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Despite the efforts invested in the eradication of bovine tuberculosis in Spain, herd prevalence 
has remained constant in the country during the last 15 years (~1.5–1.9%) due to a combination 
of epidemiological factors impairing disease control, including between-species transmission. 
Here, our aim was to investigate the molecular diversity of Mycobacterium bovis isolates 
belonging to the highly prevalent SB0339 spoligotype in the cattle-wildlife interface in different 
regions of Spain using whole-genome sequencing (WGS). Genomic data of 136 M. bovis 
isolates recovered from different animal species (cattle, wild boar, fallow deer, and red deer) 
and locations between 2005 and 2018 were analyzed to investigate between- and within-
species transmission, as well as within-herds. All sequenced isolates differed by 49–88 single 
nucleotide polymorphisms from their most recent common ancestor. Genetic heterogeneity 
was geographic rather than host species-specific, as isolates recovered from both cattle 
and wildlife from a given region were more closely related compared to isolates from the 
same species but geographically distant. In fact, a strong association between the geographic 
and the genetic distances separating pairs of M. bovis isolates was found, with a significantly 
stronger effect when cattle isolates were compared with wildlife or cattle-wildlife isolates in 
Spain. The same results were obtained in Madrid, the region with the largest number of 
sequenced isolates, but no differences depending on the host were observed. Within-herd 
genetic diversity was limited despite the considerable time elapsed between isolations. The 
detection of closely related strains in different hosts demonstrates the complex between-host 
transmission dynamics present in endemic areas in Spain. In conclusion, WGS results a 
valuable tool to track bTB infection at a high resolution and may contribute to achieve its 
eradication in Spain.
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INTRODUCTION

Mycobacterium bovis, a member of the Mycobacterium tuberculosis 
complex (MTBC) and the main causative agent of bovine 
tuberculosis (bTB), can infect a wide range of mammalian species, 
including domestic and wildlife species, as well as humans 
(Cousins, 2001; Aranaz et  al., 2004; Perez-Lago et  al., 2014). 
While the disease has been successfully eradicated in several 
countries using test and slaughter strategies and movement 
restrictions (Reviriego Gordejo and Vermeersch, 2006; EFSA 
Panel on Animal Health and Welfare (AHAW), 2014; More 
et al., 2015), bTB herd prevalence is still relatively high in several 
regions of the world (Guta et  al., 2014a; Allen et  al., 2018). 
Eradication efforts have been steadily hampered by the long 
latency period characteristic of the disease (Goodchild and 
Clifton-Hadley, 2001), the limitations of available diagnostic tests, 
particularly for the detection of early infection stages (de la 
Rua-Domenech et al., 2006), and the existence of wildlife reservoirs 
(Garnett et  al., 2002; O’Brien et  al., 2006). For this reason, 
in locations where wildlife reservoirs are known to be important 
in bTB transmission, disease control should be  focused on an 
integrated approach at the cattle-wildlife interface.

In Spain, even though herd prevalence has decreased 
significantly since the initial implementation of the national 
eradication programs in the 80s, complete eradication of the 
disease remains elusive (2.2% herd prevalence in 2002 and 
1.6% in 2020; Informe Final Técnico Tuberculosis Bovina Año, 
2020). Bovine TB is not uniformly distributed across the country, 
as herd-prevalence is higher in central and southern regions 
(up to 10.9 and 6.4% in Castilla-La Mancha and Andalucia, 
respectively in 2020) while disease is virtually absent in north-
western parts of Spain (0% herd-prevalence in Galicia, Asturias 
and the Canary Islands among others; Informe Final Técnico 
Tuberculosis Bovina Año, 2020). In bTB endemic areas the 
geographic distribution of livestock and wildlife species known 
to be  infected with M. bovis often overlap. This is particularly 
relevant in the case of extensively managed livestock, which 
may share pastures and/or watering points with wildlife species, 
thus leading to a potential risk of interspecies transmission 
of the infection. Furthermore, in certain cases residual infection 
may persist over time in a herd in spite of the application of 
test-and-slaughter programs due to the presence of infected 
but undetected animals (Karolemeas et  al., 2011; Guta et  al., 
2014b). Although wild boar is the most important wildlife 
reservoir of bTB in central and southern Spain, red deer and 
fallow deer may also serve as potential hosts (Gortazar et  al., 
2008; Naranjo et  al., 2008).

