
RESEARCH ARTICLE

Reconstructing feedback representations in

the ventral visual pathway with a generative

adversarial autoencoder

Haider Al-TahanID
1,2, Yalda MohsenzadehID

1,2*

1 Department of Computer Science, The University of Western Ontario, London, Ontario, Canada, 2 Brain

and Mind Institute, The University of Western Ontario, London, Ontario, Canada

* ymohsenz@uwo.ca

Abstract

While vision evokes a dense network of feedforward and feedback neural processes in the

brain, visual processes are primarily modeled with feedforward hierarchical neural networks,

leaving the computational role of feedback processes poorly understood. Here, we devel-

oped a generative autoencoder neural network model and adversarially trained it on a cate-

gorically diverse data set of images. We hypothesized that the feedback processes in the

ventral visual pathway can be represented by reconstruction of the visual information per-

formed by the generative model. We compared representational similarity of the activity pat-

terns in the proposed model with temporal (magnetoencephalography) and spatial

(functional magnetic resonance imaging) visual brain responses. The proposed generative

model identified two segregated neural dynamics in the visual brain. A temporal hierarchy of

processes transforming low level visual information into high level semantics in the feedfor-

ward sweep, and a temporally later dynamics of inverse processes reconstructing low level

visual information from a high level latent representation in the feedback sweep. Our results

append to previous studies on neural feedback processes by presenting a new insight into

the algorithmic function and the information carried by the feedback processes in the ventral

visual pathway.

Author summary

It has been shown that the ventral visual cortex consists of a dense network of regions

with feedforward and feedback connections. The feedforward path processes visual inputs

along a hierarchy of cortical areas that starts in early visual cortex (an area tuned to low

level features e.g. edges/corners) and ends in inferior temporal cortex (an area that

responds to higher level categorical contents e.g. faces/objects). Alternatively, the feedback

connections modulate neuronal responses in this hierarchy by broadcasting information

from higher to lower areas. In recent years, deep neural network models which are trained

on object recognition tasks achieved human-level performance and showed similar activa-

tion patterns to the visual brain. In this work, we developed a generative neural network

model that consists of encoding and decoding sub-networks. By comparing this
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computational model with the human brain temporal (magnetoencephalography) and

spatial (functional magnetic resonance imaging) response patterns, we found that the

encoder processes resemble the brain feedforward processing dynamics and the decoder

shares similarity with the brain feedback processing dynamics. These results provide an

algorithmic insight into the spatiotemporal dynamics of feedforward and feedback pro-

cesses in biological vision.

Introduction

In just a couple of hundred milliseconds, our brain interprets the visual scene around us [1–5],

identifies faces [6, 7], recognizes objects [8–13], and localizes them [14–18]. Decades of cogni-

tive neuroscience research have demonstrated that the brain accomplishes these complicated

tasks through a cascade of hierarchical processes in the ventral visual stream starting in the

early visual cortex (EVC) and culminating in the inferior temporal (IT) cortex.

While the feedforward recruitment of this hierarchy explains the core neural response pat-

terns underlying visual recognition [19–21], it is unable to account for behavioural and neural

dynamics observed in years of psychophysical, neurophysiological, and magneto/electrophysi-

ological experiments [12, 22–25]. Indeed, variable timing of neural responses to visual stimuli

beyond 200ms has been frequently associated with accumulation of sensory evidence through

recurrent processes in the visual brain. However, the precise computational role of neural

recurrent/feedback processes remains poorly understood at the system level. In particular, the

algorithmic function of feedback processes and the type of information sent back along the

visual hierarchy is still unknown.

To address this question, we develop a generative model which is adversarially trained on a

diverse set of image categories. The model consists of two sub-networks: (i) An encoder sub-

network receives a given visual stimulus, processes it in a hierarchy of neural layers to eventu-

ally produce a latent representation (code) of the visual input and (ii) a decoder sub-network

which receives the latent representation and aims to reproduce the visual input from the infor-

mation encoded in the latent representation.

This generative model enables us to not only investigate the encoding process of visual rep-

resentations along the hierarchy of the encoder sub-network layers but also provides us an

insight into the reverse process, i.e., reconstructing the representations along the decoder sub-

network layers. We hypothesize that the visual information in the encoder sub-network in our

computational model mimics the feedforward pathway in the ventral visual stream and the

decoder sub-network which performs the reverse function may reveal the representations

along the feedback pathway. To test this hypothesis, after training the proposed model, we

compare the representations along its layers with magnetoencephalography (MEG) and func-

tional magnetic resonance imaging (fMRI) data acquired from fifteen human participants in a

visual recognition experiment [13].

Our model identified two separate dynamics of representational similarities with MEG

temporal data. The first one is consistent with the temporal hierarchy of processes transform-

ing low level visual information into high level semantics in the feedforward sweep, and the

second one reveals a temporally subsequent dynamics of inverse processes reconstructing low

level visual information from a high level latent representation in the feedback sweep. Further,

comparison of encoder and decoder representations with two fMRI regions of interests,

namely EVC and IT, revealed a growing categorical representation along the encoder layer
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(feedforward sweep) similar to IT and a progression in detail visual representations along the

decoder layers (feedback sweep) akin to EVC.

Results

Construction of a generative model performing image reconstruction

Previous work revealed that deep convolutional neural networks (DNNs) trained on image

classification develop hierarchical representations similar to the cascade of processes along

ventral visual pathway [3, 26–33]. However, neuroscience evidence suggests top-down modu-

lations of neural responses which occur after some delay through abundant number of feed-

back connections in visual cortex are critical to resolving visual recognition in the brain [12,

23, 24]. Therefore, these feedforward deep neural network models do not fully represent the

complex visual processes in the ventral visual pathway. Here, we investigate whether a deep

generative model trained to compress and reconstruct images could reveal similar representa-

tions as feedforward and feedback processes in the ventral visual pathway. With this aim, we

developed a deep generative autoencoder neural network model using adverserial autoencoder

(AAE) framework [34]. AAE is a generative adverserial network (GAN) [35] where the genera-

tor has an autoencoder architecture. Fig 1 depicts our proposed model architecture. The auto-

encoder generator consists of two main components: 1) an encoder which receives the visual

stimuli and performs a cascade of simple operations such as convolution, pooling, and normal-

ization to map the visual input to a latent feature vector (LV); 2) a decoder which receives the

latent vector and performs a cascade of simple transposed convolution operations to recon-

struct the input visual stimuli from information encoded in the latent space. The model is

