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a b s t r a c t 

The realisation of precision cardiology requires novel techniques for the non-invasive characterisation of 

individual patients’ cardiac function to inform therapeutic and diagnostic decision-making. Both elec- 

trocardiography and imaging are used for the clinical diagnosis of cardiac disease. The integration of 

multi-modal datasets through advanced computational methods could enable the development of the 

cardiac ‘digital twin’, a comprehensive virtual tool that mechanistically reveals a patient’s heart condition 

from clinical data and simulates treatment outcomes. The adoption of cardiac digital twins requires the 

non-invasive efficient personalisation of the electrophysiological properties in cardiac models. This study 

develops new computational techniques to estimate key ventricular activation properties for individual 

subjects by exploiting the synergy between non-invasive electrocardiography, cardiac magnetic resonance 

(CMR) imaging and modelling and simulation. More precisely, we present an efficient sequential Monte 

Carlo approximate Bayesian computation-based inference method, integrated with Eikonal simulations 

and torso-biventricular models constructed based on clinical CMR imaging. The method also includes a 

novel strategy to treat combined continuous (conduction speeds) and discrete (earliest activation sites) 

parameter spaces and an efficient dynamic time warping-based ECG comparison algorithm. We demon- 

strate results from our inference method on a cohort of twenty virtual subjects with cardiac ventricular 

myocardial-mass volumes ranging from 74 cm 

3 to 171 cm 

3 and considering low versus high resolution 

for the endocardial discretisation (which determines possible locations of the earliest activation sites). 

Results show that our method can successfully infer the ventricular activation properties in sinus rhythm 

from non-invasive epicardial activation time maps and ECG recordings, achieving higher accuracy for the 

endocardial speed and sheet (transmural) speed than for the fibre or sheet-normal directed speeds. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Cardiovascular diseases are the most common non- 

ommunicable disease globally, accounting for 17.8 million deaths 

n 2017, according to the World Health Organisation ( Kaptoge et al., 

019 ). Cardiac disease increases the risk of sudden and premature 

eath through alterations in cardiac electrophysiology and tissue 

tructure, which promote lethal arrhythmias and mechanical 

ysfunction. 
∗ Corresponding author at: Department of Computer Science, University of Ox- 

ord, Wolfson Building, Parks Road, Oxford, Oxfrodshire OX1 3QD, United Kingdom. 
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Imaging and electrocardiographic datasets are commonly used 

or the diagnosis of cardiac disease. The electrocardiogram (ECG) 

s the most widely used clinical modality for cardiac disease di- 

gnosis. Its interpretation is, however, confounded by anatomi- 

al and functional variability in the human population ( Mincholé

t al., 2019 ; Nguyên et al., 2015 ). Non-invasive imaging, through 

ltrasound, computerised tomography or cardiac magnetic res- 

nance (CMR), is also used clinically to provide further infor- 

ation on cardiac anatomy, structure and mechanical function 

 Dall’Armellina et al., 2010 ; Tornvall et al., 2015 ; Dastidar et al., 

015 ; Biesbroek et al., 2018 , 2019 ; Ferreira, 2019 ; Hausvater et al.,

019 ). Novel techniques are needed to fully exploit the synergy ob- 
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ained by combining ECG and non-invasive clinical modalities such 

s CMR. 

Recent studies have shown the power of patient-specific image- 

ased modelling and simulation for therapy guidance, arrhythmic 

iomarkers interpretation and patient’s phenotypic variability in- 

erpretation ( Potse et al., 2014 ; Zettinig et al., 2014 ; Gillette et al.,

017 ; Kahlmann et al., 2017 ; Lyon et al., 2018 ; Bukhari et al., 2019 ;

iederer et al., 2019 ; Boyle et al., 2019 ; Martinez-Navarro et al., 

021 ). This technology has paved the way towards realising the 

digital twin’ vision ( Corral-Acero et al., 2020 ), referring to a com- 

rehensive virtual tool that coherently integrates a patient’s clin- 

cal data with mechanistic physiological knowledge and that can 

nform therapeutic and diagnostic decision-making through simu- 

ations. The generation of cardiac digital twin requires developing 

ovel methodologies to analyse and estimate patient-specific prop- 

rties from clinical test data, such as electrocardiography and CMR. 

This study investigates new computational techniques for 

he efficient quantification of subject-specific ventricular activa- 

ion properties using CMR-based modelling and simulation and 

on-invasive electrocardiographic data. We present an inference 

ethod combined with fast Eikonal-based simulations and CMR- 

ased torso-biventricular anatomical models to determine the ac- 

uracy in the estimation of activation properties (such as endo- 

ardial and myocardial conduction speeds and the location of the 

urkinje endocardial root nodes) from the QRS complex of the 12- 

ead ECG or activation time maps (as obtained through electro- 

ardiographic imaging). We conduct the simultaneous inference of 

ndocardial and myocardial conduction speeds and the root nodes 

i.e. earliest activation sites), as these properties determine the ac- 

ivation sequence in the ventricles ( Cardone-Noott et al., 2016 ). To 

ddress the challenges associated with inferring root node loca- 

ions and speeds simultaneously, we implement a novel inference 

ethod based on the sequential Monte Carlo approximate Bayesian 

omputation algorithm (SMC-ABC) (Appendix A.5) ( Drovandi and 

ettitt, 2011 ; Sisson et al., 2007 ). From our in-silico evaluations, we 

uantified the accuracy of recovering these activation properties 

rom synthetic epicardial activation maps and 12-lead QRS com- 

lexes in a cohort of twenty virtual subjects, namely, twenty torso- 

iventricular models from four different anatomies and five elec- 

rophysiological configurations. Our analysis will aid future works 

ddressing this previously unexplored, subject-specific calibration 

roblem in both ventricles simultaneously, considering the physio- 

ogical variability in the human population. 

. Materials and methods 

.1. Overview 

Fig. 1 presents a diagram of our inference method, including 

nput, output, and the iterative process to infer the human ven- 

ricular activation properties from electrocardiographic recordings 

sing CMR-based modelling and simulation. The input data (top- 

ight – grey shaded area) include ‘given data’ (torso-biventricular 

esh and fibre orientations) as well as the ‘target data’ (e.g. 12- 

ead ECG recordings). The iterative process (centre and bottom-left 

blue shaded area) aims to find a population of models (with dif- 

erent parameter-sets but the same equations and subject-specific 

natomical model) that yield simulations in agreement with the 

target data’ (bottom-right – grey shaded area). Each model in this 

opulation implements one set of parameter values (hereafter re- 

erred to as parameter-set), namely, a value for the locations of 

he root nodes (earliest activation sites), the endocardial layer’s 

sotropic speed, and the fibre, sheet (transmural), and sheet-normal 

irected orthogonal conduction speeds. 

