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Abstract: In recent years, microfluidic chip-based sperm sorting has emerged as an alternative tool to
centrifugation-based conventional techniques for in vitro fertilization. This prospective study aims
to compare the effects of density gradient centrifugation and microfluidic chip sperm preparation
methods on embryo development in patient populations with astheno-teratozoospermia. In the
study, the semen samples of the patients were divided into two groups for preparation with either
the microfluidic or density gradient methods. Selected spermatozoa were then used to fertilize
mature sibling oocytes and the semen parameters and embryo development on days 3 and 5 were
assessed. While the density gradient group was associated with a higher sperm concentration,
motility (progressive and total) was significantly higher in the microfluidic chip group. No significant
differences were observed in the fertilization rates or grade 1 (G1) and grade 2 (G2) proportions of
the third-day embryos. Furthermore, while the proportions of the poor, fair and good blastocysts
on day 5 did not differ significantly, excellent blastocysts (indicating high-quality embryos) were
observed in a significantly higher proportion of the microfluidic chip group. When compared to
the classical density gradient method, the microfluidic chip sperm preparation yielded sperm with
higher motility and higher quality blastocysts at day 5; in patients with astheno-teratozoospermia.

Keywords: male infertility; astheno-teratozoospermia; microchip; density gradient centrifugation;
embryo; blastocyst

1. Introduction

Male factors alone account for 20–30% of infertility cases, with another 20% stemming
from both male and female factors [1]. With increasing popularity since its introduction
in the early 1990s, intracytoplasmic sperm injection (ICSI) became the ideal approach to
treat severe male factor infertility. ICSI involves the injection of a single spermatozoon
into the oocyte cytoplasm, enabling conception and pregnancy with suboptimal semen
quality [2]. Though ICSI is a powerful tool, total fertilization failure still takes place in 1 to
3% of ICSI cycles [3].

A successful cycle requires the identification of the highest quality of the sperma-
tozoa [4]. Sperm defects have been shown to negatively impact embryo quality and
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development [5–7], emphasizing the critical importance of sperm selection. While through
the oviduct spermatozoa with the highest fertilization capability and the best potential for
supporting embryo development have the ability to achieve fertilization; the selection of
the most competent cells remains a challenge in vitro [8]. Density gradient centrifugation
(DGC) [9], a classical sperm preparation method, allows for separation based on motility,
size and density as the spermatozoa are centrifuged through a colloidal silica gradient.
Although it is a common procedure in ICSI laboratories, semen samples with low sperm
content, high viscosity and a large percentage of cellular debris are not suitable for the
DGC procedure [10]. Moreover, several studies have pointed to increased DNA fragmenta-
tion in spermatozoa undergoing DGC [11–14]. Sufficient evidence has been provided by
meta-analyses to show the detrimental effect of DNA fragmentation on clinical pregnancy
following IVF and/or ICSI [15–17]. Microfluidic chip-based sperm sorting is a recent and
powerful tool, which has been introduced as an alternative to centrifugation-based, con-
ventional techniques [18–20]. A variety of microfluidic devices with different approaches
ranging from passive to flow or chemical-based sorting have been designed to efficiently
isolate the highly motile and healthy sperm [21–26]. These technologies aim to develop a
reliable and accurate system that enables high-throughput, functional sperm sorting similar
to the natural sperm selection process [27]. The microfluidic technique was shown to be
associated with reduced DNA damage and fewer reactive oxygen species, thus improving
the selection of sperm for use with ICSI [28,29]. A recent study reported a significantly
diminished proportion of sperm with double-stranded DNA fragmentation [30]. Moreover,
the microfluidic sorting method yielded highly motile spermatozoa with the ability to
maintain membrane integrity and mitochondrial function related to ATP production in
bovine spermatozoa [31]. The microchip-based technique proposed by Anbari et al. was
shown to provide significantly higher progressive motility, a fraction of Class I sperm mor-
phology and decreased DNA fragmentation. The researchers also found improved clinical
outcomes with increased rates of high-quality embryo, implantation and pregnancy [32].