Fig 1. Computational model architecture. The model is a generative adverserial network. The generator is an

autoencoder consisting of five convolutional blocks (E1-E5) and one fully connected layer (E6) in the encoder and one

fully connected layer (D1) followed by five deconvolutional blocks in the decoder (D2-D6). Each convolutional block

encompasses batch normalization, convolution, nonlinear activation function (Leaky Rectified Linear Unit), and

pooling operations. Alternatively, each deconvolutional block encompasses batch normalization, transposed

convolution, nonlinear activation function (Leaky Rectified Linear Unit), and upsampling operations. The

discriminator consists of two fully connected layers. The training Data set consists of 1,980,000 images organized into

four super-ordinate categories: (i) Faces, (ii) Animates, (iii) Objects, (iv) Scenes. LV denotes the latent vector generated

by the encoder and DL is a one-hot data set label (one of the four mentioned training data sets). Both vectors are

concatenated and fed to the discriminator, while only the latent vector is fed to the decoder.

https://doi.org/10.1371/journal.pcbi.1008775.g001
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trained with two objectives—a reconstruction loss criterion, and an adversarial criterion. The

dual objectives training turns the autoencoder into a generative model whose latent space

learns data distribution properties that enables generative process and avoids overfitting to the

reconstruction objective. We hypothesize that the encoder sub-network models the feedfor-

ward pathway of processes in ventral visual stream, while the decoder sub-network models the

reconstruction of visual features in the feedback pathway.

To train our model, we assembled a super category data set (see Materials and methods sec-

tion for details). The super category data set includes 1,980,000 images from four equally dis-

tributed categories of (1) Faces, (2) Animates, (3) Objects, and (4) Scenes. The rational behind

assembling and using this data set is two-fold: (1) ecologically, the human brain learns to

develop high-level category representations across multiple recognition tasks (e.g. faces, ani-

mals, objects, scenes, etc.); Indeed, years of neuroscience research have identified a cascade of

brain regions along ventral visual stream starting in early visual cortex (EVC) which processes

low level visual features and eventually resolves visual categories at the end of the hierarchy in

inferior temporal cortex (IT). (2) In this study, we compared model representations with brain

imaging data (fMRI and MEG) from a visual recognition experiment [13]. We maintained

consistency with the four categories from the stimulus set utilized in the brain imaging experi-

ment which includes 156 images. Please note that this stimulus set was not used for training

the model. After training the model on super category data set for over 800 epochs when the

adverserial and reconstruction losses reached their local minima on the training set (Fig 2A),

we determined how well our model performed on the 156 image set (as a testing dataset). The

model performed the reconstruction on the training dataset with 0.109 ± 0.006 mean absolute

error (MAE) and on the 156 image set with 0.119 ± 0.003 MAE between the input image and

the corresponding reconstructed image. We computed the upper-bound performance of the

model by sampling random pairs of images from the training and testing sets performing

MAE between the different image pairs. On the training set, we observed a MAE of

0.53 ± 0.014 between the random image pairs and 0.62 ± 0.017 on the random pairs from the

testing set. Furthermore, we computed the MAE loss on training and testing sets with the

same model architecture but with random weights. On the training and testing sets, we

obtained a MAE of 0.49 ± 0.024 and 0.46 ± 0.009, respectively. These results show that the

model not only have converged to an optimum but also generalizes well to the testing set.

Fig 2. Computational model performance. (A) Adversarial and Reconstruction loss over training epochs.

https://doi.org/10.1371/journal.pcbi.1008775.g002
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Representational similarity of the generative model to early and late brain

regions in the ventral visual stream

We first determined the encoder/decoder representational similarities with early and late

brain regions along the ventral visual cortex. For this, we chose early visual cortex (EVC) and

inferior temporal cortex (IT) defined anatomically based on [36] and employed the representa-

tional similarity analysis (RSA) method [37, 38] as the integrative framework for model-brain

comparisons.

For each region of interest (ROI), we extracted the fMRI response patterns to each image,

vectorized it and computed condition-specific pairwise distances (1- Pearson’s R) to create a

156 x 156 representational dissimilarity matrix (RDM) per participant. We also fed the

images to the generator and extracted layer-specific activations for each image condition.

Then by computing the pairwise distances (1-Pearson’s R) of image evoked layer activation

patterns, we created layer-specific RDMs (see Fig 3 and Materials and methods section for

Fig 3. Representational similarity analysis to compare fMRI, MEG and model representations. (A) fMRI response

patterns were extracted from each ROI and pairwise condition-specific dissimilarities (1-Pearson’s R) were computed

to create one fMRI RDM per ROI and participant (see Materials and methods section for detail). (B) RDMs for the

generative model were computed at each convolutional/deconvolutional block after feeding 156 images to the

computational model. (C) MEG data consists of time-series data with 306 channels and 1200 time points

(milliseconds) per trial. For each condition, we extracted a vector of size 306 at each time point as the whole brain

activity pattern to compute the RDMs using SVM classifiers decoding accuracies (see Materials and methods section

for detail). (D) Using RDMs from MEG and fMRI ROIs, we compared (Spearman’s R) them with the RDMs from the

computational model to investigate the spatio-temporal correspondences between the human brain and the

computational model. (E) Correlations between ROI fMRI RDMs and computational model RDMs result in a subject-

specific correlation value for each ROI across model layers, which we then average them over subjects. (F) Correlations

between time-resolved MEG RDMs and computational model RDMs result in a subject-specific signal for each layer

across time, which we then average them over subjects.

https://doi.org/10.1371/journal.pcbi.1008775.g003
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details). We then compared subject-specific ROI RDMs with the model layer RDMs by com-

puting Spearman’s correlations (Fig 3A, 3D and 3E). Fig 4A and 4B show subject averaged

RDMs and their corresponding 2-dimensional multidimensional scaling (MDS) visualiza-

tions of EVC and IT, respectively. As expected EVC shows a random pattern across catego-

ries, whereas IT demonstrates clear categorical distinctions. Fig 4C and 4D compares the

encoder and decoder layers correlations with EVC and IT RDMs. The EVC representational

correlations across layers of the encoder (and inverse order of the decoders) demonstrate a

decreasing trend, while IT representational correlations across model layers progressively

increase. Notably, early processing layers of the model (E1/D6) and late processing layers

(E6/D1) show similar correlations both for EVC and IT. However, middle layers correlations

are significantly different when comparing encoder and decoder in both ROIs (N = 15; two-

sided ttests; false discovery rate corrected at P< 0.05). Further, the correlations of EVC is

stronger with the decoder than encoder whereas the correlations of IT is higher for the

encoder than the decoder. This indicates the reconstructing processes are more similar to

detail representations in EVC than IT.