Direct Variable Repeat spacer oligonucleotide typing (DVR 
spoligotyping) and Mycobacterial Interspersed Repetitive Unit  - 
Variable Number of Tandem Repeat (MIRU-VNTR) typing are 
the most widely used techniques to characterize M. bovis isolates 
(Kamerbeek et  al., 1997). Most M. bovis spoligotypes in Spain 
are circumscribed to specific regions, while a small proportion 
of highly prevalent profiles are widespread in the country (i.e., 
SB0121, SB0134 or SB0339; Rodriguez-Campos et  al., 2012). 
Molecular typing of M. bovis strains has demonstrated that both 
cattle and wildlife species share similar spoligotype and VNTR 

profiles, with spatial clustering across hosts suggesting interspecific 
transmission at local scales (Aranaz et  al., 2004). Under these 
circumstances, effective control of bTB can only be  achieved if 
wildlife is also considered in eradication efforts. Furthermore, 
molecular characterization can help to determine if newly detected 
animals in previously infected herds may represent a reinfection 
or a failure removing all infected cattle in the previous herd-tests.

In spite of the widespread use of spoligotyping, this tool 
by itself is unable to precisely reconstruct the phylogeny of 
M. bovis isolates or differentiate epidemiologically unrelated 
isolates in certain settings given its limited resolution and high 
homoplasy rate (Comas et al., 2009). Recent advances in whole-
genome sequencing (WGS) allow the performance of genome-
wide screenings to study microbial populations, increasing the 
power of molecular epidemiology studies. In this sense, the 
use of single nucleotide polymorphisms (SNP)-based genotyping 
can provide valuable insights into the pathogenicity and evolution 
of M. bovis strains, allowing the identification of host or spatial 
associations, improve outbreak investigations and the 
differentiation of M. bovis strains into lineages and related 
phylogenetic structures (Joshi et  al., 2012; Hauer et  al., 2015; 
Ghebremariam et  al., 2016; Trewby et  al., 2016; Orloski et  al., 
2018; Price-Carter et  al., 2018).

In the context of bTB eradication and control, tracking 
within-herd M. bovis variability is crucial as it may provide 
insights into possible new introductions in herd recurrence 
events. Additionally, understanding bTB transmission patterns 
within cattle and between cattle and wildlife species from 
different areas in Spain is crucial to assess the risk of infection 
to livestock at a multi-host interface, particularly in endemic 
areas where infected livestock and wildlife coexist. To date, 
no multi-region studies to characterize the genetic diversity 
among M. bovis isolates from cattle and wildlife in Spain using 
WGS have been performed. For these reasons, the aim of this 
study was to use WGS technologies to assess the risk of bTB 
transmission between cattle and wildlife using one of the most 
prevalent spoligotypes in Spain, SB0339, as a working example. 
This spoligotype is widely distributed across the country and 
is especially clustered in the province of Madrid, with >48% 
of the total SB0339 isolations (extracted from mycoDB.es). 
The specific objectives were (I) to investigate the genomic 
diversity among SB0339 M. bovis isolates recovered from cattle 
and wildlife during 2005–2018 from different regions of Spain 
in general, and in Madrid in particular; (II) to reconstruct 
the phylogenetic relationships between the isolates; and (III) 
to perform a comparative analysis of intraspecies and interspecies 
genomic diversity to understand the underlying evolutionary 
processes of M. bovis in the cattle-wildlife interface in Spain.

MATERIALS AND METHODS

Isolate Selection and Laboratory Methods
As part of the bTB eradication program, tissue samples from 
cattle or wildlife suspected to be  infected with bTB due to 
positive results in ante-mortem tests (cattle) or detection of 
granulomatous-appearing lesions in post-mortem inspection 
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(cattle and wildlife) are collected and submitted to regional 
Reference Laboratories for bacteriological culture. Once bacterial 
growth is detected, DNA is extracted from cultures and the 
presence of MTBC members is confirmed through conventional 
molecular methods, such as PCR or DVR spoligotyping (Cousins 
et al., 1991; Kamerbeek et al., 1997). In this context, a selection 
of M. bovis isolates recovered from naturally infected cattle 
and wildlife tissue samples using standard isolation procedures 
at the VISAVET Health Surveillance Center were considered 
for inclusion in the analyses performed here.

The SB0339 was selected for the study as this pattern is 
the third most prevalent spoligotype in Spain [8.1% of all 
isolates, only preceded by SB0121 (28.2%) and SB0134 (10.7%)], 
and the most frequently isolated spoligotype in Madrid 
(Rodriguez-Campos et al., 2010, 2012). Moreover, this spoligotype 
is frequently detected in both cattle and wildlife (i.e., red deer, 
fallow deer and wild boar). A total of 1,501 (44% out of the 
total SB0339 strains in Spain, mycoDB.es) SB0339 samples were 
available for selection at the VISAVET Health Surveillance 
Centre strain collection and were divided into strata based on 
the animal species of isolation, location (province), and year 
of isolation. Subsequently, a stratified random sampling was 
performed, so that only subsets of SB0339 isolates recovered 
from provinces and years in which more than one host species 
was available were further considered for selection. Accordingly, 
259 isolates of the SB0339 spoligotype recovered from cattle 
and wildlife between 2005 and 2018  in 21 regions in Spain 
were subjected to bacteriological re-culture. Additionally, to 
evaluate the degree of genetic heterogeneity among M. bovis 
isolates in bTB infected herds, between 2 and 8 isolates from 
15 herds were selected. Ten of these herds had been chronically 
infected, defined as herds with M. bovis isolations in more 
than 1 year.

