
RESEARCH ARTICLE

Characterization of the Sucrose Phosphate

Phosphatase (SPP) Isoforms from Arabidopsis

thaliana and Role of the S6PPc Domain in

Dimerization

Tomás Albi, M. Teresa Ruiz, Pedro de los Reyes, Federico Valverde, José M. Romero*
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Abstract

Sucrose-phosphate phosphatase (SPP) catalyses the final step in the sucrose biosynthesis

pathway. Arabidopsis thaliana genome codifies four SPP isoforms. In this study, the four

Arabidopsis thaliana genes coding for SPP isoforms have been cloned, expressed in

Escherichia coli and the kinetic and regulatory properties of the purified enzymes analysed.

SPP2 is the isoform showing the highest activity, with SPP3b and SPP3a showing lower

activity levels. No activity was detected for SPP1. We propose that this lack of activity is

probably due to the absence of an essential amino acid participating in catalysis and/or in

the binding of the substrate, sucrose-6-phosphate (Suc6P). The expression patterns of Ara-

bidopsis SPP genes indicate that SPP2 and SPP3b are the main isoforms expressed in dif-

ferent tissues and organs, although the non-catalytic SPP1 is the main isoform expressed in

roots. Thus, SPP1 could have acquired new unknown functions. We also show that the

three catalytically active SPPs from Arabidopsis are dimers. By generating a chimeric SPP

composed of the monomeric cyanobacterial SPP fused to the higher plant non-catalytic

S6PPc domain (from SPP2), we show that the S6PPc domain is responsible for SPP dimer-

ization. This is the first experimental study on the functionality and gene expression pattern

of all the SPPs from a single plant species.

Introduction

Sucrose is an essential carbohydrate for higher plants and other photosynthetic organisms and

considered to be one of the main products of photosynthesis [1, 2]. Sucrose is primarily syn-

thesized in photosynthetic cells and transported to the rest of the plant to provide carbon and

energy for growth and for the accumulation of carbon reserves. Besides, sucrose is involved in

the regulation of different processes including transcriptional and post-transcriptional control

and stress responses [2–8].
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Sucrose is synthesised by the consecutive action of sucrose-phosphate synthase (SPS; EC

2.4.1.14) and sucrose-phosphate phosphatase (SPP; EC 3.1.3.24). SPS catalyses the synthesis of

Suc-6-P from UDP-glucose and fructose-6-phosphate (Fru6P). In the second step of the path-

way, SPP catalyses the irreversible hydrolysis of Suc-6-P to sucrose and displaces the reaction

catalysed by SPS in the direction of sucrose synthesis [9, 10]. SPP encoding genes have been

described in different plant species such as Arabidopsis, tomato, rice, wheat, maize and coffee

[11, 12] where they constitute gene families with different number of members depending on

the species. However, studies on the biochemical properties of SPP isoforms are scarce and no

comprehensive study of all the isoforms from a single species have been done to date. In Arabi-
dopsis, four genes show homology to SPP, while in wheat and rice three and four genes have

been described, respectively [11]. The four genes that code for SPP in Arabidopsis display a

similar exon-intron structure [2, 11]. Arabidopsis SPPs are referred as SPP1 (At1g51420), SPP2
(At2g35840), SPP3a (At3g54270) and SPP3b (At3g52340) [11].

SPP sequences share homology with members of the L-2-haloacid dehalogenase (HAD,

http://pfam.sanger.ac.uk/family/PF00702) superfamily of proteins [2, 13–15]. Arabidopsis
SPPs belong to the subfamily IIB that includes sucrose phosphate phosphatases from plants

and cyanobacteria (IPR012847, http://www.ebi.ac.uk/interpro/entry/IPR012847) [16]. The

HAD superfamily is characterized by three conserved motifs (I, II and III) related to the active

site [13, 17, 18]. The crystal structure of SPP from the cyanobacterium Synechocystis sp. PCC

6803 has been elucidated and a catalytic mechanism proposed in which the three typical

domains of the HAD proteins are involved in catalysis [13]. SPPs from different plants have

been characterized. The enzyme has been shown to be a dimer with a molecular mass of

around 100 kDa, formed by subunits of approximately 50 kDa [19–21]. A carboxy-terminal

domain of about 160 amino acids is present in higher plant SPPs that has been proposed to

participate in dimerization (S6PPc domain), while prokaryotic forms of SPP are monomeric

and lack this domain [2]. However, no functional studies have been performed to demonstrate

the role of the S6PPc domain in dimerization.

As above referred, the sucrose synthesis pathway involves two enzymatic steps. SPS has

been reported as the main regulatory point [3, 22–25], with some isoforms showing over-

lapping functions [26], while the role of SPP in the control of sucrose synthesis still remains

controversial. SPP has not been considered to be rate limiting for sucrose synthesis and, in

the case of tobacco, the control coefficient on sucrose synthesis was estimated to be close to

zero [23]. In fact, tobacco plants transformed with SPP RNAi, with reductions of up to 80%

in SPP activity, show almost none or little effect on sucrose synthesis, suggesting that there

is no requirement for a 1:1 molar ratio between SPS and SPP [23]. Similar conclusions were

obtained in cold-stored potato tubers transformed with SPP RNAi [27]. On the other hand,

some evidences on enzyme activity indicate that SPP may contribute to sucrose synthesis

control [19, 28, 29], role that could be related to the fact that SPP may establish a complex

with SPS [30, 31]. In fact, it has recently been shown that SPS and SPP interact in planta
[32], and this interaction may provide a new level of regulation. Additionally to their role

in sucrose synthesis, it has been reported that SPP may have other functions. In this respect,

Arabidopsis plants overexpressing sorghum SPP show an alteration in seed germination,

suggesting a role of SPP in the process [33].