Fig 4. Spatial representational comparisons. (A) Neural representations in early visual cortex (EVC). The subject-

averaged EVC RDM matrix, and its 2D multidimensional scaling visualization. (B) Neural representations in

inferior temporal area (IT). The subject-averaged IT RDM matrix, and its 2D multidimensional scaling

visualization. (C) Encoder, decoder and LV layer RDMs are correlated (Spearman’s R) with subject-specific EVC

RDMs. The averaged correlations over subjects with standard error of the mean are depicted. (D) Encoder, decoder

and LV layer RDMs are correlated (Spearman’s R) with subject-specific IT RDMs. The averaged correlations over

subjects with standard error of the mean are depicted. The color coded (�) above each panel in C-D indicates that

the correlation of the corresponding layer is significantly above zero. The black (�) indicates the correlations of the

corresponding encoder and decoder layers are significantly different (N = 15; two-sided ttests; false discovery rate

corrected at P< 0.05).

https://doi.org/10.1371/journal.pcbi.1008775.g004
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The generative model unfolds the temporal dynamics of brain feedforward

and feedback representations

The visual information traverses a hierarchy of regions in the visual cortex and evolves over

time rapidly. While the structure of our proposed model does not directly delineate the human

brain temporally, it has a clear sequential structure which temporally unfolds the feedforward

and feedback sequences in the visual cortex. That is, information flows layer to layer and

evolves from image low level features to higher level latent concepts (feedforward sweep) and

then from this high level latent code sequentially the image level information is reconstructed

(feedback sweep). To test the hypothesis that the proposed model indeed temporally mirrors

ventral visual stream dynamics, we compared the representations of time-resolved MEG data

acquired in a visual recognition experiment with the layer representations in the encoder and

decoder sub-networks. From each participant’s data, we first extracted the MEG sensor mea-

surements for each image condition from -200ms to 1000ms (with 1 ms resolution) relative to

image onset. Then we computed dissimilarities (SVM classifiers decoding performances, see

Materials and methods section for details) between evoked MEG pattern vectors of each pair

of images and created time resolved representational dissimilarity matrices (RDMs) for each

individual. We also fed the images to the generator and extracted layer-specific activations for

each image condition. Then by computing the pairwise distances (1-Pearson’s R) of image

evoked layer activation patterns, we created layer-specific RDMs (see Fig 3 and Materials and

methods section for details). Next we correlated layer-specific model RDMs with time-resolved

subject specific MEG RDMs (Spearman’s R) resulting in correlation time series for each layer

of the model. Fig 5A and 5B show the subject averaged correlation time series for layers of

encoder and decoder sub-networks, respectively. Our results showed that all layers of the pro-

posed model were representationally similar to human brain activity patterns, indicating that

the model captures evolution of brain visual representations over time (N = 15; permutation

tests; cluster definition threshold P< 0.05; cluster significance threshold P< 0.01). Next, we

investigated whether the hierarchy of the layered architecture unfolds the temporal dynamics

of encoding (feedforward) and decoding (feedback) visual processes in the brain. Specifically,

we examined the relationship between hierarchy of model layers and the peak latency of the

correlation time series (Fig 5C). Consistent with previous works [29], the first peak latency of

correlation time courses relating MEG and the encoder representations increased with the

hierarchy of the encoder layers (Spearman’s R = 0.78, P<< 0.0001). The inspection of peak

latencies in the decoder time series depicted in Fig 5B revealed a progressively increasing pat-

tern from D1 to D6 (Spearman’s R = 0.84, P<< 0.0001). That is, the peak latency in D1

occurs at 151ms and over the decoder layers progressively the peak latency increases, the peak

latency of D6 occurs at 204ms. Given that the decoder later layers are reconstructing the visual

stimuli and thus closer to image level feature space, these temporal dynamics may explain the

temporal dynamics of feedback information sent down the ventral stream. We further identi-

fied a salient second peak in layers E1 to E5 which their peak latencies negatively correlated

with layers order in the encoder (Spearman’s R = −0.57, P<< 0.0001) and they are signifi-

cantly later than the corresponding layers in the decoder (all peak latency analyses are based

on permutation based bootstrapping; N = 15; two-sided hypothesis tests; P<< 0.0001;

Bonnferoni corrected). Again this confirms later dynamics of representational similarities

between these layers and the brain, possibly indicating a second sweep of visual information

processing.

In the next step, we investigated the representational relationships among the encoder and

the decoder layers of the model. To this end, we first computed the pairwise correlations

between all encoder and decoder layer RDMs. The matrix depicted in Fig 5E summarizes
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these pairwise correlations and reveals which representations across model layers are similar

or dissimilar. Fig 5F visualizes these relationships with multi dimensional scaling (MDS)

method. Visual inspection of this matrix manifests firstly the dissimilarity of latent layer repre-

sentation from encoder and decoder layers, secondly similarity of late layer of the encoder

(E6) and early layer of the decoder (D1); and also similarity of early layer of decoder (E1) and

late layer of the decoder (D6), thirdly the dissimilarity of middle layers of encoder and decoder

indicating the difference in the representations of encoding (feedforward) and decoding (feed-

back) processes.

Fig 5. Temporal representational comparisons. (A) Encoder and MEG representational comparison. We correlated

the encoder layer RDMs with subject-specific time-resolved MEG RDMs resulting in fifteen correlation time courses.

We then averaged these time courses over participants. (B) Decoder and MEG representational comparison.

Correlation of the decoder layer RDMs and time-resolved MEG RDMs. The color-coded lines below the curves show

the time points when the correlations are significantly above zero (N = 15; permutation tests; cluster definition

threshold P< 0.01; cluster threshold P< 0.05). (C) Peak latency for encoder and decoder. The encoder have

significantly earlier peak latency across all layers (P = 0.014). Error bars are expressed in standard error of the mean.

(D) The architecture of the models with layers’s label corresponding to (C). (E) The visualization of relationships

between model layers representations. The matrix of RDM correlations between encoder and decoder layers is

depicted. Each matrix entry compares two RDMs indexed by corresponding row and column in terms of Pearson’s R.

