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Genetic evidence for an essential role of
neuronally expressed IL-6 signal transducer
gp130 in the induction and maintenance of
experimentally induced mechanical
hypersensitivity in vivo and in vitro
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Abstract

Tenderness and mechanical allodynia are key symptoms of malignant tumor, inflammation and neuropathy. The
proinflammatory cytokine interleukin-6 (IL-6) is causally involved in all three pathologies. IL-6 not only regulates
innate immunity and inflammation but also causes nociceptor sensitization and hyperalgesia. In general and in
most cell types including immune cells and sensory neurons, IL-6 binds soluble μ receptor subunits which
heteromerizes with membrane bound IL-6 signal transducer gp130. In the present study, we used a conditional
knock-out strategy to investigate the importance of signal transducer gp130 expressed in C nociceptors for the
generation and maintenance of mechanical hypersensitivity. Nociceptors were sensitized to mechanical stimuli by
experimental tumor and this nociceptor sensitization was preserved at later stages of the pathology in control
mice. However, in mice with a conditional deletion of gp130 in Nav1.8 expressing nociceptors mechanical
hypersensitivity by experimental tumor, nerve injury or inflammation recovery was not preserved in the
maintenance phase and nociceptors exhibited normal mechanical thresholds comparable to untreated mice.
Together, the results argue for IL-6 signal transducer gp130 as an essential prerequisite in nociceptors for long-term
mechanical hypersensitivity associated with cancer, inflammation and nerve injury.
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Background
Tenderness, hypersensitivity to mechanical stimulation
and pain are classical symptoms of inflammation and
reduce the quality of life in particular in patients suffer-
ing from arthritis but also malignant tumor and neuro-
pathy. The classical proinflammatory cytokine
interleukin-6 (IL-6) is produced and excreted by
immune cells including macrophages, glia cells and even
neurons (reviewed in [1]. IL-6 plays a major role in the
pathogenesis of rheumatoid arthritis (RA). Elevated
levels of IL-6 can be detected in serum and synovial
fluid of RA patients and correlate with disease activity
[2,3]. Some types of tumors produce IL-6 [4], for

example, elevation of serum IL-6 levels is found in up
to 60% of lung cancer patients in advanced stages [5].
Following nerve injury elevated IL-6 levels correlate well
with development of thermal hyperalgesia and mechani-
cal hypersensitivity (allodynia) [6-8]. Due to its impor-
tance in controlling innate immunity and inflammation,
IL-6 is generally accepted to contribute to pain and
hypersensitivity associated with inflammation, neuropa-
thy or cancer. IL-6 induces heat hypersensitivity both in
vitro and in vivo, which is mediated by regulation of
TRPV1 [9-12]. Mice carrying a null mutation of IL-6
develop less thermal hyperalgesia after experimental
inflammation or nerve lesion [7,13,14], and IL-6 neutra-
lizing antisera inhibit hyperalgesia [15].
Whereas IL-6 signal transducer gp130 is ubiquitously

expressed IL-6 requires presence of a ligand binding
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soluble receptor (sIL-6R) subunit to induce its cellular
effects. Practically all sensory neurons in the dorsal
root ganglion express gp130 in the cell membrane
[12,16]. IL-6/sIL-6R via gp130 induces thermal hyper-
sensitivity both in vitro and in vivo, which is mediated
by activation of PKC-δ and subsequent regulation of
TRPV1 [9-12]. Conditional deletion of gp130 in Nav1.8
expressing cells reveals a key role for gp130 expressed
in nociceptors for cancer induced thermal hypersensi-
tivity [10]. More importantly, IL-6 induces mechanical
hypersensitivity and triggers fast nociceptor sensitiza-
tion to mechanical stimuli; co-administration of neu-
tralizing soluble gp130 (sgp130) protein prevents IL-6
induced sensitization of C mechanonociceptors [17,18].
Since gp130 is ubiquitously expressed (for review see
[19]) it cannot be decided whether the effect of IL-6 is
produced by direct action of IL-6 at the nerve terminal
itself or by indirect action of IL-6 on e.g. immune cells
and secondary release of other neuroimmune signals
[17].
Therefore, we used a conditional knock-out strategy to