Different studies on the regulation of SPP suggest that sucrose may act as a regulator of the

enzyme activity, while in other cases the results are not so evident. It has been reported that

SPP activity from partially purified sugar cane and from carrot roots crude extracts is inhibited

by sucrose at physiological concentrations (Ki 10 mM) [34]. 100 mM sucrose only partially

inhibited the activity in crude extracts from a number of species [35]; i.e. only a 9% inhibition

was observed in purified SPP from pea shoots [20]. Also, partially purified SPP from rice and
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lettuce, showed a weak inhibition of the enzyme activity similar to that observed in pea shoots

[21, 36]. In accordance, Lunn et al. [19], studying homogeneity-purified SPP from rice,

observed that sucrose is a weak competitive inhibitor of SPP with a Ki around 200–400 mM,

but the inhibition was slightly potentiated by decreasing concentrations of Suc6P, the substrate

of the enzyme.

In this study, the four different Arabidopsis SPP cDNAs were cloned and expressed in

Escherichia coli. The activity and properties of the recombinant enzymes were studied and ana-

lysed. A highly conserved Ser was identified as an amino acid residue necessary for catalysis.

We also present novel data about the expression pattern of the four Arabidopsis SPP genes.

Finally, we show that the non-catalytic S6PPc domain is involved in SPP dimerization.

Materials and Methods

Plant material and growth conditions

Arabidopsis thaliana, Columbia ecotype-0 (Col-0) plants were grown in controlled cabinets on

soil under 16 h light / 8 h dark cycle, with temperatures ranging from 22˚C (day) to 18˚C

(night). Seeds were incubated 4 days at 4˚C in the dark before sowing. Q-PCR assays were per-

formed using plant material harvested 19 (leaves) or 28 (shoots, flowers, siliques and roots)

days after sowing, at Zeitgeber time (ZT) 16.

Cloning of cDNA and plasmids construction

cDNAs encoding SPP2 and SPP3b were obtained from the RIKEN Genomic Sciences Center,

Japan [37, 38]. SPP1 and SPP3a were PCR-amplified from total cDNA preparations from roots

or rosette leaves, respectively. cDNA fragments were amplified by PCR using specific primers

(Table 1) which were designed with the appropriate restriction sites and a start codon (Met).

Next, they were cloned into the pGEM-T Easy vector and finally, in the desired expression vec-

tor, which incorporated either a His6 (pQE-80L) or a His10 tag in the N-terminus (pET-19b).

The resulting constructs were individually introduced into E. coli BL21 (DE3) cells for induc-

tion assays and further heterologous recombinant protein expression analysis.

RNA isolation and Real-Time Q-PCR

RNA was isolated employing Trizol reagent (Invitrogen) and 1 μg used to synthesize cDNA

employing the Quantitec Reverse Kit (Qiagen) as described by Ortiz-Marchena et al. [39].

Real-time quantitative PCR (Q-PCR) assays were achieved using Exiqon Universal Library

probes as described by Ventriglia et al. [40]. The specific oligonucleotides and Exiqon probes

used were: SA648 (5’-tgttgcacaacaactgtcaaat-3’), SA649 (5’-gcacatgttcc
cacacaaac-3’) and probe #12 for SPP1; SA584 (5’-agaagctagcaacttccctgag-
3’), SA585 (5’-gctaaccttgtgtggcctct-3’) and probe #124 for SPP2; SA661 (5’-
ggttcttccagggatattagagg-3’), SA662 (5’-caagtagatatgtcaaagcaccttgt-
3’) and #17 for SPP3a; SA646 (5’-gaggcattgaccaaggaact-3’), SA647 (5’-
ccccaactgtaaattatcttgacat-3’) and probe #67 for SPP3b; and SA532 (5’-
gaagttcaatgtttcgtttcatgt-3’), SA533 (5’-ggattatacaaggccccaaaa-3’)

and probe #119 for ubiquitin. For Real-Time Q-PCR assays, three technical repetitions of sam-

ples obtained from three independent experiments were performed.

Purification of recombinant enzymes

10 ml of an overnight culture of E. coli BL21 overexpressing the desired SPP gene was added

to 1 L of LB medium supplemented with 100 μg/mL ampicillin and subsequently grown at
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30˚C until the A600 reached 0.8. Protein induction was started by addition of 1 mM IPTG

and further incubation during 4 h at 30˚C. At this stage, cells were harvested by centrifuga-

tion and the cell precipitate resuspended in lysis buffer (25 mM HEPES-KOH (pH 7.5), 150

mM KCl, 1 mM PMSF, 8 mM MgCl2) and disrupted by sonication. The crude lysate was cen-

trifuged at 60,000 g for 30 min at 4˚C and the resulting supernatant was used in an affinity

purification step employing a HisTrap HP Column (GE Healthcare). Bound proteins were

eluted under native conditions by applying a linear gradient from 0% to 100% (v/v) elution

buffer (25 mM HEPES-KOH (pH 7.0), 150 mM KCl, 8 mM MgCl2, 500 mM imidazole).

Protein was quantified by the Bradford dye-binding method [41] with ovalbumin as

standard.

Molecular mass determination

For further purification and molecular mass determination, chromatographic fractions

showing SPP activity were combined and dialyzed against lysis buffer, without Mg2+, in the

presence of 1 mM PMSF. 0.5 ml fractions were loaded onto a Superose 12 10/300 GL column

(GE Healthcare) for size-exclusion chromatography. Elution was performed with the same

buffer at a rate of 0.4 ml/min. 0.4 ml fractions were collected and assayed for SPP activity.

