995) and Ipc (µA) = 18.01 + 342.64 υ (R2 = 0.993)
(Figure S2a). That is to say, the redox peak currents and υ are basically proportional. Hence,
it demonstrates a typical adsorption-controlled reaction process of rutin on the surface of
NF/AuNPs/N-CPDs@FLBP/CILE. Furthermore, the linear relationships between the Ep
and lnυ (Figure S2b) can be used to deduce the electron transfer number (n) and the charge
transfer coefficient (α) with the results as 2.1 and 0.49 by Laviron’s equation [31]. Therefore,
it further manifests that there are two protons and two electrons involved in the redox
reaction of rutin. The electron transfer rate constant (ks) is obtained as 4.01 s−1, which is
larger than that of 2.39 s−1 on IL-CPE [29] and 3.4 s−1 on ERGO/GCE [32]. These results
suggest that the NF/AuNPs/N-CPDs@FLBP/CILE provides fast electron transfer between
the redox groups of rutin and the modified electrode.

The analytical performance for the detection of rutin on NF/AuNPs/N-CPDs@FLBP/
CILE was studied by differential pulse voltammetry (DPV) (Figure 2d,e). The linear relation-
ship of the oxidation peak current with the rutin concentration is
Ipa (µA) = 4.30 C (µmol L−1) + 3.69 (n = 8, R2 = 0.990) in the range of 0.01 µmol L−1

to 10.0 µmol L−1, and Ipa (µA) = 0.44 C (µmol L−1) + 47.90 (n = 10, R2 = 0.975) in the range
of 10.0 µmol L−1 to 180.0 µmol L−1 (Figure 2f). The limit of detection (LOD) is obtained as
3.3 nmol L−1 with a signal-to-noise (S/N) of 3. The repeatability of voltammetric responses
of fifteen repetitive measurements on one electrode for voltammetric responses (Figure S3a)
and the reproducibility of ten electrode determinations (Figure S3b) was further studied.
The relative standard deviations (RSD) were calculated to be 2.93% and 5.39%, indicating
high repeatability and reproducibility of the sensor for rutin detection.

To demonstrate the utility of the proposed sensor, selective studies were performed
by introducing other physiological disturbance species (Figure 3a). Twenty-fold higher
concentrations of rhamnose (RHA) and mannose (MAN), 50-fold higher concentrations
of glucose (Glu), glycine (Gly), citric acid (CA), ascorbic acid (AA), uric acid (UA), ala-
nine (ALA), dopamine (DA), and bisphenol (BPA), and 100-fold higher concentrations of
common ions such as Na+, K+, Co2+, Ca2+, Ba2+, and NO3

− were examined. The initial
current response was obtained for the addition of 20.0 µmol L−1 rutin, and the addition of
the co-interfering substances to the solution did not significantly affect the DPV response
for rutin (relative error, RE < 10%), which indicated the good selectivity of the proposed
analytical method. However, the presence of the same concentration of quercetin (QR),
catechol (CT), and resorcinol (RS) showed great influence in the rutin analysis with RE
values of 45.2%, 37.2%, and 40.1%, which may be due to the similar phenol structure as
rutin. Furthermore, the stability of NF/AuNPs/N-CPDs@FLBP/CILE was investigated by
storing the modified electrode in a 4 ◦C refrigerator for 6 weeks and then used to test its
performance toward rutin. The result revealed that the oxidation peak currents of rutin
still remained at 81.43% of their initial values (Figure 3b), proving the good stability of the
modified electrode.
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Figure 3. (a) The selectivity of NF/AuNPs/FLBP@pN-CPNDs/CILE to rutin over other analytes.
The radar chart shows the RE of interferents on 20.0 µmol L−1 rutin determination; (b) oxidation
peak currents of NF/AuNPs/N-CPDs@FLBP/CILE for rutin (20.0 µmol L−1) after storage in a 4 ◦C
refrigerator for 6 weeks. (Notes: RHA, rhamnose; MAN, mannose; Glu, glucose; Gly, glycine; CA,
citric acid; AA, ascorbic acid; UA, uric acid; ALA, alanine; DA, dopamine; BPA, bisphenol; QR,
quercetin; CT, catechol; RS, resorcinol).