investigate the importance of signal transducer gp130
expressed in C nociceptors for the generation and main-
tenance of mechanical hypersensitivity in three mouse
models of pathological and persistent pain. We analyzed
von Frey mechanical sensitivity in vivo and performed
single fiber recordings in vitro. Our data provide signifi-
cant evidence for long lasting mechanical hypersensitiv-
ity in vivo and nociceptor sensitization in vitro in
control mice following experimental cancer, inflamma-
tion or neuropathy. Mice with a null mutation of gp130
in Nav1.8 expressing nociceptive primary afferents
(SNS-gp130-/-) initially showed signs of nociceptor sen-
sitization and hypersensitivity to mechanical stimuli
which, however, were not as prominent as in the control
mice. Moreover, mechanical hypersensitivity in SNS-
gp130-/- mice recovered in the maintenance phase in all
three models of pathological pain. This significant bene-
fit of gp130 deletion in Nav1.8 expressing nociceptors
suggests that gp130 signal transducer is a direct and
important regulator of mechanical hypersensitivity in
particular in the maintenance phase of chronic pain
models.

Results
Role of gp130 expressed in nociceptive primary afferents
for tumor-induced mechanical hypersensitivity
In gp130fl/fl and SNS-gp130-/- mice, experimental
tumors as assessed from the tumor size at 10 days after
tumor cell inoculation were similar in both groups (data
not shown). Tumor growth was accompanied by
increasing mechanical hypersensitivity and a decrease of
mechanical withdrawal thresholds to 68.4 ± 10.9% of
control values in gp130fl/fl mice (n = 17). On the other

hand, at the first day after inoculation mechanical sensi-
tivity was not significantly changed in SNS-gp130-/-

mice (SNS-gp130-/-, n = 11, 94.2 ± 15.9% in comparison
to gp130fl/fl, n = 17, 68.4 ± 10.9%, p < 0.05; two way
RM ANOVA, Tukey post-test; genotype: F(1, 166) =
15.376; p < 0.001, time points: F(6, 166) = 7.739; p <
0.001, genotype × time points: F(6, 166) = 3.372; p <
0.01; Figure 1A). Mechanical thresholds dropped by 30%
within the first three days in SNS-gp130-/- mice but
mechanical hypersensitivity significantly recovered from
day 6 after tumor cell inoculation (SNS-gp130-/-, n = 11,
79.9 ± 10.4% in comparison to gp130fl/fl, n = 17, 35.4 ±
4.0%, p < 0.001; ANOVA). Differences between the two
groups became even more evident at later time points.
As a possible mechanism two general possibilities are

plausible. It is generally accepted that increased effi-
ciency of spinal synaptic transmission is a major
mechanism of mechanical hyperalgesia and allodynia.
Alternatively, sensitization of primary nociceptive affer-
ents could occur. To determine whether peripheral
nociceptor sensitivity to mechanical stimuli was affected
we performed standard teased fiber recordings from
nociceptors at 7 to 10 days post inoculation, in vitro.
Nociceptors with receptive fields within the tumor
region had significantly lower mechanical von Frey
thresholds than fibers innervating healthy skin in
gp130fl/fl mice (untreated: median: 32 mN, 17.65 mN
and 83.5 mN as upper and lower quartile, n = 66 vs.
tumor: median 16 mN, 11.4 mN and 22.6 mN as lower
and upper quartile, n = 28). In healthy skin, 41% of
mechanosensitive fibers responded to mechanical stimuli
equal to 22.6 mN or lower whereas 59% were sensitive
to 32 mN or higher (n = 66). In tumor associated skin,
a significantly larger percentage of fibers (78%)
responded to von Frey mechanical stimulation with less
than 22.6 mN (n = 28, p < 0.01; c2-test, Figure 1B). In
contrast, mechanical sensitivity was similar of nocicep-
tors projecting into healthy skin (n = 35) or tumor skin
in SNS-gp130-/- mice (n = 20; n.s.; c2-test, Figure 1C,
E). These results suggest that the signal transducer
gp130 expressed is causally involved in tumor-associated
mechanical hypersensitivity of nociceptors.