The molecular mass estimation of the eluted fractions was calculated based on a protein stan-

dards calibration curve: β-amylase (β-Amy, 200 kDa), alcohol dehydrogenase (ADH, 150

kDa), bovine serum albumin (BSA, 66 kDa), carbonic anhydrase (CA, 29 kDa) and cyto-

chrome c (Cyt.c, 12.4 kDa).

Table 1. Primers used in this study.

Primer Sequencea,b Construct

P1 (BamHI) AAATGGGGATCCGAGCGGTTAACATCTCCTCCTCG His6-SPP1 (pQE-80L)

P2 (PstI) AATCGGCTGCAGTCAGATGATCCAGTTGCTATCATCC

P3 (NdeI) GGAATTCCATATGGAGCGGTTAACATCTCC His10-SPP1 (pET-19b)

P4(BamHI) GGGGGATCCTCAGATGATCCAGTTGCTATC

P5 (NdeI) GGAATTCCATATGGAGCGTCTAACATCTCC His10-SPP2 (pET-19b)

P6 (BamHI) GGGGGATCCTCAGATGATCCAGCTGCTATC

P7 (NdeI) GGAATTCCATATGGATAGGCTTGAAGGACC His10-SPP3a (pET-19b)

P8 (BamHI) GGGGGATCCTTAGAAAATCCATTTTTCTTG

P9 (NdeI) GGAATTCCATATGGAGCGGCTGATTTCTCA His10-SPP3b (pET-19b)

P10 (BamHI) GGGGGATCCTCAGAGAATCCAAGAACTGTT

P11 (BamHI) GGGGGATCCTTAAAGCTTGAAGTGACCAAT His10-S6PP (pET-19b)

P12 (NdeI) GGAATTCCATATGCCGAACCTTTCTCCAAG His10-S6PPc (pET-19b)

P13 (BamHI) GGAATTCAGGATCCCGACAGTTATTGCTAATTTCTG His6-SynSPP (pQE-80L)

P14 (PstI) AAACATCTGCAGTTAAGCTTGGCTGCAGGTCG

P15 (SpeI) GGAATTCACTAGTCTTGGTCCGAACCTTTCTCCAAGA S6PPc-Ct-fusion

P16 (SpeI) GGAATTCACTAGTGCTCAAAAAATCGAAATGGGCGAT SynSPP-Nt-fusion

P17 GTGTTTTCTACGGGAAGAGCACCGACATTGTATAAAG SPP2S54A

P18 AAGAAGAGAGTCATGGCGATAAGCGTGTTC

P19 GTTTTCTCAACAGGAAGATCTCAAACAATGTACAAGA SPP1A55S

P20 AAGAAGAGAGTCGTGTCGATAAGCGTCTTC

a Restriction sites are highlighted in bold.
b Single base substitutions are marked within squares.

doi:10.1371/journal.pone.0166308.t001
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Gel electrophoresis and Western blotting

Proteins were separated by SDS-PAGE on 10% or 12% (w/v) polyacrylamide gels as described

by Laemmli [42] and stained with Coomassie Blue R-250 or transferred to nitrocellulose mem-

branes. The membranes were then probed with anti-His-tag antibody (Qiagen, Cat No.

34660). Membranes were incubated with the antibody at an 1:1000 dilution in TBS containing

non-fat milk 5% (w/v) as blocking agent, washed with TBS buffer plus 0.1% (v/v) Tween 20

and developed with a luminescent assay (WesternBright™ Quantum, Advansta).

Enzyme assays

SPP activity was determined by following the release of Pi from Suc6P. Unless otherwise indi-

cated, the assay mixture contained 25 mM HEPES-KOH (pH 7.0), 8 mM MgCl2 and 1.25 mM

Suc6P in 1 ml at 37˚C. Modifications of the reaction components were made as required in

individual experiments. The reaction was initiated by the addition of the enzyme sample and

stopped with 54 μl of trichloroacetic acid 6.1 M. Pi released was measured using SnCl2-ammo-

nium molybdate reagent [43]. Kinetic parameters (Km and kcat) were determined from initial

velocity data using the nonlinear regression software Anemona.xlt [44]. One unit (U) corre-

sponds to 1 μmol of Pi released per minute.

Effect of divalent ions and determination of optimum pH

For the study of the effect of divalent ions, purified fractions were dialyzed against 25 mM

HEPES-KOH (pH 7.5). Later, the divalent ion of interest was added to a final concentration

of 8 mM. The pH dependence of SPP activity was determined at optimum values of divalent

ion, temperature and Suc6P concentration. pH-dependent curves were performed using the

following buffers: MES (pH 5.5–7.0), HEPES (pH 7.0–8.0), Tris (pH 8.0–9.0), CHES (pH

9.0–10.0) and CAPS (10.0–11.0) at 50 mM final concentration, adjusted to the indicated pH

with NaOH or HCl.