Selected isolates identified as M. bovis were centrifuged at 
2,500 × g for 10 min and subsequently washed twice with 5 ml 
of phosphate-buffered saline (PBS, Gibco) and centrifuged. 
Supernatants were poured off and the pellets were re-suspended 
in 4 ml of PBS. Samples were inactivated and mycobacterial 
DNA was further separated from the other cellular components 
using a bead disruption and phenol/chloroform/isoamyl alcohol 
(PCI, Sigma-Aldrich) based protocol as described elsewhere.1 
The quality and concentration of DNA was measured using 
a nanodrop spectrophotometer and a Qubit™ fluorometer 
(Invitrogen).

Whole-Genome Sequencing
The extracted mycobacterial DNA was submitted to the National 
Veterinary Services Laboratory (NVSL) in Ames, Iowa (United 
States) to perform WGS. Libraries were prepared using Nextera 
XT preparation kit and the total genomic DNA was sequenced 
on a MiSeq instrument to produce 2 × 250 bp reads (Illumina, 
San Diego, CA, United  States). Generated FASTQ files were 
analyzed using the United  States Department of Agriculture 
(USDA) NVSL in-house vSNP pipeline, a high-resolution 

1 dx.doi.org/10.17504/protocols.io.nsgdebw

reference dependent variant calling pipeline.2 Briefly, genomic 
reads were mapped against the reference genome M. bovis 
AF2122/97 (National Center for Biotechnology Information 
[NCBI] accession number NC_0002945) using the Burrows-
Wheeler Aligner (BWA; Li and Durbin, 2009; Malone et  al., 
2017), and vSNP then called SNPs relative to the reference. 
Defining SNPs were used to identify different groups of isolates 
within the vSNP pipeline as specified in vSNP dependency files.

Single nucleotide polymorphisms were called using FreeBayes, 
a haplotype-based variant detector, generating variant call format 
files (VCF; Garrison and Marth, 2012). Results were filtered 
using a minimum Phred-scaled quality (QUAL) score of 150 
and an Allele Count (AC) of 2. Isolates that contained 
heterologous/heterozygous calls at a SNP position (AC = 1 and 
present in <90% of the reads) were considered ambiguous as 
coded by the International Union of Pure and Applied Chemistry 
(IUAPC) and were visually inspected. Those SNP positions 
that had a variant call in more than 90% of reads were 
considered homozygous whereas variant calls identified in <90% 
of the reads the sample were considered heterozygous and 
removed from the analysis.

A summary of quality metrics was then generated to evaluate 
the performance of the sequencing run of each isolate. This 
included the average depth of coverage, the average read length, 
the percent of the reference genome covered by the reads 
from each isolate, the number of contigs not mapping to the 
reference, the number of SNPs with a quality (QUAL) score 
of >300 with an AC of 2 (good SNPs), and the spoligotype 
octal code. The octal code was based on the counts of each 
spacer sequence against the raw FASTQ files. Reads identified 
as M. tuberculosis complex were isolated and cleaned reads 
were ran through vSNP.

The SNPs tables and the phylogenetic trees were created 
after removing all uninformative SNPs (i.e., homogeneous/
monomorphic between the isolates). Those SNPs identified in 
the ∼10% of the genome composed of repetitive regions were 
excluded using default masking files in the vSNP dependencies, 
as mapping in these regions is error prone (Cole et  al., 1998). 
This included the highly GC-rich and polymorphic proline-
glutamate (PE)/proline-proline-glutamate (PPE) gene family 
(Cole et  al., 1998). Additionally, SNPs present in areas with 
an anomalous accumulation of variants (typically ≥2 SNPs in 
10 bp due to poor alignment) were omitted. After removing 
all uninformative and potentially erroneous variant positions, 
informative SNPs were validated by visualizing alignment files 
in the Integrative Genomics Viewer (IGV) software (Robinson 
et  al., 2011).

Maximum likelihood phylogenetic trees were built with 
RAxML (Stamatakis, 2014) using the SNP alignment file 
containing the concatenated polymorphic and validated SNPs. 
A general time reversible (GTR) CAT model for the nucleotide 
substitution rate with a Gamma distribution was assumed to 
account for between-site heterogeneity (Stamatakis, 2014). The 
accuracy of the phylogenetic tree was confirmed using the 
manually validated SNP table, and additional filtering of 

2 https://github.com/USDA-VS/vSNP
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questionable SNPs was performed on an isolate-by-isolate basis 
when appropriate.