Reduced mechanical hypersensitivity of SNS-gp130-/- mice
in neuropathic and inflammatory pain models
Although cancer pain appears to be unique and dis-
tinct from other chronic pain states [20] it seems to
share at least some characteristics associated with
inflammation [21] and also neuropathy [22]. Therefore,
we aimed to address whether gp130 plays a role in reg-
ulating mechanical hypersensitivity in other persistent
pain models. In the CCI model of neuropathic pain,
both, gp130fl/fl and SNS-gp130-/- mice consistently
developed a significant decrease of mechanical
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thresholds after nerve lesion. While control mice
remained hypersensitive throughout the entire observa-
tion period, SNS-gp130-/- mice partially recovered
from the hypersensitive stated (day 28: percent

decrease related to base line threshold gp130fl/fl 23.9 ±
1.9%, n = 13, vs. SNS-gp130-/- 67.2 ± 10.8%, n = 14; p
< 0.05, p < 0.001; two way RM ANOVA, Tukey post-
test; genotype: F(1, 181) = 4.820; p < 0.05, time points:
F(6, 181) = 28.333; p = < 0.001, genotype × time
points: F(6, 181) = 2.257; p < 0.05; Figure 2). This sug-
gests that gp130 is also involved in the maintenance of
neuropathic mechanical hypersensitivity.
Likewise, mechanical hypersensitivity is generally

observed after subcutaneous injection of CFA. In
gp130fl/fl mice, subcutaneous injection (1 mg/ml) into
the plantar site of the hind-paw resulted in paw swelling
and a drop of mechanical von Frey thresholds to 31.3 ±
7.1% after 6 hours. The CFA-induced mechanical hyper-
sensitivity was significantly attenuated in SNS-gp130-/-

mice (70.3 ± 6.8%, n = 8, p < 0.001; two way RM
ANOVA, Tukey post-test; genotype: F(1, 104) = 21.439;
p < 0.001, time points: F(6, 104) = 19.368; p < 0.001,
genotype × time points: F(6, 104) = 5.165; p < 0.001;
Figure 3A). Furthermore, control animals maintained
the dramatic reduction of mechanical thresholds at 48
hours while SNS-gp130-/- mice were largely resistant to
mechanical hypersensitivity also in the maintenance
phase of CFA induced inflammation (SNS-gp130-/- 88.8
± 7.1% vs. gp130fl/fl 37.8 ± 8.7%, n = 8, p < 0.001;
ANOVA). Six days after injection mechanical thresholds
of SNS-gp130-/- mice returned almost to baseline values
whereas control mice were still mechanically hypersensi-
tive (SNS-gp130-/- 94.5 ± 5.2% vs. gp130fl/fl 59.3 ± 9.7%,
n = 8, p < 0.001; ANOVA). This difference could not be
simply explained by a major reduction of inflammation,
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Figure 1 Neuronal signal transducer gp130 plays a role in
tumor-induced mechanical hyperalgesia. (A) Mechanical
threshold after tumor induction in the hind-paw of gp130fl/fl (open
triangle n = 17) and SNS-gp130-/- (black square, n = 11) mice. After
inoculation with tumor cells mechanical thresholds dropped by 30%
in both mouse strains, but in SNS-gp130-/- mice the degree of
hypersensitivity was significantly reduced in comparison to gp130fl/fl

mice at day 1, 6, 8, and 10 (* p < 0.05, ** p < 0.01, *** p < 0.001;
ANOVA). (B, C) Mechanical von Frey thresholds of fibers recorded in
in vitro skin-nerve preparation from gp130fl/fl and SNS-gp130-/- mice
at 7 to 10 days post inoculation. Nociceptors from gp130fl/fl mice
projecting into tumor area showed lower thresholds (≤ 22.6 mN, n
= 28) than fibers innervating healthy skin (n = 66, ** p < 0.01; c2-
test), whereas no difference was found between healthy and tumor
skin in SNS-gp130-/- animals.
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Figure 2 Mechanical hyperalgesia in neuropathic pain model
required neuronal gp130. After chronic constriction injury (CCI),
SNS-gp130-/- mice (black square, n = 14) showed significant
recovery in comparison to gp130fl/fl mice (open triangle, n = 13,
* p < 0.05; *** p < 0.001; ANOVA and post-hoc Tukey test).
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since at least the degree of swelling was similar in both
mouse strains at 48 and 144 hours (Figure 3B, C).
Taken together, the data from the behavioral analysis