Transitory expression in Nicotiana benthamiana

To verify SPP dimerization in vivo, Arabidopsis SPP2 and the chimeric Synechocystis SPP fused

to the S6PPc domain of SPP2 were cloned in pYFN43 and pYFC43 to produce fusions to the

YTP N-terminal part (YFN-SPP2 and YFN-SynSPP-S6PPc) as well as to the YFP C-terminal

part (YFC-SPP2 and YFC-SynSPP-S6PPc) to perform BiFC assays. Specific primers were used

for each gene (SPP2: 5'-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGAGCGTCTAAC
ATCTCCTCCT-3',3'-GGGGACCACTTTGTACAAGAAAGCTGGGTCTCAGATGATCCAGC
TGCTATCATCC-5'; SynSPP-S6PPc: 5'-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATG
AGAGGATCGCATCACCATCAC-3', 3'-GGGGACCACTTTGTACAAGAAAGCTGGGTCTC
AAAGCTTGAAGTGACCAATGGCT-5'). These constructs were introduced into Agrobacterium
tumefaciens strain GVG3101 pmp90. 4-week old Nicotiana plants were agroinfiltrated with the

following combinations: YFN-SPP2 and YFC-SPP2 and YFN- SynSPP-S6PPc and YFC-

SynSPP-S6PPc. As negative controls, pairs of YFC-SPP2 and YFC-SynSPP-S6PPc with

YFN-AKIN10 were used. As positive controls, amino and carboxy parts of AKIN10 were used,

following protocols previously described [45, 46]. Fluorescent interactions were visualized

under a confocal microscope Leica TCS SP2/DMRE using an excitation wavelength of 514 nm.

Genome databases

Completed cyanobacterial genomes in GenBank [47] and CyanoBase [48] were searched for

ORFs with homology to plant SPP (Arabidopsis thaliana) sequences, using the TBLASTN

Arabidopsis thaliana Sucrose Phosphate Phosphatases
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algorithm. The deduced amino acid sequences with E values lower than 1 x 10−5 were used to

search GenBank non-redundant database using the BLASTP algorithm.

Reagents and services

Biochemical reagents were purchased from Sigma-Aldrich. Restriction endonucleases were

obtained from Takara™. Primers were synthetized by IDT. The pGEM-T Easy vector was pur-

chased from Promega. pQE-80L and pET-19b vectors were purchased from Qiagen and Nova-

gen, respectively. Anti-His-tag antibodies were obtained from Qiagen (Cat No. 34660).

Sequencing was carried out at The Institute of Parasitology and Biomedicine "López-Neyra"

(IPBLN), Spanish National Research Council (CSIC).

Results and Discussion

Properties of Arabidopsis Sucrose phosphate phosphatases

Heterologous production of recombinant Nt-Histag Arabidopsis SPP1, SPP2, SPP3a and

SPP3b were carried out in E. coli as described in the Materials and Methods section. The

recombinant SPPs fused to a His-Tag were purified to a high level (Fig 1A). Table 2 summa-

rizes the purification steps followed for SPP2. SPP2 was purified about 306-fold, while SPP3a

and SPP3b were purified about 109 and 226-fold (data not shown), respectively. SPPs from

Arabidopsis showed a molecular mass of about 52 kDa under denaturing conditions (Fig 1A).

However, when SPP2, SPP3a and SPP3b were analysed by gel filtration under non-denaturing

conditions they displayed a molecular mass of about 90 kDa (Fig 1B,1C and 1D), thus indicat-

ing that Arabidopsis SPPs are dimeric proteins. This is in accordance with previous studies

from other higher plants as pea and rice [19–21], but differs from cyanobacterial SPPs that

have been shown to be monomeric enzymes [49].

Even in the pure fractions, we could not detect any activity for the recombinant SPP1 iso-

form. Among the active Arabidopsis SPPs, SPP2 was shown to be the enzyme with the highest

activity, while SPP3a and SPP3b showed lower activity levels (Table 3): SPP3b activity was

about 20-times lower than SPP2, while SPP3a displayed about 200-times less activity. When

we tested the affinity for Suc6P of the three active SPPs (Table 3), SPP2 was shown to have the

lowest Km for Suc6P (0.73 mM), SPP3a showed a similar Km value (0.87 mM), while SPP3b

displayed a 5-times higher Km (3.46 mM) than SPP2. Taken together, these results suggest that

SPP2 is the main isoform responsible for sucrose synthesis in Arabidopsis with the highest

activity and affinity for the substrate, while SPP3a is the isoform with the lowest activity and

catalytic efficiency for the substrate (Table 3).

Studies of SPP from different organisms show that the enzyme has a relatively high specific-

ity for Suc6P [49]. Therefore, we tested the specificity of the active SPPs from Arabidopsis for

different substrates. In agreement with previous studies in other species [49], Fruc6P, Gluc1P,

Gluc6P, PEP, p-nitrophenyl phosphate (PNPP) and Gluc1,6BP were poor substrates for SPPs

(Fig 2A) and only in the case of SPP3b, PEP could account for about 15% of the activity

obtained for Suc6P as substrate. It seems thus clear that SPPs are enzymes that show a high

affinity for suc6P and very low for other phosphorylated sugars.

It has been previously shown that SPP activity is strictly dependent on the presence of Mg2

+. Accordingly, the purification of the Arabidopsis SPPs including a dialysis step in a buffer

without divalent cations resulted in enzyme preparations with no activity. Fig 2B shows that

activity of SPP2, SPP3a and SPP3b is dependent on the presence of a divalent cation in the

reaction buffer, the maximal activity being observed in the presence of Mg2+, as previously

described for rice and pea SPPs [19–21]. In the presence of other divalent cations, Arabidopsis
SPP activity reached very low levels (about 5% of maximal activity), except for SPP2 and
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Fig 1. Purification and molecular mass determination of Arabidopsis SPP isoforms. (A) SDS-PAGE

analysis of purified SPP fractions after gel filtration (Superose 12 10/300 GL). In each case 4 μg of protein

were loaded per lane. Purification folds were 306, 109 and 226 for SSP2, SPP3a and SPP3b, respectively.