To our knowledge, there is a lack of data in the literature about the effects of microflu-
idic chip-based sperm sorting for astheno-teratozoospermia on embryo development. In
the present study, we included patients with astheno-teratozoospermia, characterized by
reduced sperm motility and abnormal morphology, and compared the effects of DGC
and microfluidic chip-based sperm preparation by employing a commercially available
microfluidic device (Fertile Ultimate®) on subsequent embryo development.

2. Materials and Methods
2.1. Patient Selection

Twenty-two couples who applied to Maltepe University Hospital ART Center between
January 2020–September 2020 and met the study criteria were included in this prospective
study. The women ranged in age from 18 to 39 and had at least two mature oocytes. A
pre-implantation genetic diagnosis was not performed and MI oocytes were excluded
from the study. Astheno-teratozoospermia was described according to the WHO 2010
guidelines and Kruger’s strict criteria (sperm progressive motility less than 32% and sperm
morphology less than 4%). Split semen samples from the same population of infertile
men with astheno-teratozoospermia were used to fertilize the mature sibling oocytes from
the same women. Baseline characteristics of the patients are depicted in Supplementary
Table S1. Simple randomization using a closed envelop method was used to randomize the
sibling oocytes. A CONSORT 2010 Flow Diagram is provided in Supplementary Figure S1.
This study was approved by the Ethics Board of Maltepe University, Istanbul with the
protocol number 2019/07-14.

2.2. Ovarian Stimulation

The standard ovarian stimulation consisted of pituitary downregulation either by
GnRHa leuprolide acetate (Lucrin 0.5 mg/mL, Abbott, Madrid, Spain) or GnRH antago-
nist cetrorelix acetate (Cetrotide, Baxter Oncology GmbH, Halle, Germany). GnRHa was
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injected daily during the late luteal phase before starting the treatment cycle. The GnRH
antagonist was injected daily by the 5th day of the treatment cycle. Both injections were sus-
tained until the trigger of ovulation. Baseline ultrasounds of the patients were performed
and ovarian cysts >2 cm were ruled out before starting the IVF cycle. Gonadotropins were
started on cycle days 2 or 3. The daily dosages were individualized between 150 and 300 IU.
All patients were monitored regularly by ultrasound until three follicles with maximum
diameter >17 mm were observed. HCG 10000 U (Choriomon, IBSA, Lodi, Italy) and 5000 U
hCG (Choriomon, IBSA, Lodi, Italy) plus 0.2 mg triptorelin acetate (Gonapeptyl, Ferring
GmbH, Kiel, Germany) were used as the trigger for oocyte maturation in the agonist and
antagonist cycles, respectively. Approximately 35–36 h after ovulation was triggered, a
transvaginal ultrasound-guided oocyte retrieval was performed, under general anesthesia,
with a 17-gauge needle.

2.3. Semen Analysis

Semen samples were collected by masturbation, after 2–7 days of sexual abstinence,
from male partners with astheno-teratozoospermia. Semen analysis was performed follow-
ing a period of incubation for 15–60 min for liquefaction. Ten microliters of each sample
were dropped on a Makler counting chamber (Sefi-Medical Instruments, Haifa, Israel) and
evaluated under a phase-contrast microscope for sperm count and motility. The semen
smear was prepared and stained with Spermac™ for the assessment of sperm morphology.

2.4. Sperm Preparation Using the Density Gradient Centrifugation Method

Each semen sample was divided into two for a comparison of the two sperm selection
methods. The first half, a liquefied semen sample for DGC, was gently layered on top of a
50:90% PureSperm density gradient containing colloidal silica particles (Nidacon, Mölndal,
Sweden) in a 15 mL conical tube. Following centrifugation at 300× g for 20 min, the
recovered pellet was washed in the PureSperm wash medium. After a second centrifugation
at 500× g for 10 min, the pellet containing the selected motile population was re-suspended
in a sperm culture medium and used in further steps.