The process depicted in Fig. 1 starts with the Latin hypercube 

ampling ( Iman and Conover, 1980 ) (top-left), generating a popu- 
2 
ation of 512 parameter-sets for conduction speeds and root nodes 

ith a uniform prior. These parameter-sets are combined with 

he subject’s CMR-based biventricular mesh and the Eikonal for- 

ulation to produce an initial population of 512 cardiac electro- 

hysiological models. The iterative process followed for the infer- 

nce (centre and bottom-left – blue shaded area) follows five steps 

from the top-left on the directions of arrows in Fig. 1 ): 

1 simulate the activation time maps from the new population of 

models; 

2 calculate the predicted ECGs (unless when working directly on 

activation maps); 

3 compute the discrepancies (distance) between each prediction 

and the target data (e.g. ECG); 

4 evaluate the stopping criteria; 

5 replace the parameter-sets corresponding to the top 12.5% high- 

est discrepancies. 

In Step-1, the Eikonal model (Appendix A.2) simulates an acti- 

ation time map from each parameter-set in the population using 

he subject’s torso-biventricular mesh. Next, Step-2 (not needed 

hen inferring from activation maps) computes the ECG-QRS from 

ach activation time map using the pseudo-ECG algorithm (Ap- 

endix A.4) ( Gima and Rudy, 2002 ). Then, Step-3 computes the dis- 

repancy (distance metric) between the predicted and target data 

activation maps or ECG) (Section 2.4). Step-4 checks if any of the 

ollowing stopping criteria (Section 2.6) are fulfilled: 

1 all predicted data ‘match’ the target (using a threshold); 

2 more than 50% of the parameter-sets in the population are du- 

plicates. 

If the population does not fulfil any criteria, the iterative pro- 

ess continues. The following six substeps compose Step-5 (Section 

.6) (see numbers on Fig. 1 – bottom-left): 

1 sort the parameter-sets in the population according to the dis- 

crepancy values (decreasing order); 

2 define a discrepancy cut-off to replace the parameter-sets with 

the top 12.5% highest discrepancies in the population; 

3 for each parameter-set to be replaced (within the 12.5%), ran- 

domly select one to be kept and create two new copies from 

it; 

4 ‘mutate’ only one of each pair of copies using Markov Chain 

Monte Carlo (MCMC) ( Gilks, 2005 ); 

5 simulate the Eikonal model for the mutated parameter-sets and 

compute their discrepancies; 

6 finally, replace each parameter-set in the top 12.5% by the mu- 

tated alternative (dotted line on the left), unless its discrepancy 

would also have been rejected by the cut-off, in which case, 

use the unmodified copy for the replacement (dotted line on 

the right). 

After Step-5, the iterative process restarts from Step-1 with 

imulations using the modified population of parameter-sets, and 

he inference process carries on until any stopping criterion in 

tep-4 is met. 

The output area in Fig. 1 (bottom right – grey shaded area) also 

llustrates the post-processing of the parameter-sets in the result- 

ng population. We combined all parameter values in the popula- 

ion to calculate a single solution parameter-set for each inference. 

he strategy to combine our parameter-sets (Section 2.7) takes the 

edian value for the conduction speeds and the k-means centroid 

or the root nodes throughout the population. 

.2. Virtual subjects for the ‘target data’ 

The ‘target data’ were produced synthetically in order to 

now the ground truth for the evaluation of the inference algo- 

ithm. The ground truth is not available through clinical datasets. 
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Fig. 1. Proposed SMC-ABC based inference method. Diagram of our inference pipeline, and its subprocesses, to recover the ventricular activation properties from CMR and 

electrocardiographic data. The process starts with the Latin hypercube sampling (top-left), generating a population of 512 models with different parameter values but the 

same propagation model equations and a subject-specific CMR-based torso-biventricular mesh. From there, the iterative process (centre and bottom-left – blue shaded 

area) commences in the direction of the arrows until any of the two stopping criteria (centre-right rhomboidal boxes) are fulfilled. From top-left to the right, the diagram 

highlights the following subprocesses: simulation of activation maps using the parameter-sets in the Eikonal model, generation of the 12-lead ECGs through the pseudo-ECG 

algorithm, computation of the discrepancy between each prediction and the target 12-lead ECG-QRS, stopping criteria, and, if not terminating, modification of the current 

population of parameter-sets (bottom-left blue box), which will replace each parameter-set with the ‘high’ (top 12.5%) discrepancy by either a copy of a parameter-set with 

low discrepancy (dotted line – right) or a mutated version of this copy (dotted line – left). The input and output data (both shaded in grey) are depicted at the top-right 

and bottom-right parts of the figure, respectively. 

Table 1 

The five conduction-speed configurations considered for this study. These speed values were selected to represent variability in 

the healthy human population (Appendix A.3), as in Mincholé et al. (2019) . 

Conduction configuration Endocardial speed Fibre speed Sheet speed Sheet-normal speed 

Normal speeds 150 cm/s 50 cm/s 32 cm/s 29 cm/s 

Slow endocardial speed 120 cm/s 50 cm/s 32 cm/s 29 cm/s 

Fast endocardial speed 179 cm/s 50 cm/s 32 cm/s 29 cm/s 

Fast endocardial and myocardial speeds 179 cm/s 88 cm/s 49 cm/s 45 cm/s 

Slow endocardial and fast myocardial speeds 120 cm/s 88 cm/s 49 cm/s 45 cm/s 
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hey included epicardial activation maps and 12-lead ECGs gener- 

ted through simulating CMR-based torso-biventricular models for 

wenty virtual subjects. These virtual subjects were obtained as 

escribed in Mincholé et al. (2019) through combinations of four 

orso-biventricular meshes constructed from the CMRs of four sub- 

ects and five conduction speed scenarios (Appendix A.3), as out- 

ined in Table 1 . 

More precisely, we considered four torso-biventricular CMR- 

ased meshes with a variable torso cavity and biventricular 

yocardial-mass volumes to explore the effects of anatomical vari- 

bility. These four meshes had the following torso cavity volumes: 

3,0 0 0 cm 

3 , 27,0 0 0 cm 

3 , 54,0 0 0 cm 

3 , and 44,0 0 0 cm 

3 for Mesh-

, Mesh-2, Mesh-3, and Mesh-4, respectively. The biventricular 

yocardial-mass volumes for these meshes were 74 cm 

3 , 76 cm 

3 , 

07 cm 

3 , and 171 cm 

3 . 
3 
.3. Simulation protocols 

While our inference method always simulated the Eikonal 

odel, we considered two source models for the ‘target data’ to 

uide the inference process and provide grounds for its evaluation. 

irstly, we considered noise-contaminated Eikonal simulations as 

target data’, similarly to Grandits et al. (2020) ; and secondly, we 

onsidered the same cohort of virtual subjects simulated through 

he bidomain model, as in Mincholé et al. (2019) . 