This parameter could not be estimated for SPP1 due to its lack of activity. Proteins were visualized by staining

with Coomassie Blue R-250. Lane M, Molecular mass (kDa) markers. Elution profiles of recombinant Nt-

Histag-SPP isoform SPP2 (B), SPP3a (C) and SPP3b (D), applied to a Superose 12 10/300 GL column. A

calibration curve is displayed on the upper insert. Molecular mass standards: β-Amy, β-Amylase (200 kDa);

ADH, alcohol dehydrogenase (150 kDa); BSA, bovine serum albumin (66 kDa); CA, carbonic anhydrase (29

kDa); and Cyt.c, cytochrome c (12.4 kDa). SDS-PAGE analysis of the fractions around the activity peaks

(highest activity fraction marked with an asterisk) is displayed in the lower insert. As observed, both peaks,

corresponding to absorbance at 280 nm (broken line) and sucrose-phosphate phosphatase activity (solid

line), co-eluted.

doi:10.1371/journal.pone.0166308.g001
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SPP3b that in the presence of Mn2+ exhibited 30% of their maximal activity (Fig 2B). Fig 2B
insert shows that SPP2 maximal activity was obtained in the presence of 5 mM Mg2+, with a

Km for Mg2+ of 2.3 mM, in the range reported for the rice enzyme [21]. The high preference of

SPP for Mg2+, which can only be partially replaced by Mn2+, appears to be a common prop-

erty of the enzyme in all organisms investigated to date [21, 36, 50].

Arabidopsis thaliana SPPs showed their maximal activity at neutral pH (Fig 2C). As

reported for rice, lettuce and sugar cane [21, 36, 51], the activity of the three active Arabidopsis
SPPs decreased sharply at more acidic pHs, with no activity remaining at pH 5, while at more

basic pH the activity was detectable up to pH 9–9.5 (Fig 2C). On the other hand, maximal

activity of SPPs was observed at temperatures ranging between 35–45˚C (Fig 2D).

In some species, it has been described that SPP is inhibited by sucrose, while in others it has

no effect or acts as a weak competitive inhibitor [13, 19–21, 34–36, 50]. We have analysed the

effect of sucrose on purified Arabidopsis SPPs and observed that this sugar differentially inhib-

ited Arabidopsis SPP isoforms. Sucrose was a weak inhibitor of SPP2 and SPP3a (Fig 3), while

SPP3b was the most sensitive isoform (Ki of 24 mM). SPP2 and SPP3a inhibition by sucrose

required much higher concentrations (Ki 611 mM for SPP2, Ki 604 mM for SPP3a) than for

SPP3b, suggesting that under physiological conditions SPP2 and SPP3a are not inhibited by

sucrose. In this sense, sucrose could bind to the active site of the SPP enzyme in a position sim-

ilar to the substrate Suc6P as a competitive inhibitor [13]. In our hands, SPP2 and SPP3a activ-

ities were slightly inhibited by sucrose concentrations around 100 mM in the presence of 1.25

mM Suc6P in the reaction assay mixture (Fig 3), with Ki around 600 mM. These results are

comparable to those reported for pea shoots [20], rice leaves [21] and lettuce leaves [36]; but

differ from those for sugar cane SPP [34], that was significantly inhibited (60%) at 50 mM

sucrose concentration. Similarly to sugar cane SPP, SPP3b showed a Ki for sucrose of 24 mM.

Thus, we have observed two types of responses to sucrose inhibition for Arabidopsis SPPs iso-

forms. Concentrations required for SPP2 and SPP3a inhibition by sucrose are much higher

than those physiologically occurring [52], except perhaps in sink organs such as sugar cane

shoots or carrot roots, while SPP3b might be regulated by sucrose in physiological conditions.

Table 2. Purification of Nt-Histag SPP2 expressed in E. coli (BL21).

Purification steps Total protein (mg) Yield (%) Total activitya (U) Specific activity (U/mg protein) Purification (fold)

Crude supernatant 1252 100 164.01 0.131 1

Ni-NTA column 4.8 0.3 107.40 22.376 171

Concentrationb 3.6 0.2 78.19 21.721 166

Superose 12 1.2 0.1 48.04 40.039 306

a One unit (U) is defined as the hydrolysis of 1 μmol of sucrose-6-phosphate/min at 30˚C.
b Ni-NTA fractions were pooled and concentrated to 0.25 ml with an Amicon Ultra-3K concentrator.

doi:10.1371/journal.pone.0166308.t002

Table 3. Kinetic properties of Arabidopsis SPP isoforms.

SPP2 SPP3a SPP3b

Km S6P (mM) 0.73 ± 0.32 0.87 ± 0.39 3.46 ± 0.71

SAmax (μmol min-1 mg-1 prot)a 40.04 ± 7.31 0.22 ± 0.04 2.09 ± 0.28

kcat (min-1) 4066.36 23.75 215.32

kcat /Km (min-1 mM-1) 5551.34 27.26 62.18

a The limit of detection was approximately 0.4 nmol min-1 mg-1 prot.

doi:10.1371/journal.pone.0166308.t003
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Recovery of Arabidopsis SPP1 activity

As indicated in the Introduction section, SPP protein sequences share homology with mem-

bers of the L-2-haloacid dehalogenase (HAD, IPR006379) superfamily of proteins [13], with

the Arabidopsis SPPs included in the family of Sucrose Phosphate Phosphatases from plants

and cyanobacteria (IPR012847). The HAD superfamily is characterized by three conserved

motifs (I, II and III) related to the active site [13, 17, 18]. To determine the basis for the lack of

Fig 2. Biochemical characterization of recombinant Arabidopsis SPP isoforms. Substrate dependence,

metal cofactor specificity, as well as the optimum temperature and pH of Arabidopsis SPP isoforms are

shown. (A) SPP activity using different sugar-phosphates as substrate. 100% activity corresponds to 37.68