of the cancer pain and the CFA inflammatory pain

models in combination with in vitro recordings from
unmyelinated nociceptive afferents, suggest that signal
transducer gp130 expressed in peripheral nociceptors is
critical for mechanical hypersensitivity and nociceptor
sensitization during both induction and maintenance
phases. Cancer pain shares certain aspects of inflamma-
tory as well as neuropathic pain. A recovery from
mechanical hypersensitivity was also found in the CCI
model for neuropathic pain. This argues for a more gen-
eral role of gp130 expressed in nociceptors not only for
the generation but also for the maintenance of mechani-
cal hypersensitivity independent of the underlying
disease.

Discussion
In the present study we have shown for the first time
that the IL-6 signal transducer gp130 in Nav1.8 expres-
sing primary afferents has little impact on the induction
of mechanical hypersensitivity but is critically involved
in the maintenance of nociceptor sensitization to
mechanical stimuli in a mouse model of cancer pain.
Mice lacking gp130 in nociceptors showed some signs
of mechanical hypersensitivity during the first days after
induction of experimental malignant soft tissue cancer
that were comparable to controls. The mice significantly
recovered from hypersensitivity in the later stages of the
observation period. In contrast, mechanical hypersensi-
tivity progressively became more severe in gp130
expressing control animals. The delayed recovery of
mechanical hypersensitivity suggests a critical role of
gp130 dependent signaling not only for the induction
but more prominently for the maintenance of long-term
mechanical hypersensitivity in cutaneous nociceptors.
Cancer pain is considered exceptional and at least par-
tially distinct from neuropathic and inflammatory pain.
However, our data show that gp130 expressed in noci-
ceptors is also essential for the development of mechani-
cal hypersensitivity following inflammation and/or nerve
injury. Together, the data suggest that IL-6 signal trans-
ducer gp130 is an essential prerequisite for long-term
mechanical hypersensitivity associated with cancer,
inflammation and nerve injury.
In humans all three mentioned conditions are charac-

terized by pronounced mechanical hyperalgesia and/or
allodynia and in mouse models corresponding hypersen-
sitivity to noxious and/or innocuous mechanical stimuli
is regularly reported. Although the pathologies are com-
plex and specific for the respective disease, they share
certain aspects of inflammatory reactions involving com-
ponents of innate immunity including sequential release
of cytokines [23]. In particular, cytokines of the IL-6
family are important regulators of the immune response.
There is increasing evidence that IL-6 like cytokines
may be causally involved in the etiology of neuropathic
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Figure 3 Lack of signal transducer gp130 reduced inflammation-
induced mechanical hyperalgesia. (A) Unilateral hind-paw injection
of CFA induced a drop of mechanical threshold after 6 h in both SNS-
gp130-/- mice (black square, n = 8) and gp130fl/fl mice (open triangle, n
= 8). SNS-gp130-/- mice showed attenuated mechanical
hypersensitivity at all the time points tested after injection compared
to gp130fl/fl mice (** p < 0.01, *** p < 0.001; ANOVA). (B, C) Similar
degree of paw swelling in both mouse strains at 48 and 144 h after
CFA injection (* p < 0.05, ** p < 0.01; Mann-Whitney U-test).
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pain and mechanical allodynia following malignant
tumor, nerve injury or inflammation [24]. The IL-6 like
cytokine family includes IL-11, IL-27, leukaemia inhibi-
tory factor (LIF), ciliary neurotrophic factor (CNTF),
oncostatin M (OSM), cardiotrophin (CT-1), neuropoie-
tin, cardiotrophin-like cytokine (CLC) and B cell stimu-
lating factor (BSF-3). The question arises which of these
members is most critical for the regulation of nociceptor
sensitivity. Although not considered a classical proin-
flammatory cytokine, LIF appears to be an interesting
candidate since LIF mRNA is up-regulated in inflamma-
tion [25]. LIF receptor is expressed in DRG neurons and
up-regulated by nerve injury [16]. However, the role of
LIF in nociception is still controversially discussed.
Although LIF differentially regulates capsaicin and heat
sensitivity in cultured sensory neurons [26], LIF injec-
tion into the mouse paw induces local mechanical, but
not thermal hypersensitivity [10,27]. In the CFA inflam-
mation model LIF has anti-inflammatory and analgesic
effects [28]. In addition, OSM has certain roles in
inflammation [29]. OSM receptors are expressed in
DRG neurons, are associated with nociceptor sensitiza-
tion in inflammation and form heterodimers with gp130
[30-32].
Although several members of the IL-6 family have