2.2. Electrochemical Sensing of Rutin on NF/AuNPs/N-CPDs@FLBP/SPE

To further check the real application of this electrochemical sensing platform, N-
CPDs@FLBP and AuNPs were applied on the surface of SPE, and further connected to a
portable workstation and a smartphone. SPE is widely used due to the characteristics of
simple manufacturing, a low price, easy miniaturization, and integration [16,33], and the
modified electrode is flexible, meaning it can be bent by 120◦ (Figure 4a).
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Figure 4. (a) Optical photograph of bending the modified SPE into 120◦; DPV curves of rutin
at NF/AuNPs/N-CPDs@FLBP/SPE in 0.1 mol L−1 PBS containing rutin concentrations from
(b) 1.0 nmol L−1 to 10.0 µmol L−1 and (c) 10.0 µmol L−1 to 240.0 µmol L−1; (d) the linear rela-
tionship between Ipa and concentration of rutin (inset: The linear relationship from 1.0 nmol L−1 to
10.0 µmol L−1).
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The analytical performance of rutin detection on NF/AuNPs/N-CPDs@FLBP/SPE is
shown in Figure 4b–d. The linear relationships of oxidation peak currents with the rutin
concentrations are Ipa (µA) = 6.94 C (µmol L−1) + 3.91 (n = 8, R2 = 0.994) from 1.0 nmol L−1

to 10.0 µmol L−1, and Ipa (µA) = 0.67 C (µmol L−1) + 81.9 (n = 13, R2 = 0.990) from
10.0 µmol L−1 to 220.0 µmol L−1 with LOD as 0.33 nmol L−1 (S/N = 3). The comparison of
the electrochemical performance of this method with some previously reported modified
electrodes for rutin detection is listed in Table 1. It can be seen that this method has a wider
linear range and lower LOD. Furthermore, the portable wireless intelligent sensor shows
the characteristics of high sensitivity, fast response, and portability, which have potential
applications in POCT.

Table 1. Comparisons of the analytical performance of rutin detection with different modified electrodes.

Electrodes Methods Electrolytes
(0.10 mol L−1)

Detection Ranges
(µmol L−1)

LOD
(nmol L−1) Refs.

2-MBT/PGE CV BR (pH 4.5) 0.039–1.10,
1.10–10.50 9.60 [10]

VMSF/ErGO/ITO DPV PBS (pH 3.0) 0.30–2.00,
2.00–40.00 2.30 [34]

CTAC-Gr-PdNPs/GCE SWV PBS (pH 2.0) 0.02–1.00 5.00 [35]
AuNCs/CILE DPV PBS (pH 2.0) 0.004–700.00 1.33 [36]

DNA-CPIE DPV BR (pH 3.0) 0.008–10.00 1.30 [37]
PtNPs/RGO/GCE DPV PBS (pH 6.0) 0.057–102.59 20.00 [38]

BP-PEDOT: PSS/GCE DPV PBS (pH 6.5) 0.02–15.00,
15.00–80.00 7.00 [39]

GNR/Gr electrode DPV PBS (pH 7.0) 0.032–1.00 7.86 [40]
NF/AuNPs/N-

CPDs@FLBP/CILE DPV PBS (pH 3.0) 0.01–10.00,
10.00–180.00 3.00 This work

NF/AuNPs/N-
CPDs@FLBP/SPE DPV PBS (pH 3.0) 0.001–10.00,

10.00–220.00 0.33 This work

Notes: MBT, 2-mercaptobenzothiazole; PGE, pencil graphite electrode; BR, Britton–Robinson; VMSF, vertically
ordered silica mesoporous films; ErGO, electrochemically reduced graphene oxide; ITO, indium tin oxide; CTAC,
cetyltrimethylammonium chloride; Gr, graphite; GCE, glassy carbon electrode; SWV, square wave voltammetry;
AuNCs, gold nanocages; CPIE, carbon paste ionic liquids electrode; RGO, reduced graphene oxide; PEDOT: PSS,
poly (3,4-ethylenedioxythiophene)-poly(styrenesulfonate); GNR, graphene nanoribbon; CV, cyclic voltammo-
grams; DPV, differential pulse voltammetry; PBS, phosphate buffer solution; LOD, limit of detection.

2.3. Analysis of the Practical Samples

The practical applications of NF/AuNPs/N-CPDs@FLBP/CILE (SPE) for the detection
of the rutin pharmaceutical tablet and FSI samples were performed by utilizing the standard
addition method with both a CILE-based sensor and an SPE-based sensor. The detection
results of the two methods are listed in Table 2 with almost consistent results, which
indicates that the proposed method for the intelligent detection of rutin in real samples is
acceptable and applicable.
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Table 2. Determinations of rutin in real samples using NF/AuNPs/N-CPDs@FLBP/CILE (SPE).