±0.18, 0.14±0.01 and 1.93±0.05 μmol min-1 mg-1 prot for SPP2 (black column), SPP3a (grey column) and

SPP3b (white column) with Suc6P as substrate, respectively. (B) SPP activity was determined in the

presence of 8 mM divalent cation. 100% activity is determined in the presence of optimum Mg2+ concentration

(5 mM) and corresponds to 38.13±0.92, 0.14±0.00 and 1.92±0.04 μmol min-1 mg-1 prot for SPP2, SPP3a and

SPP3b as in (A), respectively. Insert shows the Mg2+ dependence of SPP2 activity. (C) SPP activities were

estimated at different pH using a combination of buffers as described in the Materials and Methods section.

100% activity corresponds to 36.35±0.54, 0.13±0.01 and 1.90±0.01 μmol min-1 mg-1 prot for SPP2 (open

circle), SPP3a (open triangle) and SPP3b (open square), respectively. (D) Effect of temperature on the

activity of Arabidopsis SPP isoforms. 100% specific activity corresponds to 37.21±0.61, 0.14±0.01 and 1.92

±0.06 μmol min-1 mg-1 prot for SPP2, SPP3a and SPP3b as in (C) respectively. Data were obtained from

three independent experiments and are shown as means ± S.D. Fruc6P, fructose-6-phosphate; Gluc1P,

glucose-1-phosphate; Gluc6P, glucose-6-phosphate; Gluc1,6BP, glucose-1,6-bisphosphate; Suc6P,

sucrose-6-phosphate; PEP, phosphoenol pyruvate; PNPP, p-nitrophenyl phosphate.

doi:10.1371/journal.pone.0166308.g002
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activity of SPP1, a sequence comparison of the three motifs from different organisms was per-

formed (Fig 4). All three motifs are highly conserved among plant, algae, cyanobacteria and

mosses. To date, the only structural study of an SPP has been carried out in the cyanobacte-

rium Synechocystis sp. PCC 6803 [13, 14]. The Synechocystis SPP structure is composed of two

domains, a core domain containing the catalytic site, and a smaller cap domain that contains a

glucose-binding site. The three conserved HAD motifs in SPP form the active site and are

located at the interface between both domains, which are connected by two hinge loops that

allow the binding of Suc6P [14]. The phosphate group of Suc6P interacts with Lys-163, Asp-9,

Gly-42 and Thr-41 [13]. Two of them, Thr-41 and Gly-42, are close to Ser-44 in Synechocystis
SPP and are highly conserved in plant SPPs (Fig 4). Serine residue 44 in Synechocystis is steri-

cally close to threonine 41 (Thr-41), which has been implicated in the establishment of a

hydrogen bond with Suc6P and a water molecule during catalysis [13]. Synechocystis Ser-44

corresponds to Ser-54 in Arabidopsis SPP2, SPP3a and SPP3b, while Arabidopsis SPP1 presents

an Alanine (Ala-55) at the corresponding position instead of a Serine (Indicated by an arrow

in Fig 4). Therefore, this amino acid change could be affecting the interaction with the sub-

strate in the catalytic site and cause SPP1 lack of activity. To check this hypothesis SPP2 Ser-54

residue was changed by PCR to Ala to generate SPP2S54A. The mutated cDNA was expressed

in E. coli and indeed the purified SPP2S54A protein showed no activity, suggesting an implica-

tion of Ser-54 in SPPs catalysis (Table 4). Likewise, the non-catalytic SPP isoform SPP1 was

turned into a catalytic SPP by the substitution of its original Ala-55 with the correspondent,

highly conserved Ser, to generate SPP1A55S. As shown in Table 4, SPP1A55S is catalytically

active, although the level of activity was low.

The presence of an Ala at position 55 in SPP1 could likely affect the optimum orientation of

core residues for catalysis and, as a consequence, SPP1 would be unable to hydrolyse Suc6P.

However, the fact that the recovery of SPP1 activity is only partial suggests that modifications

in other positions may contribute to the lack of activity of this isoform. The presence of mem-

bers with unknown function (sometimes proposed to be pseudo-genes) in gene families

Fig 3. Effect of sucrose on Arabidopsis SPP activity. SPP activities were determined with 1.25 mM Suc6P

using enzyme samples preincubated for 15 min at 37˚C in the presence of increasing concentrations of

sucrose. 100% activity corresponds to 37.43±0.65, 0.13±0.04 and 0.89±0.01 μmol min-1 mg-1 prot for SPP2

(open circle), SPP3a (open triangle) and SPP3b (open square), respectively. Data were obtained from three

independent experiments and are shown as means ± S.D. The calculated Ki is indicated above each activity

curve.

doi:10.1371/journal.pone.0166308.g003
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involved in carbon metabolism has been reported before [53, 54]. In some cases additional

functions different from their original catalytic activity, for example as transcriptional regula-

tors, have been suggested [55]. In the case of sorghum SPPs, it has been proposed that, at least,

one isoform might be involved in seed germination [33]. Thus, we can not exclude that SPP1

could have a different unknown role or that the lack of activity could be due to an strict depen-

dence on its interaction with SPS, as it has been shown that SPPs interact with SPSs [32]. It is

worth mentioning that sequence comparison of SPP coding genes from Brasicaceae shows that

the presence of the non-conserved Ala at position 55 or equivalent is relatively common (data