The degree of genetic relatedness among M. bovis genomes 
was assessed between- and within-species using the pairwise 
genetic distances between isolates. Isolates were identified using 
the year of isolation followed by the isolate number (#), the 
initial(s) of the province of origin, the animal species, and, if 
applicable, the code of the herd or the estate from which the 
sample was recovered.

Between- and Within-Species 
Phylogenetic Analyses
The phylogenetic analysis was first performed on the total number 
of isolates available for the study. The distributions of the pairwise 
SNP distances between and within cattle and wildlife isolates 
were compared using the Kruskal-Wallis test followed by post-hoc 
tests with Bonferroni corrections for multiple comparisons. 
Hierarchical Bayesian clustering was performed to determine the 
population structure using BAPS (Cheng et  al., 2013). Isolates 
were considered genetically close when their sequences were within 
0–3 SNPs from each other (Hatherell et al., 2016). The geographic 
distance in kilometers between pairs of isolates was computed 
using the centroids of the municipalities in which the isolates 
were recovered, and the relationship between genetic and geographic 
distances was assessed using Spearman’s rho correlation test.

Subsequently, and to avoid an artificial increase of cattle 
within-species homogeneity, only one isolate per herd was 
randomly selected. The relationship between the genetic distance 
between two isolates and the distance between their geographic 
origins (province, municipality and/or state) was then explored 
using linear regression models that also considered the host 
species of origin (i.e., if the pair of isolates both originated 
from cattle, from wildlife or from both). The model considered 
the selected risk factors (geographic distance in km and host 
species) along with the interaction between the two. Finally, 
the same analysis was performed only on isolates from the 
Madrid region, from which the largest number of isolates was 
available (see results). Since only one isolate per herd was 
randomly selected in cattle herds with multiple isolates, the 
impact of the selection on the assessment of the association 
between the genetic distance and the geographical origin and 
host species was evaluated through a sensitivity analysis consisting 
in repeating 10 times the analyses with one isolate per intensively 
sampled herd selected at random.

Within- and Between-Herd Phylogenetic 
Analyses
Isolates recovered from different cattle herds were selected to 
evaluate the genetic variability of isolates retrieved from the same 
herds over time. Data on the time elapsed between the isolates 
were recovered and the number of years with isolations for each 
chronically infected herd was available. Within-herd genetic 
distances (i.e., between isolates originating from a single herd) 
considering all herds and only those chronically infected (with 
bTB isolations retrieved in more than 1 year) were assessed, along 
with the number of closely related (≤3 SNPs) strains present in 

the herds for different time periods. The correlation between 
median genetic distances and the number of different years from 
which isolates were retrieved in each herd was calculated.

Multiple comparisons, graphics and phylogeny analyses were 
conducted using the ggplot2 (Wickham, 2009), dplyr (Wickham 
et  al., 2019), ape (Paradis et  al., 2004), rgdal (Bivand et  al., 
2013), rhierbaps (Tonkin-Hill et  al., 2018), and PMCMRplus 
(Pohlert, 2020) packages for R software (R Core Team, 2019).

RESULTS

Descriptive Analysis
One hundred and thirty-six isolates were recovered out of the 
259 SB0339 selected samples. Out of these, 72.8% (n = 99) 
derived from the VISAVET strain collection, while the remaining 
27.2% were provided by other Regional Laboratories. These 
136 strains were obtained during the 2005–2018 period from 
cattle (72.8%, n = 99), wild boar (14.7%, n = 20), fallow deer 
(6.6%, n = 9), and red deer (5.9%, n = 8, Table  1). A median 
number of 10 samples per year (range 2–25) were available, 
with more isolates included after 2009, and years 2010 and 
2017 accounting for the highest number of isolates (n = 17 
and n = 25, respectively, Supplementary Figure S1). The areas 
from which the samples used in the study originated included 
the northwestern, northeastern, central, eastern, and southern 
regions of the country (Table  1; Figure  1). Individual isolate 
information and associated metadata are detailed in 
Supplementary Table S1. The highest (48.5%, n = 66) proportion 
of isolates was derived from bTB infected animals located in 
Madrid, followed by Ciudad Real (6.6%, n = 9), Islas Baleares 
(from now on, the region of Mallorca, 5.9%, n = 8), Zaragoza 
(5.9%, n = 8) and Toledo (5.1%, n = 7). The rest of the provinces 
accounted for the remaining 38 (27.9%) isolates (Table  1; 
Figure  1). Information on the exact municipality from which 
isolates originated was available in 121 isolates (89%).