Samples Added
(µmol L−1)

NF/AuNPs/
N-CPDs@FLBP/CILE

NF/AuNPs/
N-CPDs@FLBP/SPE

Found
(µmol L−1)

Recovery
(%)

RSD
(%)

Found
(µmol L−1)

Recovery
(%)

RSD
(%)

Rutin phar-
maceutical

tablet

- 32.70 - 1.98 32.72 - 1.30
10.0 42.51 98.10 2.05 42.98 102.80 1.12
20.0 52.56 99.35 1.96 53.10 102.00 1.58
30.0 63.20 101.67 1.65 62.85 100.50 1.60

FSI

- 8.62 - 2.02 8.79 - 1.94
10.0 18.89 102.70 3.13 19.21 105.90 2.80
20.0 28.23 95.48 2.07 28.72 100.50 2.05
30.0 38.81 100.63 1.85 38.45 98.87 1.99

Notes: FSI, flos sophorae immaturus; RSD, relative standard deviations.

2.4. Possible Interaction Mechanism of Rutin and NF/AuNPs/N-CPDs@FLBP/CILE (SPE)

The probable electrochemical mechanism of rutin on NF/AuNPs/N-CPDs@FLBP/
CILE (SPE) is shown in Figure 1. First of all, the aromatic skeleton of rutin may form a π–π
interaction with FLBP as well as the aromatic imidazole rings of N-CPDs [28]. Hence, rutin
may be absorbed on the surface of N-CPDs@FLBP through the π–π stacking interaction.
Secondly, the pK1 of rutin is approximately 7, thus rutin will become positively charged
in the acidic environment [41]. The positively charged rutin could easily interact with
AuNPs and -NH2 on N-CPDs@FLBP [25] via the cation–π interaction [42]. What is more,
the hydrogen bonding interaction between C–N sites of N-CPDs and the –OH groups
of rutin also has a positive effect on the detection of rutin [43]. Hence, the significant
sensitivity enhancement of rutin detection could be assigned to the combined effects of all
these interactions, especially the π–π stacking interaction and the cation–π interaction. The
larger oxidation peak current, higher sensitivity, and lower LOD of rutin detection on the
SPE-based sensor may be attributed to the larger surface area with more modifiers present
on the electrode interface [44]. The proposed portable electrochemical sensor can be used
for the rapid and sensitive determination of trace rutin in rutin pharmaceutical tablets and
medicinal plants, which show great advantages and potential applications in intelligent
monitoring of rutin-related drug samples [45].

3. Materials and Methods
3.1. Materials

N-CPDs@FLBP was synthesized via a one-step microwave-assisted method based on
previous work [25], which used 1-methyl-2-pyrrolidinone (NMP) and BP powder as the raw
materials with microwave treatment and centrifugation to obtain the resultant nanocom-
posite. The detailed procedure was described in reference [25]. BP powder (>99.998 %) and
gold nanoparticles (AuNPs, average particle size 40.0 nm) (Nanjing XFNANO Materials
Tech Co., Ltd., Nanjing, China), NMP (Shanghai Aladdin Biochemical Technology Co., Ltd.,
Shanghai, China), nafion (NF, 5.0 wt% in ethanol solution, Honghaitian Tech. Co., Ltd.,
Beijing, China), 1-hexylpyridine hexafluorophosphate (HPPF6, Lanzhou Greenchem ILS.
LICP. CAS., Lanzhou, China), the rutin pharmaceutical tablet (20.0 mg per tablet, Tianjin
Lisheng Pharmaceutical Co., Ltd., Tianjin, China), and flos sophorae immaturus (FSI, Linshi
Shengtai Pharmaceutical Co., Ltd., Haikou, China) were used in the experiment.

3.2. Instruments

Electrochemical measurements were conducted on a conventional CHI 660E electro-
chemical workstation (Shanghai CH Instrument Co., Shanghai, China) with a conventional
three-electrode system, including the self-made laboratory NF/AuNPs/N-CPDs@FLBP/
CILE (ϕ = 4.0 mm) as a working electrode, a platinum electrode as the counter electrode,
and a saturated calomel electrode (SCE) as the reference electrode.
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A PlamSens portable electrochemical workstation (EmStat3 + Blue, Red Matrix Co.,
Ltd., Guangzhou, China) was used with a modified SPE, in which PET was the substrate
and a three-electrode system with a carbon disk electrode was the working electrode
(ϕ = 5.0 mm), Ag/AgCl was the reference electrode, and a carbon ring electrode was the
counter electrode (Qingdao Poten Technology Co., Ltd., Shanghai, China), to build an
intelligent sensing system. By connecting a Bluetooth-enabled smartphone, the Huawei
P40 Pro (Huawei Technologies Co., Ltd., Shenzhen, China), the system can transmit the
electrochemical signals to the custom application on the phone.