Fig 4. Comparison of amino acid sequences of Arabidopsis SPP isoforms and SPPs from diverse

organisms. Multiple-sequence alignment of the deduced amino acid sequences of the Arabidopsis SPP

isoforms with SPPs from different species is shown. Sequences were aligned with the CLUSTAL Omega

program [61] using a BLOSUM matrix. Identical residues and residues widely conserved are highlighted in

black and light grey, respectively. Conserved residues in motifs I, II, and III of the HAD-type phosphatases are

shown underlined. An arrow points to the non-conservative substitution of the widely conserved Ser in motif II

by Alanine in the sequence of the Arabidopsis SPP1. P, higher plants; M, mosses; A, green algae; C,

cyanobacteria. Accession numbers are indicated in S1 Table, except for OsSPP1 (Q94E75); OsSPP2

(Q6YXW6); OsSPP3 (B9FME4); OsSPP4, (B9F2N9) and KleSPP, (G1UJV3).

doi:10.1371/journal.pone.0166308.g004

Table 4. Reconstitution of SPP1 activity by site-directed mutagenesis.

Isoform Residue mutated Specific activitya

(μmol min-1 mg-1 prot)

SPP1 none Not detected

SPP1 A55S 0.02 ± 0.001

SPP2 none 40.04 ± 7.31

SPP2 S54A Not detected

a The limit of detection was approximately 0.4 nmol min-1 mg-1 prot.

doi:10.1371/journal.pone.0166308.t004
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not shown). So, in Capsella rubella, Arabidopsis lyrata and Arabidopsis thaliana one out of four

genes show the non-conserved Ala, while in Brassica napus and Brassica rapa, this amino acid

substitution is present in two out of 16 and one out of 8 SPPs, respectively. Considering this,

the fact that SPP1 is the most highly expressed SPP isoform in roots and that it is highly

expressed in inflorescences (see Fig 5), we cannot rule out the possibility that SPP1, and other

SPPs showing an Ala at position 55 or equivalent, could have an alternative function. Further

studies are required to reveal the role, if any, of SPP1.

Expression pattern of Arabidopsis thaliana SPPs

We have determined the steady-state mRNA levels of the four Arabidopsis SPP genes by

Q-PCR. Specific primers for the SPPs genes and for the housekeeping gene, Ubiquitin-10 [56],

were designed (Materials and Methods) and their efficiency and specificity checked. The frag-

ments amplified by the primers were cloned and used as external calibration standards [57].

SPPmRNA levels were analysed in leaves, stems, inflorescences, fruits and roots of mature

plants (Fig 5). All four SPP genes were expressed in the different tissues studied, with SPP2
showing the highest level of expression among the aerial parts of the plant, followed by SPP3b.

Expression of SPP1 and SPP3a was about 2 to 3 orders of magnitude lower than SPP2 levels.

SPP1 showed intermediate levels of expression in aerial tissues, while it was the main isoform

expressed in roots.

SPP2, which encodes the subunit with the highest catalytic activity, is also the most

expressed active isoform in all tissues, suggesting that it accounts for most of the SPP activity

in Arabidopsis plants, while SPP3a expression levels are lower in all tissues assayed (Fig 5).

This fact suggests that dephosphorylation of Suc6P by SPP2 and SPP3a is not probably regu-

lated by sucrose in Arabidopsis (see Fig 3). On the other hand, SPP3b is expressed at relatively

high levels in most tissues, so it would be possible that sucrose could regulate SPP3b activity.

However, the specific activity determined for SPP3b is about 20 times lower than that deter-

mined for SPP2, implying that sucrose concentration may not significantly control the overall

SPP activity in the plant.

Fig 5. Expression profile of the Arabidopsis SPPs encoding genes. mRNA levels of all the Arabidopsis

SPP-encoding genes were determined by Q-PCR as described under Materials and Methods. In the figure,

quantities are represented in a logarithmic plot in order to compare the data among the different genes. The

values represent the average of three technical repetitions of samples obtained from three independent

experiments. The error bars in the plot represent the S.D.

doi:10.1371/journal.pone.0166308.g005
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Implication of plant S6PPc domain in SPP dimerization

A search of orthologous SPP genes in genomes from several photosynthetic organisms was car-

ried out. In the case of cyanobacteria, the SPP gene from Synechocystis sp. PCC 6803 was used

as query to search the genomes from members of the five cyanobacteria classes defined in

Rippka’s classification [58]. According to the results, a total of 49 ORFS (18 Chroococcales, 17

Nostocales, 9 Oscillatoriales, 3 Pleurocapsales, 1 Gloeobacteria, and 1 Stigonematales) showed

significant homology to Synechocystis SPP. Only three of them have previously been reported

as functional SPPs [13, 59, 60], the rest remains as predicted proteins. The genomes of algae,

mosses and higher plants were also included in this study. A BLAST comparison identified

173 eukaryotic ORFS with significant hits (5 green algae, 5 bryophyta and 163 tracheophyta).

Fig 6 shows a phylogenetic tree of SPPs from cyanobacteria, algae, mosses and higher plants

(see S1 Table). SPPs from cyanobacteria and algae have been shown to be monomeric, in con-

trast with the dimeric nature of higher plant SPPs. As determined from their deduced amino

acid sequences, cyanobacterial and algal SPPs lack an extensive C-terminal domain (S6PPc)

shared by plant SPPs (Fig 6). Because of its absence in monomeric SPPs, it has been suggested

that this extra C-terminal domain is a domain responsible for SPP dimerization. To evaluate

Fig 6. Phylogenetic tree of SPPs in photosynthetic organisms. Unrooted neighbour-joining phylogenetic

tree of amino acid sequences of SPPs from diverse organisms is shown. Predicted SPP sequences were

obtained from public databases (GenBank, JGI genome databases and InterPro EMB-EBI). Phylogenetic tree

was constructed with Seaview software excluding all gaps in the multiple alignment. Values above lines show

bootstrap percentages (based on 1,000 replicates). Scale bar indicates number of changes per unit length.