The Eikonal model was simulated on CMR-based anatomi- 

al biventricular meshes and solved using Dijkstra’s algorithm 

 Dijkstra, 1959 ) (Appendix A.2). We selected this algorithm due to 

ts faster computational time yet equivalent simulated activation 

equences to the fast marching method ( Wallman et al., 2012 ). All 

odels implemented rule-based fibre orientations ( Streeter et al., 
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969 ) with fibre angles transmurally changing from 60 to −60 °
rom endocardium to epicardium, respectively. The electrical con- 

uction speeds were defined as orthotropic in the myocardial tis- 

ue and isotropic in the endocardia (fast endocardial layer) to em- 

late the Purkinje network’s effect. These modelling protocols were 

ased on findings from Cardone-Noott et al. (2016) and Mincholé

t al. (2019) on generating realistic healthy human 12-lead ECG 

ecordings with torso-biventricular geometries. 

The 12-lead ECG ‘target data’ were computed from the simu- 

ated activation maps using the pseudo-ECG algorithm (Appendix 

.4) ( Gima and Rudy, 2002 ) with electrode locations informed by 

orso geometry and orientation (Appendix A.3), as in Cardone- 

oott et al. (2016) and Mincholé et al. (2019) . The pseudo-ECG 

ethod provides a fast and simple evaluation of the normalised 

CG without major loss of morphological information compared 

ith bidomain simulations (Fig. A.1 in Appendix A.4) ( Mincholé

t al., 2019 ). Finally, we contaminated all ‘target data’ (epicardial 

ctivation maps and 12-lead ECGs) with white Gaussian noise to 

each 20 dB of signal-to-noise ratio as in Almeida et al. (2004) and 

otyagaylo et al. (2014) . 

Furthermore, a second set of ‘target data’ were obtained from 

idomain (Appendix A.1) simulations without noise-contamination 

or comparison. The bidomain simulations were conducted using 

he Chaste software ( Pitt-Francis et al., 2009 ) and the modified ver- 

ion of the O’Hara-Rudy action potential model ( O’Hara et al., 2011 )

roposed by Dutta et al. (2017) (Appendix A.3). The 12-lead ECG 

target data’ were computed from these bidomain-generated acti- 

ation maps using the pseudo-ECG algorithm. 

.4. Discrepancy calculation 

Measuring differences between epicardial activation maps to 

apture differences in the source activation properties is simple 

ue to the sheared spatial representation of the epicardial acti- 

ation map data (epicardium) and the root node locations (endo- 

ardium). Consequently, we defined the discrepancy between ‘pre- 

icted’ and ‘target’ epicardial activation maps as the root mean 

quare error between the two activation maps. On the other hand, 

apturing differences in activation properties from differences be- 

ween ECG recordings is challenging. Therefore, we propose a 

ovel extension of the dynamic time warping (DTW) ( Velichko and 

agoruyko, 1970 ) algorithm as the discrepancy metric for ECG data. 

DTW is a speed-invariant dynamic-programming algorithm for 

easuring differences between sequences. Hence, DTW can com- 

are signals of different lengths, such as ECGs ( Potyagaylo et al., 

019 ; Ramírez et al., 2017 ), by stretching and shrinking them in 

he time axis. Classic DTW allows ECGs to be compared using 

on-physiological warping ( Luzianin and Krause, 2016 ). Sakoe and 

hiba (1978) proposed window-size and warping-slope constraints 

or DTW that restrict the maximum cumulative and per-step 

mount of warping along one ‘direction’ (either shrinking or 

tretching), respectively. Moreover, Itakura (1975) presented a sim- 

lar window-size constraint but shaped like a parallelogram for 

peech recognition. This parallelogram constraint implied that the 

ignals could warp less on the start, and it is usually comple- 

ented with a common-start and common-end constraints when 

oth signals represent the same phenomena, giving rise to the par- 

llelogram shape. 

We assume that in healthy ventricles, the root node locations 

re primarily responsible for the QRS’s morphology and that the 

onduction speeds mostly define the QRS’s width, as demonstrated 

y Cardone-Noot et al. (2016) . This assumption allows us to sep- 

rate our optimisation process into two distinct responsibilities: 

) recovering the root nodes from the morphology of the 12- 

ead ECG-QRS while preserving all speed values; and, once all 

arameter-sets produce acceptable morphologies, 2) iteratively nar- 
4 
ow down the population to the parameter-sets with the conduc- 

ion speeds that generate the most similar QRS width to the target 

ecording. 

We present an extension of DTW that prevents non- 

hysiological ECG transformations. Our DTW discrepancy imple- 

ents the warping-slope constraint, a modified version of the par- 

llelogram constraint, and a common-end warping constraint to 

void non-physiological ECG transformations. The warping-slope 

onstraint prevents more than two warping steps from occur- 

ing consecutively (i.e. 1 ms can warp to up to 3 ms, and vice 

ersa). The parallelogram constraint limits the amount of warp- 

ng at the signals’ start and favours ‘diagonal’ warping such that 

ne signal is transformed as the stretched or shrank version of 

he other. In other words, it rewards signals with physiologically 

imilar morphology, namely, penalising non-monotonic warping, 

specially when occurring discontinuously or displaying ‘unwarp- 

ng’ (i.e. stretching and shrinking different parts of the same signal 

ithin the same comparison). These warping penalties within the 

arallelogram are more prominent at the start of the signals and 

ecrease linearly, allowing for more flexible warping when com- 

aring the end of the QRSs since differences in the activation se- 

uence can have a cumulative impact on the QRS. The common- 

tart and common-end constraints imply that both signals repre- 

ent the same phenomena and should be entirely encoded into 

ach other. Overall, our DTW method favours signals with similar 

orphologies, even if their source conduction speeds were scaled 

o fast-track the root nodes’ identification. Therefore, we imple- 

ent an additional penalty based on the difference in QRS-width 

o identify the source model’s correct speeds, which, combined 

ith the DTW extension described, composes our DTW-based dis- 

repancy. 