been associated with painful conditions, research in the
last years has mainly focused on IL-6. Increased IL-6
serum levels have been detected in patients with neuro-
pathy, malignant tumors, musculoskeletal disorders,
burn injury or autoimmune and chronic inflammatory
conditions like RA [33-38]. IL-6 is up-regulated follow-
ing experimental peripheral nerve injury and exhibits a
growth promoting effect on primary sensory neurons
[39-42]. Intraplantar, intracerebroventricular or intrathe-
cal injection of IL-6 induces thermal and mechanical
hypersensitivity in rodents [6,10,17,18,43,44]. In addi-
tion, recordings from nociceptors in vivo and in vitro
revealed a role for IL-6 in sensitizing nociceptors to
thermal and mechanical stimulation [11,12,17]. IL-6-/-
mice show a phenotype with reduced thermal hypersen-
sitivity after experimental inflammation or nerve con-
striction [7,13,14]. Antisera neutralizing endogenous IL-
6 inhibit inflammatory hyperalgesia [15] and the orally
available, small molecule IL-6 receptor antagonist TB-2-
081 reverses pain in a pancreatitis rodent model [45].
Moreover, neutralizing IL-6 strategy has evolved as
effective pain therapy in humans [46].
Most cytokines of the IL-6 family bind to heteromeric

complexes composed of ubiquitously expressed gp130
and distinct μ receptor subunits with signal transduction
domains (e.g. LIF-R or OSM-R). In contrast, IL-6 signal-
ing entirely depends on the availability of gp130 homo-
mers which are activated by IL-6 bound to the ligand
binding IL-6 receptor μ-subunit (IL-6-R) which is

present in few cell types only [47,48]. In most systems
including sympathetic neurons, IL-6 effects depend on
the presence of the soluble IL-6 receptor (sIL-6R) [49]
which after ligand binding heteromerizes with mem-
brane bound gp130 [47,50]. Furthermore, IL-6/sIL-6R
complex or Hyper-IL-6 (HIL-6), a synthetic fusion pro-
tein mimicking the IL-6/sIL-6R complex [51,52],
increase nociceptor responsiveness and induce thermal
hypersensitivity [9,11,12]. A dual regulation of heat sen-
sitivity by IL-6 and its soluble receptor sIL-6R has been
reported [11]. The sensitization involves activation of
Janus tyrosine kinase (JAK), adapter proteins Gab1 and
Gab2 and ultimately PKC-δ which regulates the heat
transducer ion channel TRPV1 [10,12]. Despite a recent
report that IL-6 but not the signal transducer gp130 is
up-regulated in neuropathic rats [53] gp130 seems to
play a crucial role in pathological pain since antagoniz-
ing sgp130 prevents acute nociceptor sensitization in
experimental arthritis [17]. This acute effect of IL-6 on
mechanosensitivity in this study rather seems to be par-
tially indirect. We have previously reported that gp130
expressed in nociceptors is required for IL-6 induced
regulation of TRPV1 and thermal hypersensitivity [10].
Here we show that mice lacking gp130 in nociceptors
(SNS-gp130-/-) develop but recover from mechanical
hypersensitivity in mouse models of cancer, inflamma-
tory and neuropathic pain. Our data suggest that gp130
expressed in nociceptors is a critical regulator of the
maintenance of mechanical hypersensitivity in nocicep-
tors in particular in the CCI mouse model for neuro-
pathic pain.
At least three possible signaling pathways may be acti-