The largest number of both cattle (45.5%, n = 45/99) and 
wildlife (56.8%, n = 21/37) isolates were collected from herds 
and estates located in Madrid, where wild boar was the main 
wildlife species sampled (n = 12/21, Table  1; Figure  1). Out 
of the 7 municipalities in Madrid from which isolates were 
included in the study (Colmenar Viejo, Madrid, El Boalo, 
Quijorna, Rascafria, San Agustin de Guadalix, and San Sebastian 
de los Reyes), Colmenar Viejo and Madrid accounted for the 
highest number of cattle (n = 26 and n = 13, respectively) and 
wildlife (n = 8  in each) isolates (Supplementary Table S1).

Mycobacterium bovis Genomic Data
Average depth of coverage ranged between 20x and 174x except 
7 isolates, with 85.3% (n = 116) of the isolates with values ≥30x. 
The average read length of the isolates ranged between 186.5 
and 239.4 (median = 229.7, IQR = 222.6–233.6). The median genome 
coverage was 99.0% (IQR = 98.9–99.1). Alignment summary data 
and sample associated metadata of the 136 isolates subjected to 
WGS are included in Supplementary Table S1. No indication 
of the presence of mixed isolates was detected in the sequenced 
population as not many occurrences of mixed positions were 
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observed recurrently across the genome in regions with good 
mapping scores.

Phylogenetic Analysis and Clustering 
Structure
One-hundred and eleven SNPs were excluded as these were 
detected in regions where mapping was error prone or were 
present in areas with an anomalous accumulation of variants. 
The analysis of the informative SNPs showed that among the 
studied Spanish M. bovis isolates there were a total of 1,345 
SNPs, of which 773 were singletons (present in a single isolate). 
Genetic diversity among isolates was variable, with an average 
number of 62 SNPs (range = 49–88) since diverging from their 
most recent common ancestor (MRCA). Isolates were subdivided 
into two distantly related groups (A and B, Figure  2), with 
the largest one (A) further subdivided into six different clades 
(A.1-A.3, A.4.1, A.4.2 and A.5) according to BAPS and based 
on a maximum within-clade distance of 57 SNPs 
(Supplementary Table S2; Figure 2; Supplementary Figures S2, 
S3). All isolates in group A were characterized by the presence 
of two additional SNPs (absent in group B) and included 96% 
(n = 95) of the cattle and 97.3% (n = 36) wildlife isolates. Group 
B included 5 isolates of which one was recovered from a wild 
boar and the remaining from cattle.

Distribution of clades per province is shown in 
Supplementary Figure S4. Clade A.2 represented the largest clade/
number of isolates (74.3% of the total) and included all bovine 
and wildlife isolates from Madrid (n = 66) and Mallorca (n = 8), 
together with 27 bovine and wildlife isolates from 12 different 
provinces (Supplementary Table S2; Supplementary Figure S4). 
Isolates in this clade were recovered throughout the whole study 

period (2005–2018) with a median number of seven isolates per 
year (range 1–21). Clade A.1 included 3 bovine and 3 wildlife 
isolates recovered between 2011 and 2018 from provinces located 
in central and southern Spain, whereas isolates in clades A.3, 
A.4.1, A.4.2 and A.5 were exclusively from cattle and were cultured 
in 2007, 2008, 2016 and 2018 (clade A.3, n = 4), 2010–2012 (clade 
A.4.1, n = 7), 2005–2017 (clade A.4.2, n = 11) and 2012 and 2017 
(clade A.5, n = 2). Isolates from clades A.3, A.4.1 and A.4.2 were 
recovered from provinces that covered the central strip from West 
to East of Spain and two northern regions, while the two isolates 
in clade A.5 originated from very distant (>600 km) provinces 
(Supplementary Figure S4). Finally, isolates in group B were 
recovered in 2011 (n = 1) and 2017–2018 (n = 4).

Between-group (A versus B) genetic distance ranged between 
115 and 163 SNPs, whereas within-group genetic distances 
were much lower in group A (median = 37 SNPs, range = 0–129) 
than in group B (median = 96 SNPs, range = 12–108, 
Supplementary Table S2). Median within-clade genetic distance 
in group A was 30 (range = 21–57; Supplementary Table S2), 
whereas between-clades median genetic distance was 85 
(range = 35–114). Although isolates in group B were genetically 
distant (median distance 96 SNPs), two cattle and one wild 
boar isolates were relatively closely related (<16 SNPs) and 
recovered close in time (2017 and 2018).

Between- and Within-Species Genetic 
Diversity
Genetic diversity between isolates from different hosts was 
assessed using 90 isolates (53 from cattle -including only one 
per herd- and all wildlife isolates: 20 from wild boar, 9 from 
fallow deer, and 8 from red deer).

TABLE 1 | Number of cattle, red deer, wild boar, and fallow deer sequenced isolates per province and overall included in the study.