.5. Parameter space exploration 

Our approach aims to infer the root node locations and the four 

onduction speeds (i.e. endocardial, fibre, sheet, and sheet-normal 

peeds) that enable reproducing a subject’s ECG recording (or epi- 

ardial activation map). We considered three sets of possible root 

ode locations: the low, high and hybrid resolution of the discreti- 

ation of the root node parameter space to expose the method’s 

bility to represent root node locations from epicardial activation 

ime map and ECG data modalities. 

In the low resolution of the root node discretisation, the possi- 

le root node locations were preselected as the centres of each en- 

ocardial section following the American Heart Association’s seg- 

entation guidelines ( Cerqueira Manuel D. et al., 2002 ), as in 

revalo et al. (2016) , while ensuring that any point in either ven- 

ricle’s endocardia had at least one root node in the same ventricle 

ot more than 2.5 cm away. This selection strategy led to 38 can- 

idate locations (18 in the left and 20 in the right endocardium) in 

he largest geometry (Mesh-4) and 27 (11 in the left and 16 in the 

ight endocardium) in the smallest one (Mesh-1). 

A high resolution of the root node discretisation was also con- 

idered by uniformly sampling more root nodes such that the dis- 

ance from each point to a root node was reduced to 1.5 cm. This 

igh resolution produced 133 candidate root nodes (64 in the left 

nd 69 in the right endocardium) for the largest anatomy and 98 

39 in the left and 59 in the right endocardium) for the smallest 

ne. 

Finally, we considered a hybrid resolution that combined the 

ow resolution for the right ventricle with the high resolution for 

he left ventricle since the latter is presumed to have a stronger 

nfluence on the QRS. We anticipate the inference from epicardial 

ctivation maps will work better from the symmetric root node 

istributions (low and high) than from asymmetric ones (hybrid) 

s the epicardial activation map equally represents both ventri- 
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Table 2 

Prediction accuracy of the inference from bidomain ‘target data’ (mean ± standard deviation of Pearson’s 

correlation coefficients). ATM – epicardial activation time maps; low and high resolution of the root node 

parameter space’s discretisation. 

Torso-biventricular anatomy ATM low ATM high 12-lead ECG low 12-lead ECG high 

Mesh-1 0.85 ± 0.05 0.94 ± 0.03 0.87 ± 0.15 0.92 ± 0.09 

Mesh-2 0.86 ± 0.04 0.94 ± 0.03 0.91 ± 0.10 0.90 ± 0.10 

Mesh-3 0.83 ± 0.03 0.95 ± 0.02 0.95 ± 0.06 0.96 ± 0.04 

Mesh-4 0.91 ± 0.02 0.96 ± 0.01 0.93 ± 0.07 0.94 ± 0.07 
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les. On the other hand, the hybrid resolution should improve the 

nference from 12-lead ECGs since it emphasises the exploration 

f the root nodes on the left ventricle, which is known to have 

ore influence on the ECG than the right ventricle given its larger 

yocardial-mass volume. 

These candidate root node locations were considered a binary 

arameter, with the inference yielding ‘in use’ or ‘not in use’ to 

btain a good match between simulated and target electrocardio- 

raphic signals. We define the range of the number of root nodes 

s [6, 10] as Cardone-Noott et al. (2016) demonstrated that seven 

oot nodes were sufficient to simulate healthy QRS complexes. We 

onsidered no region or ventricle specific rules for the placement 

f the root nodes to allow for the straightforward extension of the 

ethod to disease conditions, such as bundle branch block. 

Finally, the conduction speeds were assigned to be within 

redefined physiological ranges ( Durrer et al., 1970 ). The endo- 

ardial and myocardial speeds were bounded within the ranges 

10 0, 20 0] and [25, 90] cm/s, respectively. Furthermore, we con- 

trained the fibre-directed speed to be larger than the sheet- 

irected speed and the sheet-directed speed to be larger than the 

heet-normal speed to be consistent with the findings presented 

y Caldwell et al. (2009) . 

.6. Parameter inference with SMC-ABC method 

The combination of conduction speeds and root nodes creates 

n inference problem with continuous and discrete mixed-type 

arameter space that challenges many parameter inference algo- 

ithms. We propose an SMC-ABC-based algorithm (Appendix A.5) 

 Drovandi and Pettitt, 2011 ; Sisson et al., 2007 ) to efficiently ex- 

lore our mixed-type parameter space. 

In a nutshell, SMC-ABC defines its intermediate distributions 

SMC) as approximate posteriors with a series of decreasing cut- 

ff discrepancy values (ABC). In our context, SMC-ABC serves as a 

arameter-set-based optimisation approach that solves a sequence 

f simplified optimisation problems (each more manageable than 

he original one) where each informs the next. 

As reviewed in the description of Fig. 1 , SMC-ABC uses a 

opulation of models with different parameter-sets (similarly to 

ritton et al. (2013) ) that represent the parameter search space of 

nterest. The method then shrinks this parameter space of inter- 

st at each iteration, emphasising the ‘promising regions’. This re- 

ampling (Step-5 in Fig. 1 ) is done by replacing the parameter-sets 

ith the highest (12.5%) discrepancies with parameter-sets (muta- 

ions or copies) with currently acceptable discrepancy values (Ap- 

endix A.5 provides further details on our SMC-ABC algorithm and 

ur strategy for dealing with mixed-type parameter spaces). 

The SMC-ABC algorithm’s iterative process considers that the 

urrent population is a solution to the inference problem when 

ll discrepancies are smaller than a positive tolerance (Appendix 

.5). This tolerance threshold can be set according to what level 

f discrepancy is judged to be acceptable. Here, we hypothesise 

hat the analysis of the inferred population of parameter-sets will 

ighlight the method’s representation limit, for example, identify- 

ng differences in the position of the root nodes that are negligible 
5 
rom the algorithm’s perspective. Therefore, we define a relatively 

mall tolerance (on the scale of the distortion from applying white 

aussian noise-contamination with 20 dB signal-to-noise ratio) to 

nvestigate how accurately the method can recover the activation 

roperties from different data modalities. 

However, a too-small tolerance will lead SMC-ABC to converge 

o a single parameter-set, whereas our inference problem is known 

o have non-unique solutions. Thus, we defined a second stopping 

riterion relative to the percentage of duplicate parameter-sets to 

erminate the inference before the population collapses into a sin- 

le parameter-set. In other words, this second stopping criterion 

nforms the algorithm to terminate when the MCMC process fails 

o find new acceptable parameter-sets too many times (right dot- 

ed arrow in Fig. 1 blue box – bottom left), causing 50% of the 

arameter-sets in the population to be duplications. Fulfilling ei- 

her stopping criterion will suffice to terminate the inference pro- 

ess. 