(F) The multidimensional scaling visualization of the RDMs relationships.

https://doi.org/10.1371/journal.pcbi.1008775.g005
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To obtain a more clear picture of brain-model temporal dynamics relationships across

encoder and decoder sub-networks, we compared the correlation time courses corresponding

to the encoder and decoder layers with the same level of processing in Fig 6A. The correlation

time course of latent layer is depicted separately. Fig 6B depicts the corresponding model layers

RDMs and their 2-dimensional MDS visualizations. As demonstrated in Fig 6, firstly the low

level feature processing layer of encoder (E1) and decoder (D6) follow a notably similar

dynamics. Further, the high level feature processing layers of encoder (E6 and E5) also depict a

Fig 6. Comparisons of encoder and decoder representational dynamics. (A) Comparison of correlation time series

of the encoder and decoder layers with the same level of processing. The color-coded lines below the curves show the

timepoints when the correlations are significantly above zero (N = 15; permutation tests; cluster definition threshold

P< 0.01; cluster threshold P< 0.05). (B) The model RDMs and their corresponding MDS visualizations.

https://doi.org/10.1371/journal.pcbi.1008775.g006
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similar temporal dynamics with high level feature processing layers of the decoder (D1 and

D2, respectively). However, the dynamics are explicitly different when middle level layers are

compared (i.e. E2 vs.D5, E3 vs. D4, E4 vs. D3). This is also evident from comparison of the

MDS visualizations of RDMs in each row. The peak latencies of the correlation time courses

are marked with color-coded arrows. Consistent with Fig 5C, the peak latencies of low and

high level processing layers coincide around the same time, whereas the peaks of mid-level fea-

ture processing layers of the decoder occurs between the first and second peaks of the corre-

sponding encoder time courses.

Together, comparison of MEG temporal representations with the encoder and decoder

sub-networks of our proposed model segregated the brain representational dynamics that

transforms the low level visual features to high level categorical semantics and the inverse func-

tional processes that reconstructs low level features from the high level code. These two identi-

fied dynamics of processing can be associated with feedforward and feedback sweeps along

ventral visual stream.

Factors determining the similarity between the generative model and

spatiotemporal neural dynamics of visual process

The significant correlation of the proposed model layers and temporal and spatial brain data

with the dynamics described in previous sections raises the critical question of the origin of

this relationship. Architecture and training procedure are two fundamental factors that shape

any neural network model characteristics. To understand the emergence of this relationship

between the brain and our proposed model, we created two alternative models and trained

them on the same training image dataset (super category dataset). The first alternative model

is a regular autoencoder neural network with the same architecture as the autoencoder in our

generative model. In other words, we ablated the discriminator of our model, and trained the

autoencoder using only the reconstruction loss. We reasoned that this alternative model

would reveal the effect of training procedure, especially the generative property of the model

and training with adversarial loss. The second alternative model that we investigated has the

same architecture as our proposed model but it is untrained (i.e., random connection weights).

This model would reveal the effect of the model architecture alone without training.

To assess the spatial and temporal relationships between the two alternative models and the

human brain, we fed the 156 image set to these models, extracted image-specific activation pat-

terns from each layer, and computed layer-specific RDMs for each model. We then compared

these RDMs with brain MEG RDMs (Fig 7) and fMRI ROI RDMs (Fig 8) by computing their

corresponding Spearman’s correlations.

Fig 7A, 7B and 7C show the temporal relations of MEG data with the autoencoder model.

As depicted in this figure, the encoder, latent vector, and decoder representations correlated

significantly with the time-resolved MEG representations. However, the peak latencies in Fig

7C showed a reverse hierarchy along the encoder layers (R = −0.53, P = 0.27), and approxi-

mately simultaneous peaks in the decoder layers. These finding demonstrate while the ablated

model (i.e. when the discriminator is removed) still shows similarity to the temporal visual

representations in the brain, the adversarial training is crucial in emergence of the specific

temporal dynamics that disentangles feedforward and feedback brain representations in the

model.

We also compared the EVC and IT representations with this autoencoder model. We

found significant correlations between the encoder layers (E5-E6) and EVC, and between the

decoder layers (D1-D6) and EVC (Fig 8A). But the hierarchical relations between EVC and

the decoder were reversed (R = −0.96, P = 0.001) compared to our proposed generative model
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(Fig 4C). The encoder/decoder layers showed significant correlations with IT representations

(Fig 8B) but without hierarchical relations. This shows that the adversarial training is crucial

for the emergence of hierarchical correspondences between the model and the brain

representations.

Fig 7D, 7E and 7F show the temporal correlations of MEG data with the untrained model.

The encoder subnetwork (E1-E6) correlated significantly with the time-resolved MEG repre-

sentations. However, the peak latencies in Fig 7F demonstrated a hierarchy in the reverse

direction over the layers (R = −0.79, P = 0.05) in comparison with the encoder peak latencies

in our proposed model (see Fig 5C). These results replicated the findings by [29] which simi-

larly showed that an untrained AlexNet architecture [39] correlated significantly with MEG

representations, but the peak latencies demonstrated a reverse hierarchy compared to an Alex-

Net trained on object recognition. We further observed that the latent vector representation

and decoder layer representations do not show any significant correlations with the brain

MEG data (Fig 7E). This shows that the model architecture alone without training can not pro-

duce brain like representations in the latent space nor the decoder subnetwork of our proposed

model.

When we compared the EVC and IT representations with the untrained model, we found

no significant correlations between the encoder layers (E1-E5) and EVC. But, the decoder lay-

ers (D1-D4, and D6) showed significant correlations with EVC representations (Fig 8C). None

of the encoder/decoder layers showed significant correlations with IT representations (Fig

8D). This shows that the architecture alone can induce representational similarity between the

decoder layers and EVC, but not with the encoder layers and not with IT. Therefore, the

proper training procedure is crucial for the emergence of brain-model representational

similarities.

Fig 7. The impact of architecture and training procedure on the representational similarity of the model and

brain temporal data. (A) Comparison of the encoder layers of the autoencoder model with MEG representations. We

correlated the encoder layer RDMs with subject-specific time-resolved MEG RDMs resulting in fifteen correlation

time courses. We then averaged these time courses over participants. (B) Comparison of the decoder layers of the

autoencoder model with MEG representations. Correlation of the decoder layer RDMs and time-resolved MEG

RDMs. The color-coded lines below the curves show the time points when the correlations are significantly above zero

(N = 15; permutation tests; cluster definition threshold P< 0.01; cluster threshold P< 0.05). (C) Peak latency for

encoder and decoder of the autoencoder model. Error bars are expressed in standard error of the mean. (D)

Comparison of the encoder layers of the untrained model with MEG representations. We correlated the encoder layer

RDMs with subject-specific time-resolved MEG RDMs resulting in fifteen correlation time courses. We then averaged

these time courses over participants. (E) Comparison of the decoder layers of the untrained model with MEG

representations. Correlation of the decoder layer RDMs and time-resolved MEG RDMs. The color-coded lines below

the curves show the time points when the correlations are significantly above zero (N = 15; permutation tests; cluster

definition threshold P< 0.01; cluster threshold P< 0.05). (F) Peak latency for encoder and decoder of the untrained

model. Error bars are expressed in standard error of the mean.

https://doi.org/10.1371/journal.pcbi.1008775.g007

PLOS COMPUTATIONAL BIOLOGY Reconstructing feedback representations in ventral visual pathway

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008775 March 24, 2021 11 / 19

https://doi.org/10.1371/journal.pcbi.1008775.g007
https://doi.org/10.1371/journal.pcbi.1008775


Together, we found that while architecture alone or non-generative model induces some

similarities between the brain temporal and spatial representations, both architecture and

training procedure of our proposed model are crucially contributing in emergence of model

representations that disentangles feedforward and feedback representations in the visual

brain.