Number of Isolates

Province/ region 
code

Total % Cattle Red deer Wild boar Fallow deer

Avila A 2 1.5 2
Caceres CC 2 1.5 2
Castellon CS 4 2.9 4
Ciudad Real CR 9 6.6 5 4
Cordoba CO 3 2.2 3
Jaen J 2 1.5 2
La Rioja LR 1 0.7 1
Leon LE 1 0.7 1
Madrid M 66 48.5 45 2 12 7
Mallorca MA 8 5.9 6 2
Navarra NA 4 2.9 4
Palencia PA 5 3.7 1 4
Salamanca SA 4 2.9 4
Segovia SG 1 0.7 1
Sevilla SE 1 0.7 1
Soria SO 1 0.7 1
Toledo TO 7 5.2 4 1 2
Valencia V 5 3.7 5
Zamora ZA 2 1.5 2
Zaragoza Z 8 5.9 8
TOTAL 136 100 99 8 20 9
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Six events of short (≤3 SNPs) genetic distances between 
isolates from different host species recovered close in time 
(within 5 years, and within <2 years in five of them) and space 
(within the same province or neighboring provinces) were 
found. Specifically, these events included: one cattle and one 
red deer isolates recovered in Avila and Madrid, respectively, 
one cattle isolate from Cordoba and a red deer sample from 
Ciudad Real, a triplet formed by one cattle, a wild boar and 
one red deer M. bovis isolates from Toledo, two M. bovis 
samples isolated from cattle and fallow deer recovered in the 
same municipality in Madrid, a pair of cattle and wild boar 
isolates retrieved from two distantly located regions of Madrid, 
and a cluster of cattle from two chronically infected herds 
(herds MAA and MAB) and 2 fallow deer isolates recovered 
in Mallorca (Figure  2).

Overall, median genetic divergence within cattle isolates in 
Spain (median = 80 SNPs, IQR = 36–109), was significantly (p < 0.001, 
Kruskal-Wallis) higher than between cattle and wildlife (median = 66 

SNPs, IQR = 29–93), and within-wildlife isolates (median = 29 SNPs, 
IQR = 22–40). No changes were observed when the cattle within-
species variability was reassessed using 10 random selections of 
isolates from the herds with multiple isolates available (maximum 
percentage change 0.01%). Genetic distances were low-to-moderately 
correlated with geographic distances (rho = 0.42, p < 0.001). When 
the association between genetic and geographic distances was 
analyzed considering the host from which isolates originated using 
a linear model, both the host and the interaction between host 
and geographic distance was significant (Supplementary Table S3): 
genetic distance increased with increasing geographic distances 
between the location from which the two isolates originated, but 
this effect was less pronounced when considering two cattle isolates 
compared to when two wildlife isolates were selected (and similar 
to when considering pairs retrieved from both cattle and wildlife; 
Figure  3). A 5 SNP increase in the genetic diversity within-
wildlife isolates was expected for every 100 km increase between 
the origin of each pair of isolates, whereas this number increased 

A

B

FIGURE 1 | Map of the number of M. bovis SB0339 isolates recovered from cattle (A) and wildlife (B) per province included in the study.
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to 7 when both isolates were recovered from cattle 
(Supplementary Table S3; Figure 3). Coefficients and slopes from 
the 10 models built based on the different random selections of 
cattle isolates from chronically infected herds were similar (<10% 
change), suggesting that the random selection of isolates in 
intensively sampled herd had no substantial impact on the observed 
genetic diversity (Figure  3; Supplementary Figure S5; 
Supplementary Table S3).

In contrast, when the same analysis was performed in the 
subset of isolates recovered in Madrid, no significant (p > 0.05, 
Kruskal-Wallis test) differences in the distances found between 
isolates from the same species (median range within-cattle = 30–32 
SNPs; median within-wildlife = 30 SNPs) or different species 
(median range cattle-wildlife = 29–31 SNPs) were identified. The 
final model included only the geographic distance between isolates 
as a covariable as no significant effect of the animal species was 
found. An increase of 13 SNPs per 100 km distance between 
pairs of isolates was observed based on the results of the 10 
linear regression models (Supplementary Table S4). Coefficients 

of the regression models were more susceptible to variation based 
on the randomly selected isolates per herd (up to 20% change, 
Supplementary Table S4).

Within- and Between-Herd Genetic 
Diversity
Among the 99 cattle sequences, 61 originated from the same 
15 herds and were selected to evaluate within-herd diversity 
(Table  2). Median number of isolates originating from the 15 
herds was 3 (IQR = 3–5) and were retrieved in a median of 
2 different years (IQR = 1–4). Ten of these herds were considered 
as chronically infected (isolates retrieved in >1 year), yielding 
48 cattle isolates (median number of isolates per chronically 
infected herd = 5, range = 3–8) recovered throughout a median 
of 4 different years (IQR = 2–5). The remaining (n = 5) 
non-chronically infected 5 herds accounted for 2–3 samples 
recovered in one single year (Table  2).