.7. Error metrics and post-processing 

We propose a k-means based root node aggregation strategy 

o overcome the performance cap determined by the discretisa- 

ion of the root node parameter space. More precisely, we define 

he resulting root nodes locations to be the centroids of the clus- 

ers found by applying k-means clustering to the values in each 

opulation of parameter-sets. We initialised the centroids in k- 

eans as the most frequently occurring configuration for the root 

odes in the population to ensure that the starting configuration 

as spread out and accounted for a representative number of root 

odes. This aggregation strategy allows visualising the inferred root 

odes directly in the shared biventricular anatomy. We also report 

he mean plus-minus ( ±) standard deviation of the (unsigned) dis- 

ance between each target root node and the closest centroid from 

-means and the mean ± standard deviation of the absolute error 

n the number of root nodes. 

We aggregate the inferred conduction speeds as the median of 

ach speed in the population of parameter-sets. To illustrate the 

rror, we propose a speed-normalised error metric so that we can 

ointly represent errors from different virtual subjects. This error 

as defined as 

rror = 100 ∗ S ′ − S 

S 
, ( 1 ) (1) 

here S ′ is the inferred conduction speed value, and S is the 

round truth speed. 

We adopted the mean ± standard deviation of Pearson’s cor- 

elation coefficient ( Bear et al., 2018 ; Schaufelberger et al., 2019 ; 

erinagaoglu Dogrusoz et al., 2019 ) as a measure of disagreement 

etween our inference predictions and the ‘target data’ ( Table 2 ). 

.8. Hyperparameter calibration 

We calibrated the algorithms presented in this study using gen- 

ral and physiological knowledge and adjusted their values to work 

n one of the 20 virtual subjects (Mesh-4 with ‘Normal speeds’ 
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Fig. 2. Agreement between predicted and noise-contaminated Eikonal ‘target data’ from the inference process; (A, B) on the virtual subject with Mesh-4 and ‘Slow endocar- 

dial speed’ properties ( Table 1 ); (C) mean ± standard deviation of Pearson’s correlation coefficients. (A) illustrates three activation time maps (ATM) (one per row) coloured 

using isochronic activation time (AT) bands of ten ms (colour bar). Top row: target; second row: prediction from the inference using the low resolution for the root node 

discretisation (0.93 Pearson’s correlation coefficient with ‘target data’ – top row); third row: prediction from the inference with high root node resolution (0.89 Pearson’s 

correlation coefficient); fourth row: prediction from the inference with hybrid root node resolution (0.87). Each column shows a different view of the same example-row. 

(B) shows the ‘target’ (black), ‘predicted population’ (blue) and ‘aggregated solution’ (red) standardised QRSs for the inference guided by 12-lead ECG recordings. Each row 

accounts for different root node resolutions, from top-to-bottom: low (0.9 and 0.87 for the population-averaged and population-aggregated Pearson’s correlation coefficient, 

respectively), high (0.74 and 0.81), and hybrid (0.77 and 0.83) root node resolutions. Each plot includes the predictions from an evaluation of the inference (512 QRSs) to 

demonstrate the method’s robustness. The amplitude of these standardised QRS signals has no units. (C) mean ± standard deviation of Pearson’s correlation coefficients 

between the predicted and target data. The abbreviations used for this table are ATM – epicardial activation time maps; low, high and hybrid resolution of the discretisation 

of the root node parameter space. 

6 
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Fig. 3. Root nodes inferred from noise-contaminated Eikonal activation maps on 

Mesh-4 with low (A), high (B), and hybrid (C) resolution of the root node space 

discretisation and root node inference metrics (Section 2.7) for all meshes (D). 

The stars indicate the ground truth root node locations. The endocardial surface is 

coloured as a heatmap showing how often each location was inferred as a percent- 

age. (D) absolute mean ± standard deviation of the distance from the ground truth 

and error in the number of root nodes inferred from all meshes. LV – left ventricle; 

RV – right ventricle; low, high, and hybrid resolutions of the discretisation of the 

root node locations. 
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rom Table 1 ) using the low resolution for the root node discretisa- 

ion. The results presented in this study were generated using the 

ame calibration of the hyperparameters regardless of the virtual 

ubject, the modality of the ‘target data’, or the resolution of the 

oot node parameter space’s discretisation. Further details on the 

yperparameter calibration are provided in Appendix A.7. 

.9. Computation and software 

For each virtual subject (Section 2.2) in our twenty-subject 

ohort, we conducted inferences using epicardial activation time 

aps and 12-lead QRS complexes as the ‘target data’. Moreover, 

e considered three different resolutions of the root node param- 

ter space (i.e. low, high and hybrid). These combinations defined 

ur 120 inference executions, each repeated three times to demon- 

trate the results’ consistency. 

These inference executions were conducted at Amazon Web 

ervices and the Swiss National Supercomputing Centre. Each in- 

erence required about one hour to compute in a virtual machine 

mulating 18 2nd generation Intel Xeon Scalable Processors. 

The inference pipeline was developed in Python/Numpy 

nd can be found in https://github.com/juliacamps/ 

nference- of- healthy- ventricular- activation- properties . The torso- 

iventricular meshes are also available under request. 

The illustrations featured in this manuscript were created using 

araView software (Ahrens, Geveci, and Law 2005), Python’s Mat- 

lotlib library (Hunter 2007), and Matlab ( MATLAB, 2020 ). 

. Results 

.1. Prediction of the activation time maps and ECGs from 

oise-contaminated ‘target data’ 

Fig. 2 illustrates our inference method’s ability to replicate the 

oise-contaminated Eikonal ‘target data’ from epicardial activation 

aps (A and first half of C) and 12-lead ECGs (B and second half

f C). 

The inference method accurately replicated the activation maps 

rom noise-contaminated epicardial data ( Fig. 2. A and Fig. 2. C), 

howing slightly greater accuracy for the hybrid root node reso- 

ution compared to the low or high resolutions. The replication of 

he non-septal activation times was more accurate than the sep- 

al ones ( Fig. 2. A.vii and Fig. 2. A.xv) except for the high-resolution

ase ( Fig. 2. A.xi). Similarly, the replication of the Eikonal 12-lead 

CGs was also most accurate when considering the hybrid resolu- 

ion ( Fig. 2. B and Fig. 2. C). Moreover, the DTW-based discrepancy 

uccessfully allowed the inference method to replicate all leads 

ith similar accuracies except for lead II that was recovered as 

onophasic instead of biphasic after the aggregation of the pop- 

lation ( Fig. 2. B). 