Discussion

Using a generative model, we dissected the dynamics of processes in the ventral visual pathway

into two temporally distinct stages: the initial sweep depicts neural representational similarity

with the hierarchy of representations along the encoder sub-network which transforms visual

features into a latent representation (feedforward sweep); and the subsequent sweep shows

neural representational similarity with the decoder sub-network which layer by layer recon-

structs visual details from the latent representational code (feedback sweep).

As demonstrated in Fig 5A and 5C, the temporal representational similarities of the

encoder sub-network replicates previous findings showing hierarchical representational simi-

larities between the visual brain and the feedforward DNNs that are trained on object recogni-

tion tasks [21, 26, 27, 29, 32, 40]. Specifically, it has been demonstrated that object recognition

DNNs develop internal representations that are hierarchically similar to brain representations

Fig 8. The impact of architecture and training procedure on the representational similarity of the model and

brain spatial data. (A) Encoder, decoder and LV layer RDMs of the autoencoder model are correlated (Spearman’s R)

with subject-specific EVC RDMs. The averaged correlations over subjects with standard error of the mean are

depicted. (B) Encoder, decoder and LV layer RDMs of the autoencoder model are correlated (Spearman’s R) with

subject-specific IT RDMs. The averaged correlations over subjects with standard error of the mean are depicted. (C)

Encoder, decoder and LV layer RDMs of the untrained model are correlated (Spearman’s R) with subject-specific EVC

RDMs. The averaged correlations over subjects with standard error of the mean are depicted. (D) Encoder, decoder

and LV layer RDMs of the untrained model are correlated (Spearman’s R) with subject-specific IT RDMs. The

averaged correlations over subjects with standard error of the mean are depicted. The color coded (�) above each panel

in C-D indicates that the correlation of the corresponding layer is significantly above zero. The black (�) indicates the

correlations of the corresponding encoder and decoder layers are significantly different (N = 15; two-sided ttests; false

discovery rate corrected at P< 0.05).

https://doi.org/10.1371/journal.pcbi.1008775.g008
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in early visual cortex [40], area V4 (a mid-level region), and IT cortex (a high level categorical

region) along ventral visual pathway in primates [21, 26] and humans [27, 29, 32]. Further,

comparing the representational dynamics of the decoder sub-network and the visual brain

revealed a temporally subsequent hierarchy of processing (Fig 5B and 5C) which progressively

builds visual detail from the latent representation. This indicates that beyond feedforward

sweep, brain visual processes demonstrate similarities with the reconstruction function imple-

mented in the decoder sub-network. This finding contributes to unraveling the algorithmic

functional role of feedback processes in the visual cortex. Representational comparison of two

brain regions at the beginning and end of ventral visual pathway, EVC and IT, with the

encoder and decoder subnetworks (Fig 4) revealed the encoding processes in the feedforward

sweep develops a categorical representations similar to IT and the reconstructing processes in

feedback sweep evolves into detail representations similar to EVC. Finally, investigating the

impact of model architecture and training procedure, we found that these factors are crucial in

the brain-model relationships we observed in this study. specifically, the results suggest that

the generative property of our model contributes to the spatial and temporal relations that dis-

entangled feedforward and feedback representations in the visual brain.

Materials and methods

Ethics statement

Participants. Brain data were acquired from fifteen right-handed healthy participants with

normal or corrected to normal vision in two separate experiments (MEG and fMRI). Participants

(9 females, 27.87 ± 5.17 years old) signed an informed consent form and were compensated for

their participation. Both experiments were conducted in accordance with the Declaration of Hel-

sinki and approved by the Institutional Review Board of Massachusetts Institute of Technology.

Our study consists of two components: (i) The computational model and (ii) the MEG/

fMRI data from human participants, both of which are analyzed and compared in the result

section. We focus on the ventral visual pathway, hence, we acquire both human brain and

computational model neuronal activations on visual centric tasks. In this section, we will

describe the computational model, Super Category image dataset, and MEG/fMRI data acqui-

sition and analysis.

Neuroimaging experiments

The fMRI and MEG data used in this study has been published in [13] previously and is pub-

licly available at http://twinsetfusion.csail.mit.edu/. In this section, we briefly describe the

experiment design, data acquisition and analysis.

Stimulus set and experimental design. The stimulus set consists of 156 natural images of

four distinct visual categories: (i) Faces, (ii) Animates (animals and people), (iii) Objects, (iv)

Scenes [13]. The participants viewed images presented for 0.5 sec (with 2.5 sec inter stimulus

interval (ISI) in fMRI sessions and 0.7 to 0.8 sec ISI in MEG session) at the center of the screen

at 6˚ visual angle. Functional MRI data were acquired in two sessions (11-15 runs in total) and

MEG data were acquired in one session of 25 runs. Images were presented once in each run

and in random order. The participants were performing a vigilance task of oddball detection.

fMRI data acquisition and analysis. The fMRI experiment was conducted at the Athi-

noula A. Martinos Imaging Center at MIT, using a 3 T Siemens Trio scanner with 32-channel

phased-array head coil. Each imaging session started with acquiring structural images using a

standard T1-weighted sequence (176 sagittal slices, FOV = 256 mm2, TR = 2530 ms, TE = 2.34

ms, flip angle = 9˚) and then 5–8 runs of 305 volumes of functional data (11–15 runs across

the two sessions). Gradient-echo EPI sequence was used for functional data acquisition
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(TR = 2000 ms, TE = 29 ms, flip angle = 90˚, FOV read = 200 mm, FOV phase = 100%, band-

width 2368 Hz/Px, gap = 20%, resolution = 3.1 mm isotropic, slices = 33, ascending interleaved

acquisition). For preprocessing of fMRI data, we used SPM software. The preprocessing of

functional data included slice-time correction, realignment and co-registration to the first ses-

sion T1 structural scan, and normalization to the standard MNI space. For multivariate analy-

sis, we did not smooth the data. We used general linear modeling (GLM) to estimate fMRI

responses to the 156 stimuli. The events including stimuli conditions and nulls were modeled

with event onsets and impulse response function. Further, the motion and run regressors were

included in the GLM. Then we convolved the defined regressors with the hemodynamic

response function and estimated the beta-values for each stimulus condition. Then by con-

trasting each image condition with the explicitly defined null condition, we obtained t-mpas

per image condition for each participant. For the current study, we investigated two anatomi-

cally defined [36] regions of interest (ROIs) along the ventral visual stream, early visual cortex

(EVC) and inferior temporal cortex (IT).