vated following gp130 activation: the classical signal
transducer and activator of transcription 3 (STAT3)
pathway is activated in primary afferent neurons by per-
ipheral inflammation possibly through OSM receptor
[32]. Although STAT3 signaling is beneficial to axonal
growth through activating transcription of unidentified
genes in DRG neurons [54], STAT3 is differentially acti-
vated by IL-6 cytokines in DRG sensory neurons by
CNTF and LIF but not IL-6 [55]. For thermal hypersen-
sitivity IL-6 signals via activation of the adapter proteins
Gab1/2, PI3K, PKC-δ and regulation of TRPV1 [10]. In
contrast, the sequelae of mechanical hypersensitivity and
even mechanical nociceptive transduction remain largely
enigmatic to date. Recently, the importance of transla-
tion for the regulation of de novo protein synthesis has
been discovered for IL-6 induced mechanical nocicep-
tive plasticity which is blocked by inhibitors of general
and cap-dependent protein synthesis [18]. Although
Mnk1 and ERK have been reported as upstream regula-
tors of the translation factor eIF4F [18], the nature of
possible downstream target proteins accounting for IL-6
mechanical hypersensitivity remain to be elucidated. In
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Purkinje neurons, chronic IL-6 exposure alters electro-
physiological properties and calcium signaling [56]. Such
general increases in excitability may account for
mechanical nociceptive plasticity. Nonetheless, IL-6 has
not been found to enhance excitability in unmyelinated
sensory axons in normal and injured peripheral nerve
[57]. Therefore more likely, ion channels potentially
involved in mechanotransduction may be regulated by
gp130 dependent translation or transcription [58,59].
Although a direct link of IL-6 and such channels is still
absent, the up-regulation of IL-6 and the mechanosensi-
tive ion channel TRPA1 in mustard oil colitis [60] may
be indicative for the regulation of TRP and other
mechanosensitive ion channels by IL-6/gp130 signaling.
Further studies will be required to elucidate the final
target of gp130 in mechanonociception.

Conclusions
In the present study, we reveal that gp130 expressed in
nociceptors is a key regulator of mechanical hypersensi-
tivity in the induction and even more in the mainte-
nance phase of three major pathologies associated with
severe and long-lasting hypersensitivity and pain. Our
results strongly support a critical role for gp130 in noci-
ceptive primary afferents as a chronification factor. On
the basis of our results, the launch of inhibitors for IL-6
or gp130 as a novel class of anti-inflammatory drugs
should not only give rise to great hopes for the treat-
ment of inflammation in rheumatoid arthritis [61-63]
but also for alleviation of sustained pain as the symptom
that most severely reduces the patients’ quality of life.

Methods
Animals
Male C57Bl6 mice (> 8 weeks old) were used in all
experiments. Mice were housed on a 12 h light/dark
cycle with free access to chow and water and all animal
use procedures were in accordance with ethical guide-
lines and animal welfare standards according to Austrian
law. Mice were assigned to the following experimental
groups: group I did not receive any treatment and was
used as control; group II was inoculated with tumor
cells; group III was injected intraplantarly with CFA;
group IV underwent surgical procedure of chronic con-
striction injury (CCI). All groups contained gp130fl/fl

control and SNS-gp130-/- mice, generated by gene tar-
geting as described previously [10].

Behavioral tests
Standard testing procedures were used to quantify signs
of pain-like behavior reflected in changes in mechanical
sensitivity following inflammation, nerve lesion and
tumor development. The area tested was the plantar
side of the hind-paw where the tumor cells or CFA

were inoculated. Baseline measurements were taken 2
times before treatment and daily thereafter up to 10
days post inoculation. Mice were placed in a plastic
chamber with a wire mesh floor and allowed to habitu-
ate for 1 h before starting the test. Mechanical sensitiv-
ity at the site of tumor cells implantation was
determined by measuring the paw withdrawal threshold
in response to probing of the plantar surface of the
hind-paw with calibrated von Frey monofilaments with
bending forces between 2.8 and 45.3 mN. The withdra-
wal threshold was determined by increasing and
decreasing stimulus intensity on the basis of the up-
down method [64,65], where a 11.4 mN stimulus was
applied first. Behavioral test were performed in accor-
dance with ethical guidelines and Austrian law. All mea-
surements were done blindly.