.2. Root node inference from noise-contaminated epicardial 

ctivation maps 

Fig. 3 illustrates the inferred root nodes locations from noise- 

ontaminated Eikonal epicardial activation time map ‘target data’ 

or all virtual subjects with Mesh-4 ( Fig. 3. A-C) (see Appendix A.6.1 

or Mesh-1, Mesh-2, and Mesh-3), as well as the root node error 

etrics (Section 2.7) for all anatomies ( Fig. 3. D). 

Our method inferred more accurately root nodes in non-septal 

reas since septal activation times are not represented in epicar- 

ial maps ( Fig. 3. A-C as well as Fig. A.2, Fig. A.3, and Fig. A.4 in

ppendix A.6.1). Increasing the resolution of the root node loca- 

ion discretisation aided in recovering root node locations closer 

o the ground truth from activation maps ( Fig. 3. D). The num- 

er of root nodes was better identified from the low resolution, 
7 
hereas increasing the resolution improved the root node posi- 

ioning accuracy ( Fig. 3. D). The hybrid resolution identified better 

he root nodes in the left ventricle than those in the right ventricle 

 Fig. 3. D). 

.3. Speed inference from noise-contaminated epicardial activation 

aps 

Fig. 4 reports the errors for the inference of conduction speeds 

 Eq. (1) in Section 2.7) from noise-contaminated Eikonal epicardial 

ctivation time map ‘target data’. The results are shown for low 

A), high (B), and hybrid (C) resolution of root node discretisation 

nd grouped by torso-biventricular mesh in the virtual subject (see 

olour legend in Fig. 4 ). The right side of the figure provides a nu-

erical summary of the left side to ease readability. 

The endocardial and sheet speeds in the inferences implement- 

ng the low or high root node resolution were recovered more 

ccurately than the fibre directed speed ( Fig. 4. A-B). Throughout 

ll root node resolutions, the endocardial, sheet, and sheet-normal 

peeds displayed a narrower distribution of error values suggesting 

hat these speeds were consistently recovered at the same accu- 

acy regardless of the characteristics of the virtual subject ( Fig. 4 ). 

https://github.com/juliacamps/Inference-of-healthy-ventricular-activation-properties
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Fig. 4. Error in the conduction speeds inference ( Eq. (1) in Section 2.7) from noise-contaminated Eikonal epicardial activation maps using low (A), high (B), and hybrid (C) 

resolution of the root node discretisation. The errors are computed as ( Eq. (1) ) the percentage over the ground truth conduction speeds (x-axis) represented as (i) box-plots 

grouped by anatomy (colour) and conduction speed (y-axis); (ii) and represented as absolute mean ± standard deviation. 
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.4. Root node inference from noise-contaminated ECGs 

Analogously to Fig. 3 , Fig. 5 illustrates the inferred root nodes 

ocations from noise-contaminated Eikonal ECG ‘target data’ for all 

irtual subjects with Mesh-4 ( Fig. 5. A-C) (see Appendix A.6.2 for 

esh-1, Mesh-2, and Mesh-3), as well as the root node error met- 

ics (Section 2.7) for all anatomies ( Fig. 5. D). 

The inference of root nodes was more accurate on the ante- 

ior side of the heart than on the posterior ( Fig. 5. A-C as well as

ig. A.5, Fig. A.6, and Fig. A.7 in Appendix A.6.2) due to the left- 

nterior positioning of the precordial leads in the 12-lead ECG test. 

ncreasing the resolution of the root node discretisation had a lit- 

le visual effect on the distribution of root nodes identified from 

CG ( Fig. 5. A-C) compared to epicardial activation maps ( Fig. 3. A-

n

8 
). Moreover, all three resolutions reported similar root node re- 

overy accuracies from ECGs ( Fig. 5. D). Overall, the method identi- 

ed the root nodes better and more concentrated from the Eikonal 

ctivation map ( Fig. 3. D) than from Eikonal ECG ( Fig. 5. D) data. 

.5. Speeds inference from noise-contaminated ECGs 

Analogously to Fig. 4 , Fig. 6 reports the errors for the infer- 

nce of conduction speeds ( Eq. (1) in Section 2.7) from noise- 

ontaminated Eikonal ECG ‘target data’. The results are shown for 

ow (A), high (B), and hybrid (C) resolution of root node discretisa- 

ion and grouped by torso-biventricular mesh in the virtual subject 

see colour legend in Fig. 6 ). The right side of the figure provides a

umerical summary of the left side to ease readability. 
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Fig. 5. Root nodes inferred from noise-contaminated Eikonal 12-lead ECG on Mesh- 

4 with low (A), high (B), and hybrid (C) resolution of the root node space discreti- 

sation and root node inference metrics (Section 2.7) for all meshes (D). The stars 

indicate the ground truth root node locations. The endocardial surface is coloured 

as a heatmap showing how often each location was inferred as a percentage. (D) 

absolute mean ± standard deviation of the distance from the ground truth and er- 

ror in the number of root nodes inferred from all meshes. LV – left ventricle; RV 

– right ventricle; low, high, and hybrid resolutions of the root node locations’ dis- 

cretisation. 
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Similarly to the inference from the noise-contaminated Eikonal 

picardial activation maps ( Fig. 4 ), the conduction speeds inferred 

rom the noise-contaminated Eikonal ECG ( Fig. 6 ) also demon- 

trated that the endocardial and sheet-directed speeds were re- 

overed more accurately than the fibre and sheet-normal directed 

peeds. This finding suggests that the endocardial and sheet- 

irected speeds determined the activation wavefront’s propagation 

peed (Appendix A.8). The endocardial speed was recovered on av- 

rage more accurately from 12-lead ECG ( Fig. 6 ) than from epicar- 

ial activation maps ( Fig. 4 ). The hybrid root node resolution im- 

roved the recovery of the conduction speeds from 12-lead ECG 

 Fig. 6 ), whereas, as we anticipated (Section 2.5), it played the op- 

osite effect for the inference guided by activation maps ( Fig. 4 ). 

.6. Inference from bidomain ‘target data’ 

To further assess the performance of our inference method- 

logy, bidomain ‘target data’ were generated and used as previ- 

usly shown for ‘target data’ generated from the eikonal model. 

able 2 shows the mean and standard deviation of Pearson’s corre- 

ation coefficients as a surrogate measure of the inference accuracy 

o replicate the ‘target data’ generated with bidomain simulations. 

Increasing the root node resolution improved the accuracy to 

nfer epicardial activation maps and ECGs generated with bido- 
9 
ain simulations ( Table 2 ). In contrast, the recovery accuracy from 

oise-contaminated Eikonal ‘target data’ ( Fig. 2. C) was unaffected 

y the resolution of the discretisation of the root nodes. 