2.5. Sperm Preparation Using a Microfluidic Sorting Chip

The second halves of the semen samples were prepared using the Fertile Ultimate®

(Koek Biotechnology, Izmir, Turkey) microfluidic sperm sorting chips. Following liquefac-
tion, 3 mL of unprocessed semen samples were introduced to the inlet of the microchip.
Next, 1.8 mL of sperm-washing solution was added to the outlet with a sterile syringe.
After 30 min of incubation at 37 ◦C, the liquid containing the most motile and functional
subpopulation accumulated in the upper-exit chamber (outlet) and was drawn with a
sterile syringe.

2.6. Embryo Development

Following sperm preparation from the split samples by either method, selected sper-
matozoon was used to fertilize one of the mature sibling oocytes. The numbers of sibling
oocytes for each woman and the sperm preparation method are depicted in Supplementary
Table S2. ICSI was performed when the oocyte-corona complexes were denuded and were
incubated for 2 h. Embryo development and blastocyst formation were evaluated on days
1, 3 and 5 based on the criteria reported by Veeck and Zaninovic [33]. Blastocysts were
classified as poor, fair, good, or excellent based on the grading system by Gardner and
Schoolcraft [34].

2.7. Statistics

Statistical evaluation was performed with the R Stats Package (R Foundation for
Statistical Computing, Vienna, Austria) and the data was examined with the Shapiro Wilk
test for normality. Mann Whitney U-test from non-parametric analyzes was used for data
without normality assumptions in pairwise comparison analyses and independent samples
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t-test was used for analyses with normality assumptions. A p-value of less than 0.05 was
accepted as statistically significant.

3. Results

The average age of males and females in the study were 37.27 ± 5.16 and 32.55 ± 4.68,
respectively. The demographic data of 22 semen samples, including sperm characteristics
such as the semen volume (mL), sperm concentration (106/mL), total motility (%) and
progressive motility (%) and morphology, are demonstrated in Table 1.

Table 1. Demographic data of 22 semen samples. Data are shown as mean ±SD.

Basal

Semen volume (mL) 3.18 ± 1.48
Sperm concentration (106/mL) 40.63 ± 42.00

Total motility (%) 33.14 ± 14.47
Progressive motility (%) 12.59 ± 8.33

Morphology 1.50 ± 0.67

The semen samples of 22 patients with astheno-teratozoospermia were divided into
two groups and each half was prepared with either the microfluidic chip (microchip group)
or DGC (gradient group). Semen parameters including semen volume (mL), sperm concen-
tration (106/mL), total motility (%) and progressive motility (%), after sperm preparation
with either method, are given in Table 2. While the sperm concentration was significantly
higher in the gradient group (19.80 ± 19.90 vs. 4.37 ± 6.05; p < 0001), sperm motility
was higher in the microchip group (progressive motility: 31.73 ± 19.90 vs. 68.41 ± 24.57;
p < 0001 and total motility: 53.27 ± 24.32 vs. 79.50 ± 17.19; p < 0004).

Table 2. Comparison of semen parameters after sperm preparation with a microfluidic chip or DGC methods.

Microchip Group (n: 22) Gradient Group (n: 22)

z/t p Value
Mean ± SD Median

(Q1–Q3) Mean ± SD Median
(Q1–Q3)

Volume of recovered
sperm (mL) 1.07 ± 0.15 1.00

(1.00–1.05) 0.73 ± 0.08 0.70
(0.70–0.80) −5.914 z p < 0.0001 *

Sperm concentration
(106/mL) 4.37 ± 6.05 2.15

(0.70–5.25) 19.80 ± 19.90 14.50
(6.25–28.00) −3.911 z p < 0.0001 *

Total motility (%) 79.50 ± 17.19 81.00
(70.00–92.25) 53.27 ± 24.32 55.00

(33.00–73.50) −3.547 z p < 0.0004 *

Progressive motility (%) 68.41 ± 24.57 72.00
(54.00–90.00) 31.73 ± 19.90 30.50

(17.25–42.75) 5.441 t p < 0.0001 *

z: Mann Whitney U test; t: Independent-samples t-test;. Q1: 25. percentile; Q3: 75. percentile; *: p < 0.01.