Skin-nerve preparation and single fiber recordings
An in vitro skin nerve preparation [10,21,66] was used
to investigate the properties of unmyelinated afferent
nerve fibers innervating the skin in the tumor area. In
mice from group II electrophysiological recordings were
performed 7 to 10 days post inoculation when a tumor
mass had developed at the injection site covering the
saphenous nerve territory. Animals were killed by CO2

inhalation. The saphenous nerve was dissected with the
skin of the dorsal hind-paw attached and mounted in an
organ bath “inside-up” to expose the corium side. The
preparation was superfused (15 ml/min) with an oxy-
gen-saturated modified synthetic interstitial fluid solu-
tion containing (in mM) 108 NaCl, 3.48 KCl, 3.5
MgSO4, 26 NaHCO3, 1.7 NaH2PO4, 2.0 CaCl2, 9.6
sodium gluconate, 5.5 glucose, 7.6 sucrose at tempera-
ture of 31 ± 1°C and pH 7.4 ± 0.05 [67]. The saphenous
nerve was pulled into a separate chamber of the organ
bath and placed on a small mirror. With the use of
sharpened watchmakers’ forceps fine filaments were
teased from the desheathed nerve and placed on a gold
wire recording electrode. Action potentials in single sen-
sory neurons were recorded extracellularly, amplified
(5000×), filtered (low pass 1 kHz, high pass 100 Hz),
visualized on an oscilloscope and stored on a PC-type
computer with Spike/Spidi software package for offline
analysis employing a template-matching procedure
[10,12,21]. The fibers were characterized as unmyeli-
nated (C) according to their conduction velocity (< 2 m/
s, calculated from the latency of unitary action potential
to electrical stimulus at receptive field and distance of
receptive field to recording electrode) and on the basis
of the shape of the action potential. The receptive field
of the primary afferent fiber was located by mechanical
probing of the skin with a blunt glass rod. Only units
with a signal-to-noise ratio > 2 were used for further
analysis. Fibers were subject to a standard protocol of
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adequate mechanical and thermal stimuli. The mechani-
cal threshold of each unit was determined with a set of
calibrated von Frey monofilaments with uniform tip dia-
meter 1.1 mm and bending forces ranging from 1 to
362 mN. The strength of the finest filament which
evoked at least 3 action potentials was defined as activa-
tion threshold.

Tumor cell culture and implantation
Lung carcinoma cells (ATCC clone 1642, American
Type Cell Culture Collection) were cultivated on 25 cm2

flasks in Dulbecco’s modified Eagle’s medium (DMEM,
PAA, Vienna, Austria) with 4 mM L-glutamine and 10%
fetal bovine serum (FBS), were grown to confluence, fed
and passed once a week. Tumor cells were prepared for
implantation by pouring off the media and rinsing with
phosphate buffer saline (PBS). Trypsin-EDTA (0.5%, 1×,
Gibco, Austria) was added for 2 min to detach cells
from the flask. The enzymatic reaction was quenched by
addition of modified DMEM. Just prior to implantation
cells were counted, washed twice and then re-suspended
in PBS for implantation. Mice were anaesthetized with
isoflurane (Baxter, Vienna) and 7 × 105 lung carcinoma
cells in a volume of 25 μl PBS were injected subcuta-
neously in the plantar and dorsal site of the mouse
hind-paw.

CFA drug preparation and administration
Complete Freud’s Adjuvant (CFA, Sigma) was injected
intracutaneously in a total volume of 25 μl and animals
of group III were tested for mechanical sensitivity at 6,
24, 48, 72 and 144 h after injection. At 48 hours and
the terminal day of the behavioral test, the vertical foot
diameter of the injected and the non-injected paw was
determined using a caliper.

Chronic constriction injury
The CCI model was obtained by three ligatures (7-0
prolene) on the right sciatic nerve with a distance of 1
mm each [68,69]. The ligatures were tied around the
nerve proximal to the trifurcation until a short flick of
the hind-paw. Mice were anesthetized by intraperitoneal
Phenobarbital injection before the procedure.

Statistics
For statistical analysis the SigmaStat 3 software was
used. Data are presented as mean ± SEM if not other-
wise state. Two-way repeated measure ANOVA followed
by Tukey post-hoc test or Mann-Whitney U-test for
comparison between groups were used. For comparison
of relative group sizes c2-test was calculated. Differences
were considered statistically significant at p < 0.05.
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