Table 3 reports the root node inference results from bidomain 

target data’. 

The high resolution of the root node location discretisation also 

elped to recover root node locations closer to the ground truth 

rom epicardial activation maps and ECGs ( Table 3 ). However, this 

ncrease in resolution was typically accompanied by an overesti- 

ation of the number of root node locations in the inference from 

idomain epicardial activation maps. In agreement with the results 

rom Eikonal ‘target data’ ( Fig. 3. D and Fig. 5. D), the recovery of the

oot node locations from bidomain data was consistently more ac- 

urate from activation maps than from ECGs ( Table 3 ). 

Table 4 demonstrates the inference errors for the conduction 

peed from bidomain ‘target data’. 

In agreement with our previous findings ( Fig. 4 and Fig. 6 ), the

ndocardial and sheet speed were also consistently better recov- 

red from bidomain ‘target data’ in all resolutions and data modal- 

ties than the fibre and sheet-normal speeds ( Table 4 ). Moreover, 

ncreasing the resolution of the root node discretisation improved 

he estimation of the conduction speeds ( Table 4 ), as it did for the

oot nodes ( Table 3 ), suggesting a positive correlation between the 

dentifiability of these activation properties ( Fig. 7 ). 

. Discussion 

This study presents an inference method combined with CMR- 

ased torso-biventricular Eikonal models to estimate the root 

odes and conduction speeds from 12-lead ECG or epicardial ac- 

ivation map data. Our approach aims to serve as an efficient tool 

or generating cardiac ‘digital twins’, which is of paramount im- 

ortance for precision cardiology ( Corral-Acero et al., 2020 ). We 

onducted the simultaneous inference of endocardial, fibre, sheet, 

nd sheet-normal conduction speeds, and the location and num- 

er of the root nodes in the endocardium, as these properties de- 

ermine the activation sequence in the ventricles. The evaluation 

f the method was conducted on a cohort of twenty virtual sub- 

ects to consider the effect of functional (five conduction speed 

onfigurations) and anatomical (four anatomies with biventricular 

yocardial-mass volumes ranging from 74 cm 

3 to 171 cm 

3 ) vari- 

bility in the healthy human population on the performance of the 

nference process. We considered the noise-contaminated simula- 

ions as the ground truth for the inferences. The impact of the res- 

lution of root node discretisation on the inference errors was also 

ested. 

In addition to the novel methodology and its ability to simul- 

aneously work with continuous and discrete parameters, the key 

ndings of the study are as follows. Firstly, the method enabled 

nding populations of models that produced activation sequences 

ith nearly identical electrocardiographic patterns to those ob- 

erved from the subject’s data ( Fig. 2 ) while recovering the root 

odes ( Fig. 3 and Fig. 5 ) and the conduction speeds ( Fig. 4 and

ig. 6 ). Secondly, the parameters that define the activation se- 

uence are the root nodes, the endocardial speed, and the sheet- 

irected speed. Thirdly, each data modality favoured the identifi- 

bility of the root nodes in different locations. Namely, epicardial 

ctivation maps favoured non-septal root nodes, whereas 12-lead 

CG favoured root nodes located on the heart’s anterior side. 

A key contribution of this study is the development of an infer- 

nce method to estimate the two types of parameters, namely, the 

nisotropic conduction speeds (continuous) and the number and 

ocations of the root nodes (discrete) in both ventricles simulta- 

eously. Previous work considered either a known number of root 

odes (in simple cases, e.g. paced hearts) or known locations. For 

xample, Giffard-Roisin et al. (2017) estimated the location of two 
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Fig. 6. Error in the conduction speeds inference ( Eq. (1) in Section 2.7) from noise-contaminated Eikonal 12-lead ECGs for low (A), high (B), and hybrid (C) resolution of 

the root node discretisation. The errors are computed as ( Eq. (1) ) the percentage over the ground truth conduction speeds (x-axis) represented as (i) box-plots grouped by 

anatomy (colour) and conduction speed (y-axis); (ii) and represented as absolute mean ± standard deviation. 

Table 3 

Root node recovery error metrics (Section 2.7) (absolute mean ± standard deviation) from bidomain 

‘target data’. Distance from the ground truth and error in the number of root nodes inferred. LV –

left ventricle; RV – right ventricle; ATM – epicardial activation time maps; low and high resolution 

of the discretisation of the root node parameter space. 

Root node errors ATM low ATM high 12-lead ECG low 12-lead ECG high 

LV: Location of closest (cm) 1.1 ± 0.1 0.5 ± 0.0 1.8 ± 0.5 1.6 ± 0.5 

RV: Location of closest (cm) 0.7 ± 0.1 0.4 ± 0.1 1.5 ± 0.5 1.6 ± 0.6 

LV: Number of root nodes 0.7 ± 0.7 1.7 ± 0.5 0.7 ± 0.6 0.6 ± 0.9 

RV: Number of root nodes 0.2 ± 0.2 0.1 ± 0.2 1.5 ± 1.2 0.9 ± 0.9 

10 
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Table 4 

Conduction speed recovery error metrics ( Eq. (1) in Section 2.7) (absolute mean ± standard 

deviation) from bidomain ‘target data’. ATM – epicardial activation time maps; low and high 

resolution of the root node locations’ discretisation. 

Conduction speed ATM low ATM high 12-lead ECG low 12-lead ECG high 

Endocardial 12.9 ± 3.9 2.5 ± 1.8 14.2 ± 14.3 13.9 ± 13.2 

Fibre 27.6 ± 8.2 19.0 ± 9.2 28.4 ± 22.7 30.2 ± 24.2 

Sheet 5.1 ± 5.6 4.8 ± 2.6 19.5 ± 14.8 14.0 ± 12.6 

Sheet-normal 7.4 ± 9.2 5.6 ± 4.7 30.7 ± 13.7 34.1 ± 12.3 

Fig. 7. Heatmap of Pearson’s correlation coefficients between the root node and the 

conduction speed inference errors from bidomain simulated epicardial activation 

time maps. 
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oot nodes in the left ventricle and the conduction speeds from 

CG data; whereas, Grandits et al. (2020) estimated the activation 

imes of a known set of root nodes and the conduction speeds 

rom epicardial activation maps. 