ICSI was performed on a total of 203 MII oocytes and 186 of them were successfully
fertilized. Subsequent embryo development was compared between the microchip and
gradient groups. Table 3 shows the proportion of embryo development by sperm selection
methods. Representative images illustrate the grading and classification of the developing
embryos (Figure 1). As depicted in Table 3, no significant differences were observed
in the fertilization rates or grade 1 (G1) and grade 2 (G2) proportions of the third-day
embryos. Moreover, the proportions of the poor, fair and good blastocysts on day 5 did not
differ significantly between the study groups. However, the proportion of the excellent
blastocysts on day 5 was significantly higher when the spermatozoa were selected using
the microfluidic chip rather than DGC (0.42 ± 0.28 vs. 0.23 ± 0.23; p = 0.029), indicating
the presence of more high-quality embryos in the microchip group.
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Table 3. Comparison of the proportions for embryo development according to the sperm selection
methods. Data are given as mean ± SD.

Embryo Development Microchip Group Gradient Group z p-Value

1st day fertilized
(n: 186)

0.89 ± 0.23
(n: 96)

0.91 ± 0.16
(n: 90) −0.214 0.966

3rd day total
(n: 170)

0.85 ± 0.26
(n: 89)

0.83 ± 0.25
(n: 81) −0.761 0.570

3rd day G1
(n: 144)

0.83 ± 0.25
(n: 77)

0.76 ± 0.31
(n: 67) −0.235 0.625

3rd day G2
(n: 26)

0.12 ± 0.23
(n: 12)

0.13 ± 0.21
(n: 14) −2.452 0.933

5th day total
(n: 109)

0.60 ± 0.31
(n: 62)

0.47 ± 0.30
(n: 47) −0.585 0.050

5th day excellent
(n: 63)

0.42 ± 0.28
(n: 41)

0.23 ± 0.23
(n: 22) −1.037 0.029 *

5th day good
(n: 18)

0.10 ± 0.14
(n: 10)

0.07 ± 0.12
(n: 8) −1.497 0.471

5th day fair
(n: 20)

0.02 ± 0.06
(n: 8)

0.01 ± 0.04
(n: 12) −0.214 0.311

5th day poor
(n: 8)

0.07 ± 0.11
(n: 3)

0.16 ± 0.19
(n: 5) −0.761 0.104

z: Mann Whitney U test; * p < 0.05.
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Figure 1. Morphological grading demonstrating (A) 3rd day grade 1 (G1) (B) 3rd day grade (G2) (C) 5th day excellent (5AA)
(D) 5th day good (5AB) (E) 5th day fair (5BB) and (F) 5th day poor (5CC) embryos. The images were provided by Prof.
Mehmet Cıncık.

4. Discussion

In recent years, microfluidic chip-based sperm sorting has emerged as an alternative
tool to historical sperm preparation methods [18–20]. The microfluidic application allows
for rapid isolation of poor semen samples with high motility, improved DNA integrity and
low morphological abnormalities [35]. The basic idea of sperm sorting in microchips is
to more closely replicate in vivo physiological conditions to improve sperm selection and
increase the possibility of achieving a successful ICSI outcome [27].
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In this study, the spermatozoa from the split semen samples were prepared using
either microfluidic platforms or DGC. Mature sibling oocytes were subjected to ICSI with
sperm selected from either preparation method and the subsequent embryo development
was monitored. DGC yielded a significantly higher sperm concentration, while both
progressive and total motility were found higher when the Fertile Ultimate® microchip
system was employed in accordance with related literature [36–38]. A higher sperm
concentration, yet lower motility in the gradient group, indicates the presence of both
motile and immotile spermatozoa in the sample after DGC. On the other hand, the sperm
sorted using the microfluidic chip led to significantly higher progressive and total motility,
which is particularly important in our study population with astheno-teratozoospermia.
Reduced progressive motility together with poor sperm morphology was shown to be
associated with impaired blastocyst development and diminished quality after ICSI [39].
Particularly, due to the negative impacts on fertilization rate [40,41], decreased motility
was suggested as a predictive marker for compromised fertilization after ICSI [42].