Isolates from the within-herd genetic analyses were all 
included in three clades from group A (A.2, A.4.1 and A.4.2). 

FIGURE 2 | Whole-genome sequence RAxML phylogenetic tree constructed using a GTR-CAT model of 136 Spanish M. bovis SB0339 samples. The two distantly 
related groups of isolates are indicated with letters A and B. Isolate tags are colored based on the province of isolation which codes are shown in Table 1. Isolates 
with genetic distances of ≤3 SNPs between cattle and wildlife are colored in red background.
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Median within-herd genetic distances among the isolates from 
each of the 15 herds ranged between 0 and 44 SNPs (median = 9). 
A higher genetic diversity was observed in isolates recovered 
from herds located in Madrid (namely, M_A-M_C, M_G, and 
M_H), although isolates from single herds tended to cluster 
together (Supplementary Figure S6). Isolates recovered in herd 
CS_A, recovered within the same year, were in a range of 
5–7 SNPs apart. The genetic distance between isolates recovered 
from the 10 chronically infected herds was 2–44 SNPs 
(median = 30), whereas genetic diversity was lower in the isolates 
from the remaining 5 herds that were not chronically bTB 
infected (median within-herd genetic distance = 2 SNPs, 
range = 0–6).

In five out the 10 chronically infected herds, at least 60% 
of the isolates recovered in a range of 2–5 different years were 
within 3 SNPs distance with each other (Table  2). In fact, 
there was a high positive correlation between median genetic 
distances and number of different years from which isolates 
originated in a herd (rho = 0.88, p < 0.001). Six (M_A, M_C, 
M_D, M_H, and M_J) out the seven chronically infected herds 
located in Madrid included similar (i.e., ≤3 SNPs), nearly 
similar (i.e., 4 SNPs for M_C and M_H) and different (i.e., 
>20 SNPs) isolates recovered close (same year) and distant 
(up to 10 years apart) in time, respectively (Figure 4; Table 2). 

Nevertheless, two of these herds (M_D and M_H) yielded 
isolates separated by genetic distances that ranged between 29 
and 37 SNPs that were recovered within the same month 
(Figure 4). This pattern of bimodal distribution of within-herd 
pairwise genetic distances was not evident in the remaining 
chronic herd from Madrid and chronic herds located in other 
regions (namely, M_B, MA_A, NA_A, and Z_B, Figure  4). 
Additionally, an event of potential persistence or re-introduction 
of similar strains was identified in herd M_G, as shown by 
closely related (6 SNPs) strains in the herd found 5 years apart 
(Figure  4).

DISCUSSION

In this study, WGS information from a large panel of M. bovis 
isolates recovered from several animal species and regions in 
Spain was used to understand the potential for between- and 
within-species transmission and to elucidate the role of wildlife 
in bTB transmission. This is the first large scale genomic study 
describing M. bovis diversity at the livestock-wildlife interface 
from multiple provinces/regions in Spain and highlights the 
relevant role that genomics and phylogenetic approaches can 
have to gain knowledge on bTB epidemiology.

FIGURE 3 | Analysis of pairwise genetic distances between isolates recovered within- and between-species as a function of their geographic distances of isolation 
in one out of the 10 replicas based on random selection of one isolate per chronically infected herd. Linear regression lines were fitted to denote the relationship 
between genetic and geographic distances per animal species combination and formulas were depicted for each category. Colors denote different combinations of 
pairs of isolates retrieved from cattle (red), wildlife (green) and collected from cattle and wildlife (blue). The mathematical equations were depicted for each animal 
species combination.
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We selected SB0339 isolates as this was the third most 
frequent spoligotype in Spain, and the most frequently retrieved 
in both cattle and wildlife populations. It has been isolated 
recurrently mainly from the south-central and northern 
regions of the country, with evidence of interspecies 
transmission (Garcia-Jimenez et  al., 2013). Although other 
spoligotypes have been also found repeatedly in the 

cattle-wildlife interface (e.g., SB0121 and SB0134), more than 
one third of all SB0339 isolates originate from wild boar, 
red deer, and fallow deer (largest proportion of wildlife 
isolates for a given spoligotype in Spain; mycoDB.es). 
Additionally, SB0339 represents the most frequently isolated 
molecular pattern in Madrid, including >50% of all M. bovis 
samples recovered in the region (mycoDB.es).