The evaluation of the inference methodology was conducted us- 

ng synthetic data to know the ground truth values for the ventric- 

lar activation properties, as these cannot be measured in healthy 

ubjects. This allowed us to explore the effects of the variabil- 

ty in tissue conduction properties in the healthy human popula- 

ion. We mimicked clinical conditions by contaminating the ‘tar- 

et data’ using noise to demonstrate the feasibility of our method 

or clinical environments, and we repeated the experiments us- 

ng a biophysically detailed model (bidomain) to test the capabil- 

ty of our phenomenological models to perform the inference on 

ealistic data. Moreover, we showed the physiological soundness 

f our modelling and simulation methods by replicating a clini- 

al electrocardiographic imaging-derived epicardial activation time 

ap (Appendix A.9). This ability to reproduce the physiological 

atterns demonstrates that our inference methodology is relevant 

or clinical applications such as the generation of cardiac digital 

wins ( Corral-Acero et al., 2020 ) towards the realisation of preci- 

ion medicine. 

All our results for the inference of conduction speeds ( Fig. 4 

nd Fig. 6 ) demonstrated that the endocardial and the sheet speeds 

ere better identified than the fibre and sheet-normal speeds in 

ealthy ventricles in sinus rhythm. When assuming healthy condi- 

ions, defined as root nodes in both ventricles and homogeneous 

issue-conduction properties, as in Durrer et al. (1970) , the endo- 

ardial and the sheet-directed speeds (alongside the root nodes) 

ominated the activation sequence patterns. This difference in the 

peeds’ identifiability was due to the relatively negligible impact of 

he fibre and sheet-normal speeds on the activation sequence (Ta- 
11 
le A.1 in Appendix A.8). These speeds mostly act on the plane par- 

llel to the endocardial layer, governed by a faster isotropic speed 

i.e. endocardial speed). Conversely, the sheet directed speed de- 

nes the time delay for the endocardial-generated activation pat- 

erns to reach the epicardial surface since its orientation is per- 

endicular to the other speeds. Consequently, under healthy sinus- 

hythm conditions, the activation properties that can be inferred 

rom electrocardiographic data were the root nodes, the fast endo- 

ardial speed, and the sheet directed speed. However, we hypothe- 

ise that the fibre-directed speed will play a more relevant role in 

athological conditions, for example, in the presence of slow con- 

uctance regions (e.g. scars and fibrosis) or wall thickening (e.g. 

ypertrophy) since this speed will have time to take over the en- 

ocardial patterns. 

The inference of the root nodes from epicardial activation maps 

 Fig. 3 , Fig. A.2, Fig. A.3, and Fig. A.4) was better for root nodes

n non-septal than in the septal areas. This was because septal 

oot nodes have the least influence on the epicardial activation 

ime map. On the other hand, the inference of root nodes from 

2-lead ECGs ( Fig. 5 , Fig. A.5, Fig. A.6, and Fig. A.7) demonstrated

hat the anterior locations were better identified than the posterior 

nes. This asymmetric identifiability of the root nodes manifests 

he asymmetry of the electrode positioning protocol in the stan- 

ard 12-lead ECG test. More precisely, each root node has a local 

ffect on the region’s activation sequence on the heart that the ECG 

epresents. However, the amplitude of the recorded regional-ECG 

s inversely proportional to the distance between that region and 

he electrode, while most electrodes are typically positioned on 

he left-anterior surface of the torso. Consequently, most changes 

n the activation sequence patterns in the posterior walls become 

asked by the electrical activity taking place in the anterior half 

f the organ for the precordial electrograms. 

Overall, we attained higher root node inference accuracies and 

ore consistent locations from using epicardial activation maps 

 Fig. 3 ) than from ECG recordings ( Fig. 5 ). The activation map’s

ain advantage is that the data are spatially distributed on a sur- 

ace (epicardium) that strongly relates to the root node parame- 

er space (except for the septal area). More precisely, the inference 

rom epicardial activation maps can be subdivided into regional 

ub-problems as local root nodes only influence local patterns in 

he activation sequence. This phenomenon enables the algorithm 

o quickly identify partial solutions to the inference problem from 

picardial activation maps. On the other hand, all root nodes influ- 

nce each signal’s morphology in the ECG simultaneously. 

Our inference results using noiseless bidomain-generated ‘target 

ata’ (Section 3.6) demonstrated that the baseline ability to recover 

he conduction speeds is conditioned by the identifiability of the 

oot nodes ( Fig. 7 ). In other words, higher resolutions allowed for 

ore accurate root node ( Table 3 ) and speed ( Table 4 ) estimations,

ighlighting the importance of the choice of resolution as it deter- 

ines the baseline inference accuracy. These results demonstrate 

hat our inference method generalised to a biophysically detailed 

ource model (bidomain). This, alongside the proof of concept in 

ig. A.8 (Appendix A.9), provides evidence of the suitability of our 

nference method for clinical applications. 
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.1. Limitations and future work 

We implemented the Purkinje network as an isotropic fast en- 

ocardial layer with root node locations that emulate the hotspots 

f Purkinje myocardial junctions. This strategy has been extensively 

sed in previous studies ( Cardone-Noott et al., 2016 ; Lyon et al., 

018 ; Wallman et al., 2014 ) and shows equivalent behaviour in 

he activation maps to that observed from human data reported 

y Durrer et al. (1970) . However, Durrer et al. (1970) also re- 

orted differences of about ten milliseconds in the activation be- 

ween root nodes located two centimetres apart from each other 

hat our modelling strategy has not considered. A possible exten- 

ion could include a realistic representation of the cardiac conduc- 

ion system ( Grandits et al., 2020 ; Sebastian et al., 2013 ), adding

dditional complexity and uncertainty to the inference problem. 

ote that the dominance of the endocardial and sheet speeds 

ould prevail despite the inclusion of a Purkinje network, as in 

randits et al. (2020) , since the cause of this dominance is the 

arallel influence of a fast speed in the endocardial plane (e.g. fast 

ndocardial speed or realistic Purkinje network) and the fibre and 

heet-normal speeds. Another possible improvement could be to 

est the implications of using a different fibre orientation model 

 Bayer et al., 2012 ; Doste et al., 2019 ; Rossi et al., 2014 ). 

Overall, this study presented the foundations of a novel pipeline 

apable of non-invasively calibrating cardiac digital twins for 

ealthy subjects from synthetic epicardial activation maps and 12- 

ead ECG recordings. Our approach was designed to easily ac- 

ommodate disease conditions, such as pathological tissue hetero- 

eneities (scars or fibrosis). Moreover, the results using bidomain- 

enerated ‘target data’ (Section 3.6) and clinical ‘target data’ (Ap- 

endix A.9) to guide the inference suggest that the presented 

pproach can be directly translated to work on clinical ECG 

ecordings. Moreover, we anticipate that our methodology can be 

dapted to work with pathological data to generate cardiac ‘digital 

wins’ in daily clinical practice. 
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