3.3. Fabrication of Modified Electrodes

To fabricate N-CPDs@FLBP-modified electrodes, CILE and SPE were employed as
substrate electrodes. CILE was fabricated according to the previous work [46] and polished
with weighing paper before use. The modified electrode was prepared in the glove box
under N2 protection with the following procedure: 8.0 µL of a N-CPDs@FLBP solution
was first dropped on CILE and dried at 25 ◦C, and then 8.0 µL of a 0.2 g mL−1 AuNPs
solution was cast and dried. Finally, 6.0 µL 0.5 wt% NF was modified on the surface,
and the resultant electrode (NF/AuNPs/N-CPDs@FLBP/CILE) was used as the working
electrode. For comparison, other modified electrodes, including NF/N-CPDs@FLBP/CILE,
NF/AuNPs/CILE, and NF/CILE were prepared using a similar method. On the other hand,
SPE can be used without any pretreatment, and the same procedure was used to obtain
portable wireless intelligent electrochemical sensors to extend the practical application.

3.4. Samples Pretreatment

One rutin pharmaceutical tablet was finely ground and dissolved in a 10.0 mL
methanol solution, which underwent ultrasound for 30 min for later analysis. The Chinese
medicinal plant FSI was smashed and screened by a 100-mesh screen. Then, 0.1 g of FSI
was added to 50 mL of methanol and soaked for 12 h. Then, ultrasonic extraction was
performed at 55 ◦C for 40 min; following this, the mixture was centrifuged at 3000 r min−1

for 15 min to collect the supernatant, which was filtered through a 0.4 µm filter. Finally,
the resulting solution was made up to 100.0 mL with methanol solution to obtain the FSI
sample solution. In the analysis of the practical samples, 0.1 mL of the as-prepared rutin
pharmaceutical tablet solution was added to 10.0 mL of pH 3.0 PBS to obtain three parallel
samples. Then, 10.0 µL of the as-prepared FSI solution was diluted 10,000 times with pH
3.0 PBS, and then 10.0 mL of the diluent was taken for three parallel samples.

3.5. Electrochemical Measurements

CV was carried out in 5.0 mL 0.1 mol L−1 PBS containing rutin. The electrochemical
performance of the samples was characterized by DPV in 0.1 mol L−1 PBS with DPV
parameters of pulse amplitude of 0.05 V, pulse width of 0.02 s, pulse period of 0.2 s, and
quiet time of 0.5 s. For modified CILE, all measurements were performed in a 5.0 mL
solution, while only a 50.0 µL solution was needed for modified SPE using the portable
electrochemical workstation.

4. Conclusions

In summary, 0D N-CPDs are hybridized with 2D FLBP to form heterostructure N-
CPDs@FLBP, which is used with good stability and fast electron transport capacity due to
the formation of P-C or P-O-C bonds. N-CPDs@FLBP and AuNPs were further modified
on both CILE and SPE to construct electrochemical sensors for rutin detection. Due to the
large surface area of SPE compared to that of CILE, more composites were modified on
the SPE surface, which led to larger current responses. Furthermore, SPE exhibits certain
advantages such as being portable, commercially available with less sample solution
needed, and the ability to be connected to a smartphone-controlled wireless electrochemical
workstation, which is more convenient for practical in situ applications. The synergistic
effects of N-CPDs@FLBP and AuNPs can provide a higher conductive interface with
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the adsorption of rutin through the π–π stacking interaction and cation–π interaction,
which are for the improvement of the electrochemical rutin-sensing ability [28,42]. These
interactions led to the accumulation of rutin on the electrode surface, and better analytical
performances. Finally, the feasibility is verified by comparing the results of real samples of
rutin pharmaceutical tablets and Chinese medicinal plant FSI on a CILE-based sensor and
an SPE-based sensor. This study provides a new idea for the rapid determination of trace
rutin in Chinese medicinal plants and provides a procedure for the intelligent monitoring
of the quality of Chinese medicine.
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plots of E—lnυ of 20.0 µmol L−1 rutin on NF/AuNPs/N-CPDs@FLBP/CILE at different scan rate
(0.03, 0.05, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8 V s−1), Figure S3: The oxidation peak current of
(a) repeatability and (b) reproducibility for detection of 10.0 µmol L−1 rutin.
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