We used multivariate analysis and computed pairwise dissimilarities between 156 image

specific fMRI responses using 1-Pearson correlation distances and constructed a 156 x 156 rep-

resentational dissimilarity matrix (RDM) per participant per ROI (EVC and IT). In detail, we

extracted t-value patterns corresponding to each image condition from each region of interest,

arranged them into vectors. Then we calculated the pairwise distances of the 156 image specific

vector patterns. With this process, we obtained a 156 x156 RDM per ROI for each participant.

MEG data acquisition and analysis. The MEG experiment was conducted at the Athi-

noula A. Martinos Imaging Center at MIT, using a 306-channel Elekta neuromag TRIUX sys-

tem with sampling rate of 1 kHz. The acquired data were filtered by a 0.03 to 330 Hz band-

pass filter. We measured the participants’ head position prior and during the recording with 5

coils attached to their head. We then applied a maxfilter for temporal source space separation

and head movements correction [41, 42]. For preprocessing of MEG data, we used Brainstorm

software [41]. We extracted trials from -200 ms to 1000 ms with respect to image onset. We

then removed the baseline mean and smoothed the data with a 30 HZ low-pass filter. For each

participant, we obtained 25 trials per image condition. We employed multivariate pattern anal-

ysis to compute the dissimilarity relations between image conditions [10–13, 29, 43, 44]. At

each time point t, we arranged MEG sensor measurements of each image condition into pat-

tern vectors of 306 x N dimension, where N denotes the number of trials per condition. We

then randomly assigned the trials of each condition into 8 bins and subaveraged the trials

within each bin to overcome computational complexity and reduce noise. Support vector

machine classifiers were trained on the subaveraged MEG pattern vectors of each pair of

images at each time point to discriminate the pairs. The performance of the classifier in dis-

criminating each pair of images with leave-one-out cross validation procedure was used as the

dissimilarity measure between the pairs to populate a 156 x 156 representational dissimilarity

matrix (RDM) at each time point. The rows and columns of the RDM are indexed by the

image conditions and each matrix element indicates the dissimilarity of the corresponding

image conditions based on MEG measurements of the specific time point.

Proposed computational model architecture and training

Previous work revealed that discriminative deep convolutional neural networks trained on

object recognition develop similar representations akin to the hierarchical processes along

ventral visual stream [3, 26–32]. However, there are abundant number of feedback connec-

tions in ventral visual stream and therefore, these feedforward neural network models may not

fully represent the complex visual processes in the ventral visual pathway.
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Here, we aim to investigate whether a deep generative model trained to map images to a

latent code and then reconstruct the images from the features encoded in the latent space can

reveal similar representations as feedforward and feedback processes in the ventral visual path-

way. With this aim, we developed a deep generative autoencoder model using Adverserial

Autoencoder (AAE) framework [34].

AEs consists of two major components: (i) an encoder which takes a given data and outputs

a low dimensional representation of the input data (latent code) and (ii) a decoder which takes

the latent code and aims to reproduce the input data. Vanilla AEs are often trained with the

goal of reducing dimensionality of the the input data by introducing a bottleneck (latent code)

within the intermediate layers and minimizing an objective that aims at reconstructing the

input data:

L ¼ jjx � f ðxÞjj2 ð1Þ

where f(x) is the output of the model when the input data is x.

Although, AEs are generally successful at reconstructing data with high quality, often

because of the high degree of freedom over the latent code, the training objective leads to a

severe overfitting in the latent space. That is, a small subset of the latent space which is identi-

fied by the encoder will yield meaningful content once decoded. However, if a random latent

code is fed into the decoder, with high probability it will reproduce a meaningless content.

Therefore, we employed an alternative deep generative autoencoder model called Adverse-

rial Autoencoder (AAE) framework [34]. Original work on AAE [34] utilized only fully-con-

nected layers to perform the task. However, in our proposed model we build on AAE by

introducing convolutional layers to better capture the complexity of natural images [39]. Each

convolutional block encompasses batch normalization, convolution, nonlinear activation

function (Leaky Rectified Linear Unit), and pooling operations (Fig 1). AAE employs an

adversarial training procedure to match the aggregated posterior of the latent code with the

prior Gaussian distribution. Similar to [34], we incorporated label information in the adversar-

ial regularization to better shape the distribution of the latent code (Fig 1). During the training,

for real samples, we provide a one-hot code of its corresponding class label. Alternatively, for

the fake samples, we randomly draw a one-hot code from a Gaussian distribution.

To adversarially train our model, we utilize generative adversarial network (GAN) frame-

work. The GAN framework is a min-max adversarial game between two distinct neural net-

works: (i) The generator (G), aims at generating synthetic data by learning the distribution of

the real data and (ii) the discriminator (D), aims at distinguishing the generator’s fake data

from real data. The generator uses a function G(z) that maps samples z from the prior p(z)

(normal distribution) to the data space p(x). G(z) is trained to maximally confuse the discrimi-

nator into believing that samples it generates come from the data distribution. The solution to

this game can be expressed as following [35]:

min
G

max
D
½ Ex�pdata

½log DðxÞ� þ Ez�pz
½log ð1 � DðGðzÞÞÞ�� ð2Þ

We hypothesize that the encoder embodies similar neuronal characteristics as the image

classification DNNs and thereby could resemble the human brain feedforward representations.

Alternatively, we hypothesize that the decoder part of the AE architecture which generates the

image from the latent space code would encompass the neuronal representations similar to

feedback processes in the human visual brain. Our generative autoencoder model architecture

consists of a total of 13 layers: (i) the encoder consists of 6 layers; 5 convolution layers and one

fully-connected layer, (ii) the decoder consists of 6 layers; 5 transpose convolution layers and

one fully-connected layer, and (iii) lastly one fully-connected layer representing the latent code
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layer. The latent code vector z captures high level representation of the data distribution. The

discriminator architecture consists of a total of three fully connected layers (Fig 1B).

Super category (SC) dataset

In computer vision literature, deep neural network models are usually trained to optimize cat-

egory specific recognition performance on large scale datasets. However, the human brain

learns to develop high-level representations for categories across multiple recognition tasks (eg

faces, objects, scenes, etc). Indeed, years of cognitive neuroscience has demonstrated brain

regions which functionally respond preferentially to one of these categories compared to oth-

ers (eg. Fusiform gyrus, IT area, Parahipocampal cortex, . . .). Therefore, to train our proposed

model we put together a super category (SC) data set consisting of 1,980,00 images from four

equally distributed distinct categories: (i) Animals, (ii) Objects, (iii) Scenes, and (iv) Faces.