SPPs were separated into four main groups: Cyanobacteria, algae, mosses, and higher plants. The domain

structure of the putative SPP of each group is displayed as predicted by Pfam database.

doi:10.1371/journal.pone.0166308.g006
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this hypothesis, the S6PPc domain from Arabidopsis SPP2 (19.9 kDa) was fused to the C-termi-

nus of the monomeric SPP from Synechocystis (28.4 kDa) (see Materials and Methods). The

chimeric protein (47.9 kDa) was proved to be dimeric by Western blot analysis of gel filtration

chromatography fractions (Fig 7) and showed SPP activity. Fig 8 show BiFC assays indicating

that SPP2 and the chimeric Synechocystis SPP fused to the S6PPc domain are able to form

dimers in vivo, thus confirming the role of S6PPc domain in dimerization. In contrast, the

removal of the S6PPc domain from Arabidopsis SPP2 produced a monomeric enzyme of about

30 kDa (Fig 7) with an activity significantly lower than the native protein.

As indicated before, higher plant SPPs contain a HAD domain and a C-terminal domain,

while prokaryotic forms of SPP are monomeric and contain only the HAD domain [11]. The

S6PPc domain of the plant enzyme does not show any significant homology with other protein

of known function. However, the sequence of a partial cDNA clone from the bryophyte (moss)

Physcomitrella patens (GenBank accession no. AW497133) would encode a protein showing

57% identity with maize SPP, extending into this C-terminal region. This suggests that acquisi-

tion of the C-terminal extension was an early event in the evolution of SPPs in plants. Synecho-
cystis SPP shows homology only with the N-terminal region (HAD domain) of the plant

enzyme [19] and their kinetic properties are similar: both have similar optimum pH, are spe-

cific for Suc6P and are Mg2+-dependent [19]. As shown in Figs 7 and 8, the fusion of the SPP2

S6PPc domain to the Synechocystis SPP changes the monomeric enzyme into a dimeric active

form as observed by gel filtration analysis of the recombinant protein and by BiFC assays. The

fact that SPP2 is converted into a monomeric form by eliminating the S6PPc domain, and that

the monomeric Synechocystis SPP fused to the S6PPc domain is dimeric, strongly suggest that

the S6PP6c domain of higher plants SPPs is responsible for dimerization and might positively

affect SPP activity. However, we cannot exclude the possibility that removal of the S6PPc

Fig 7. Analysis of the role of S6PPc domain. Schematic representation of the constructs used for the

dimerization assays. SPP2, S6PP domain of SPP2, Synechocystis SPP and Chimeric Synechocystis SPP

(SynSPP+S6PPc) were analysed for dimerization and activity. S6PPc domain was fused to SynSPP by the

carbonyl group. Proteins were purified as described in Materials and Methods and subsequently applied onto

a gel filtration column. Eluted fractions were immunoblotted using anti-His5 antibodies. The activity of each

protein or chimera was determined as described in Materials and Methods. Full size Western blots are shown

in S1 Fig.

doi:10.1371/journal.pone.0166308.g007

Arabidopsis thaliana Sucrose Phosphate Phosphatases

PLOS ONE | DOI:10.1371/journal.pone.0166308 November 17, 2016 14 / 19



domain could originate a decrease in the activity of SPP2 due to an alteration of the enzyme

structure/properties.

Conclusions

We have characterized the kinetic, regulatory properties and the expression pattern of the SPP

family from Arabidopsis thaliana. We show that SPP1 is a non-active enzyme, while SPP2 is

the most active isoform and show the highest level of expression in aerial parts of the plant.

We propose that the lack of SPP1 activity is at least in part related to an amino acid substitu-

tion near the active site, although we cannot exclude that SPP1 has another function or need to

interact with SPS to be active. Finally, we demonstrate that the S6PPc domain, specific to

higher plants SPPs, is responsible for SPP dimerization.

Fig 8. In vivo analysis of SPP dimerization by BiFC. Confocal images of Nicotiana leaf cells showing SPP2

and SynSPP-S6PPc dimerization by BiFC assays. (A) YFN-AKIN10/YFC-AKIN10 (positive control); (B)

YFN-SPP2/YFC-SPP2; (C) YFN-AKIN10/YFC-SPP2 (negative control); (D) YFN-SynSPP-S6PPc/

YFC-SynSPP-S6PPc; and (E) YFN-AKIN10/YFC-SynSPP-S6PPc (negative control). Samples were excited at

514 nm and all images were taken in the same conditions. The white bar in the merge image represents 40 μm.

doi:10.1371/journal.pone.0166308.g008
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Supporting Information

S1 Fig. Analysis by Western blotting of the fractions eluted from gel filtration of the His-

tagged monodomain and bidomain SPP proteins. Fractions were resolved by SDS-PAGE

(10 w/v for Arabidopsis SPP2 and Synechocystis SPP fused to S6PPc domain of Arabidopsis
SPP2 and 12% w/v for S6PP domain of Arabidopsis SPP2 and for Synechocystis SPP). Fractions

were transferred onto a nitrocellulose membrane and probed with a specific anti-His-tag anti-

body (Qiagen, Cat No. 34660). Number-average degree of polymerization is given on top of

each blot.

(TIFF)

S1 Table. Amino acid sequences of the different SPPs displayed in phylogenetic tree of Fig

6.

(PDF)
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