Although no difference was observed in fertilization rate, we found a significantly
higher proportion of the excellent blastocysts on day 5 in the microchip group compared to
the gradient group. The system used to grade blastocyst formation was introduced by Gard-
ner and Schoolcraft in 1999 and provides a guideline in classifying the degree of blastocyst
expansion, the morphological appearance of the inner cell mass (ICM) and trophectoderm
cells [43]. Accordingly, the excellent blastocysts on day 5 shared the ideal features at-
tributed to day 5 blastocysts with high viability; including an expended blastocoel cavity,
well-formed ICM and trophectoderm cells, and zona pullucida thinning.

The selection of the embryo with the highest implantation potential is fundamental
for a successful pregnancy [44]. In addition to increased sperm motility, by mimicking the
physiological environment, microfluidic sorting also improved morphology, and caused
less DNA damage in comparison to swim-up and DGC methods [10,30,32]. Further studies
compared the microfluidic chip or DGC methods in terms of DNA integrity and reported
a significantly lower sperm DNA fragmentation rate in microchip groups [28,38,45]. It is
important to note that the DNA fragmentation index correlates negatively with embryo
quality and pregnancy outcome [46]. Also, fewer reactive oxygen species were detected in
sperm prepared using the microfluidic chip in comparison to those prepared by DGC or
swim-up methods [29,37]. However, a recent study did not demonstrate any differences in
fertilization rate, embryo quality, blastocyst development, or pregnancy rate after sperm
selection with the microfluidic sorting or swim-up method [47]. On the other hand, another
study conducted in 2021 reported increased rates of high-quality embryo, implantation
and pregnancy by microfluidic sperm sorting [32]. Additionally, a randomized controlled
trial involving 181 patients with male factor infertility reported an enhanced pregnancy
rate in the microfluidic group than that in the gradient group when the female age is above
35 and the total motile sperm count ranges between 1 and 5 million [48].

Microfluidic systems were also investigated for the isolation of spermatozoa from
testicular specimens of non-obstructive azoospermic men [49]. Microfluidics and nanotech-
nology are further explored for sperm sex-sorting before IVF to prevent sex-linked genetic
diseases [50]. Besides all the aforementioned improvements, the microfluidic chip method
also has the benefit of being a simple and time-saving sperm selection tool with reduced
sample volumes. Conversely, despite the continued evolvements in the technology, the
system is not yet widely adopted in routine laboratory practice due to the higher costs in
comparison to the centrifugation-based conventional techniques. The major limitations
of our study include the low patient number and the absence of blinding. However, to
our knowledge, this is the first study with higher embryo numbers evaluating embryo de-
velopment with sperm prepared by either DGC or microfluidic chip methods. Additional
research is required to explore the pregnancy and delivery rates. The results might provide
preliminary data for a larger study or a starting point for the initiation of sperm selection
by the microfluidic chip method in those patients with astheno-teratozoospermia.
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5. Conclusions

Our study included patients with astheno-teratozoospermia, who would benefit from
the advantages of the MFC technology. In a clinical setting, when compared to the classical
DGC method, the microchip platform yielded sperm with higher motility and higher
quality blastocysts at day 5. Further studies with an increased number of patients and with
more applications may provide comprehensive data for the clinical outcomes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/life11090933/s1, Figure S1: CONSORT 2010 Flow Diagram, Table S1: Baseline characteristics
of the patients (mean ± SD), Table S2: The number of sibling oocytes.
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