Images from the Faces category were acquired from the VGGFaces2 dataset [45], Objects and

Animals categories were from the ImageNet dataset [46], and Scenes categories were from the

Places356 dataset [47]. To make all classes equal, we have randomly sampled 495,000 images

per class. During computational model training and testing, each image was preprocessed

through a pipeline: (i) Images were resized to 224 × 224, and (ii) normalized from 0 to 225 to

−1 to 1 range values.

Lastly, the neuronal representations for the generative AE model were computed at each

convolution/transpose convolution block after feeding 156 images used in the neuroimaging

experiments to the encoder of the computational model. Please note this image set was not

used in training the model. We employed the vectorized model activity patterns of each convo-

lutional/transpose convolution block to compute dissimilarity distances (1-Pearson’s R) for

each pair of images and create an RDM per model layer (Fig 3B).

Representational similarity analysis to relate the brain and model

representations

We used representational similarity analysis (RSA) [37, 38] to map MEG measurements, fMRI

responses, and model activation patterns into a common space where they are directly

comparable.

RSA transforms the stimulus-specific response patterns into a representational space by

creating matrices summarizing pairwise distance relationships of the response patterns (i.e.

defined as the correlational distance, or a classifier performance in discriminating two condi-

tions). The matrix capturing these pairwise dissimilarity measures is called representational

dissimilarity matrix (RDM).

To relate the spatio-temporal dynamics of neural representations in the human brain with

our proposed model, we computed the similarity (in terms of Spearman’s R) of fMRI ROI

RDMs and time-resolved MEG RDMs with our computational model RDMs (Fig 3D).

Correlations between subject-specific time-resolved MEG RDMs and computational model

layer RDMs result in a signal for each layer per participant across time (Fig 3F). While, correla-

tions between subject-specific fMRI ROI RDMs and computational model layer RDMs result

in subject-specific correlation values per layer (Fig 3E). To account for different levels of noise

in brain ROIs, we estimated the noise ceiling in EVC and IT [48, 49] and normalized the fMRI

ROI and model correlations with the corresponding noise ceiling [50]. Then the correlation

time series (for MEG/Model comparisons) or correlation values (for fMRI/Model compari-

sons) were averaged over participants and tested against zero for statistical significance.
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Statistical tests

We used nonparametric statistical test methods which make no assumptions on the distribu-

tion of the data [51, 52]. For statistical inference on the correlation time series, we used permu-

tation-based cluster-size inference with null hypothesis of zero. For statistical assessments of

peak latencies, we bootstrapped the subject-specific correlation time series for 1000 times to

estimate an empirical distribution over peak latencies [12, 29, 44].
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31. Güçlü U, van Gerven MA. Deep neural networks reveal a gradient in the complexity of neural represen-

tations across the ventral stream. Journal of Neuroscience. 2015; 35(27):10005–10014. https://doi.org/

10.1523/JNEUROSCI.5023-14.2015 PMID: 26157000

PLOS COMPUTATIONAL BIOLOGY Reconstructing feedback representations in ventral visual pathway

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008775 March 24, 2021 18 / 19

https://doi.org/10.1038/nn.3635
http://www.ncbi.nlm.nih.gov/pubmed/24464044
https://doi.org/10.1152/jn.00394.2013
http://www.ncbi.nlm.nih.gov/pubmed/24089402
https://doi.org/10.7554/eLife.36329
https://doi.org/10.7554/eLife.36329
http://www.ncbi.nlm.nih.gov/pubmed/29927384
https://doi.org/10.3390/vision3010008
http://www.ncbi.nlm.nih.gov/pubmed/31735809
https://doi.org/10.1016/0166-2236(92)90344-8
http://www.ncbi.nlm.nih.gov/pubmed/1374953
https://doi.org/10.1016/0959-4388(94)90066-3
http://www.ncbi.nlm.nih.gov/pubmed/8038571
https://doi.org/10.1016/j.neuron.2013.02.024
http://www.ncbi.nlm.nih.gov/pubmed/23622068
https://doi.org/10.1152/jn.00358.2002
http://www.ncbi.nlm.nih.gov/pubmed/12783959
https://doi.org/10.1162/jocn_a_00644
http://www.ncbi.nlm.nih.gov/pubmed/24738769
https://doi.org/10.1073/pnas.0700622104
https://doi.org/10.1073/pnas.0700622104
http://www.ncbi.nlm.nih.gov/pubmed/17404214
https://doi.org/10.1016/j.neuron.2012.01.010
http://www.ncbi.nlm.nih.gov/pubmed/22325196
https://doi.org/10.1073/pnas.1403112111
http://www.ncbi.nlm.nih.gov/pubmed/24812127
https://doi.org/10.1371/journal.pcbi.1007001
http://www.ncbi.nlm.nih.gov/pubmed/31091234
https://doi.org/10.1038/s41593-019-0392-5
http://www.ncbi.nlm.nih.gov/pubmed/31036945
https://doi.org/10.1073/pnas.1905544116
http://www.ncbi.nlm.nih.gov/pubmed/31591217
https://doi.org/10.1371/journal.pcbi.1003915
https://doi.org/10.1371/journal.pcbi.1003915
http://www.ncbi.nlm.nih.gov/pubmed/25375136
https://doi.org/10.1016/j.cub.2014.08.026
http://www.ncbi.nlm.nih.gov/pubmed/25247371
https://doi.org/10.1038/srep27755
http://www.ncbi.nlm.nih.gov/pubmed/27282108
https://doi.org/10.1016/j.tics.2019.01.009
http://www.ncbi.nlm.nih.gov/pubmed/30795896
https://doi.org/10.1523/JNEUROSCI.5023-14.2015
https://doi.org/10.1523/JNEUROSCI.5023-14.2015
http://www.ncbi.nlm.nih.gov/pubmed/26157000
https://doi.org/10.1371/journal.pcbi.1008775


32. Mohsenzadeh Y, Mullin C, Lahner B, Oliva A. emergence of Visual center-periphery Spatial organiza-

tion in Deep convolutional neural networks. Scientific reports. 2020; 10(1):1–8. https://doi.org/10.1038/

s41598-020-61409-0 PMID: 32170209

33. Cichy RM, Roig G, Andonian A, Dwivedi K, Lahner B, Lascelles A, et al. The algonauts project: A plat-

form for communication between the sciences of biological and artificial intelligence. arXiv preprint

arXiv:190505675. 2019.

34. Makhzani A, Shlens J, Jaitly N, Goodfellow I, Frey B. Adversarial autoencoders. arXiv preprint

arXiv:151105644. 2015.

35. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial

networks. arXiv preprint arXiv:14062661. 2014.

36. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated

anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI

single-subject brain. Neuroimage. 2002; 15(1):273–289. https://doi.org/10.1006/nimg.2001.0978

PMID: 11771995

37. Kriegeskorte N, Mur M, Bandettini PA. Representational similarity analysis-connecting the branches of

systems neuroscience. Frontiers in systems neuroscience. 2008; 2:4. https://doi.org/10.3389/neuro.06.

004.2008 PMID: 19104670

38. Kriegeskorte N, Kievit RA. Representational geometry: integrating cognition, computation, and the

brain. Trends in cognitive sciences. 2013; 17(8):401–412. https://doi.org/10.1016/j.tics.2013.06.007

PMID: 23876494

39. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks.

Advances in neural information processing systems. 2012; 25:1097–1105.

40. Cadena SA, Denfield GH, Walker EY, Gatys LA, Tolias AS, Bethge M, et al. Deep convolutional models

improve predictions of macaque V1 responses to natural images. PLoS computational biology. 2019;

15(4):e1006897. https://doi.org/10.1371/journal.pcbi.1006897 PMID: 31013278

41. Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM. Brainstorm: a user-friendly application for MEG/

EEG analysis. Computational intelligence and neuroscience. 2011; 2011. https://doi.org/10.1155/2011/

879716 PMID: 21584256

42. Taulu S, Simola J. Spatiotemporal signal space separation method for rejecting nearby interference in

MEG measurements. Physics in Medicine & Biology. 2006; 51(7):1759. https://doi.org/10.1088/0031-

9155/51/7/008 PMID: 16552102

43. Carlson T, Tovar DA, Alink A, Kriegeskorte N. Representational dynamics of object vision: the first 1000

ms. Journal of vision. 2013; 13(10):1–1. https://doi.org/10.1167/13.10.1 PMID: 23908380

44. Pantazis D, Fang M, Qin S, Mohsenzadeh Y, Li Q, Cichy RM. Decoding the orientation of contrast

edges from MEG evoked and induced responses. NeuroImage. 2018; 180:267–279. https://doi.org/10.

1016/j.neuroimage.2017.07.022 PMID: 28712993

45. Cao Q, Shen L, Xie W, Parkhi OM, Zisserman A. Vggface2: A dataset for recognising faces across

pose and age. In: 2018 13th IEEE international conference on automatic face & gesture recognition (FG

2018). IEEE; 2018. p. 67–74.

46. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. Imagenet large scale visual recogni-

tion challenge. International journal of computer vision. 2015; 115(3):211–252. https://doi.org/10.1007/

s11263-015-0816-y

47. Zhou B, Lapedriza A, Khosla A, Oliva A, Torralba A. Places: A 10 million image database for scene rec-

ognition. IEEE transactions on pattern analysis and machine intelligence. 2017; 40(6):1452–1464.

https://doi.org/10.1109/TPAMI.2017.2723009 PMID: 28692961

48. Nili H, Wingfield C, Walther A, Su L, Marslen-Wilson W, Kriegeskorte N. A toolbox for representational

similarity analysis. PLoS computational biology. 2014; 10(4):e1003553. https://doi.org/10.1371/journal.

pcbi.1003553 PMID: 24743308

49. Oliva A. Gist of the scene. In: Neurobiology of attention. Elsevier; 2005. p. 251–256.

50. Khaligh-Razavi SM, Cichy RM, Pantazis D, Oliva A. Tracking the spatiotemporal neural dynamics of

real-world object size and animacy in the human brain. Journal of cognitive neuroscience. 2018;

30(11):1559–1576. https://doi.org/10.1162/jocn_a_01290 PMID: 29877767

51. Maris E, Oostenveld R. Nonparametric statistical testing of EEG-and MEG-data. Journal of neurosci-

ence methods. 2007; 164(1):177–190. https://doi.org/10.1016/j.jneumeth.2007.03.024 PMID:

17517438

52. Pantazis D, Nichols TE, Baillet S, Leahy RM. A comparison of random field theory and permutation

methods for the statistical analysis of MEG data. Neuroimage. 2005; 25(2):383–394. https://doi.org/10.

1016/j.neuroimage.2004.09.040 PMID: 15784416

PLOS COMPUTATIONAL BIOLOGY Reconstructing feedback representations in ventral visual pathway

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008775 March 24, 2021 19 / 19

https://doi.org/10.1038/s41598-020-61409-0
https://doi.org/10.1038/s41598-020-61409-0
http://www.ncbi.nlm.nih.gov/pubmed/32170209
https://doi.org/10.1006/nimg.2001.0978
http://www.ncbi.nlm.nih.gov/pubmed/11771995
https://doi.org/10.3389/neuro.06.004.2008
https://doi.org/10.3389/neuro.06.004.2008
http://www.ncbi.nlm.nih.gov/pubmed/19104670
https://doi.org/10.1016/j.tics.2013.06.007
http://www.ncbi.nlm.nih.gov/pubmed/23876494
https://doi.org/10.1371/journal.pcbi.1006897
http://www.ncbi.nlm.nih.gov/pubmed/31013278
https://doi.org/10.1155/2011/879716
https://doi.org/10.1155/2011/879716
http://www.ncbi.nlm.nih.gov/pubmed/21584256
https://doi.org/10.1088/0031-9155/51/7/008
https://doi.org/10.1088/0031-9155/51/7/008
http://www.ncbi.nlm.nih.gov/pubmed/16552102
https://doi.org/10.1167/13.10.1
http://www.ncbi.nlm.nih.gov/pubmed/23908380
https://doi.org/10.1016/j.neuroimage.2017.07.022
https://doi.org/10.1016/j.neuroimage.2017.07.022
http://www.ncbi.nlm.nih.gov/pubmed/28712993
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/TPAMI.2017.2723009
http://www.ncbi.nlm.nih.gov/pubmed/28692961
https://doi.org/10.1371/journal.pcbi.1003553
https://doi.org/10.1371/journal.pcbi.1003553
http://www.ncbi.nlm.nih.gov/pubmed/24743308
https://doi.org/10.1162/jocn_a_01290
http://www.ncbi.nlm.nih.gov/pubmed/29877767
https://doi.org/10.1016/j.jneumeth.2007.03.024
http://www.ncbi.nlm.nih.gov/pubmed/17517438
https://doi.org/10.1016/j.neuroimage.2004.09.040
https://doi.org/10.1016/j.neuroimage.2004.09.040
http://www.ncbi.nlm.nih.gov/pubmed/15784416
https://doi.org/10.1371/journal.pcbi.1008775