FIGURE 4 | Within-herd pairwise genetic distances among isolates recovered in the 10 chronically infected herds. Genetic distances are colored based on the number 
of different years with M. bovis isolates (between 2 and 5 different years), and the size represents the number of months elapsed between each pair of isolates.

TABLE 2 | Herd identification, province of origin, number of isolates, years between first and last isolations, median number of isolates recovered per year, and % of 
isolates within a ≤ 3-SNPs genetic distance in herds included in the analysis of within-herd Mycobacterium bovis genetic diversity.

Herd ID Group/Clade Province Chronic herd Number of 
years with M. 

bovis 
isolates

Number of 
isolates

First and last 
year of 

isolation

Median 
number of 

isolates/year

Median 
genetic 
distance 

(IQR)

% of isolates 
within 

a ≤ 3-SNPs 
genetic 
distance

M_A A.2 Madrid YES 5 7 2012/2017 1 34 (31–37) 42.9
M_J A.2 Madrid YES 5 6 2009/2014 1 44 (1–46) 66.7
M_G A.2 Madrid YES 5 5 2006/2016 1 32 (23–38) 0.0
M_B A.2 Madrid YES 4 4 2010/2017 1 32 (30–33) 0.0
M_C A.2 Madrid YES 4 4 2008/2016 1 29 (20–37) 0.0
M_D A.2 Madrid YES 3 8 2010/2015 2 30 (1–34) 62.5
M_H A.2 Madrid YES 2 5 2012/2013 3 9 (6–29) 0.0
MA_A A.2 Mallorca YES 2 3 2014/2015 2 2 (1–2) 100.0
NA_A A.4.2 Navarra YES 2 3 2008/2009 2 2 (1–2) 100.0
Z_B A.4.2 Zaragoza YES 2 3 2015/2016 2 13 (7–13) 66.7
CO_A A.2 Cordoba No 1 3 2017 – 2 (2–3) 100.0
MA_B A.2 Mallorca No 1 3 2015 – 1 (1–1) 100.0
CS_A A.4.2 Castellon No 1 3 2010 – 6 (6–7) 0.0
Z_A A.2 Zaragoza No 1 2 2007 – 3 (3–3) 100.0
ZA_A A.2 Zamora No 1 2 2017 – 0 100.0
Total 61
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The highest (72.8%) proportion of isolates included in this 
study were recovered from cattle, whereas 37 SB0339 isolates 
were recovered from different wildlife species. More than half 
of them (n = 20) were recovered from wild boar, which is 
considered the main maintenance host in the Mediterranean 
Iberia (Munoz-Mendoza et  al., 2013; Gortazar et  al., 2015). 
Isolates included in the study were sampled at different points 
in time (heterochronous data) between 2005 and 2018. This 
wide time interval was selected given the small mutation rate 
of M. bovis [median estimates between 0.15 and 0.5 events 
per genome per year (Biek et  al., 2012; Trewby et  al., 2016; 
Crispell et  al., 2017)], which makes necessary to compare 
isolates recovered through long periods when attempting to 
reconstruct the phylogenetic relationships between them. Out 
of the total sequenced samples, 84.6% (n = 115) were recovered 
after 2009, as viable and high-quality DNA was difficult to 
retrieve from samples (especially wildlife) recovered during 
the 2005–2009 period. No isolates prior to 2005 were available 
at the VISAVET Centre.

Genome-wide data of the 136 bTB isolates revealed a 
large amount of acquired SNPs within groups A and B, with 
isolates being 47–72 and 38–61 SNPs apart from their MRCA, 
respectively (data not shown). Additionally, seven distinct 
clades could be distinguished among the sequenced collection, 
of which three contained both wildlife and cattle-derived 
M. bovis sequences. These results may not only be  suggestive 
of a long history of endemicity, but also that M. bovis 
infection has been transmitted between cattle and wildlife 
populations in Spain for a long time. In fact, a high degree 
of genetic diversity was expected in SB0339 isolates, given 
that it represents 8% of all M. bovis isolates typed in Spain, 
and has been circulating in several areas of Spain over 
extended periods of time (Rodriguez-Campos et  al., 2010; 
Gortazar and Boadella, 2014).

Pairwise genetic distances among isolates in the major clade 
A.2 were the lowest of all clades even though it included the 
highest number of sequences (74.3% of all the collection) and 
included isolates from both cattle and wildlife retrieved over 
a long time period. The similarity between strains in this clade 
recovered from different host species is suggestive of recent 
transmission events and/or transmission from a (non-sampled) 
common source. Evidence of M. bovis transmission between 
livestock and wildlife has been reported in numerous studies 
worldwide, especially in areas where several susceptible species 
coexist. A study including a total of 27 different spoligotypes 
conducted in Catalonia, a region located in Northeastern Spain, 
revealed transmission among different hosts (Perea et al., 2021). 
Research conducted in United  Kingdom showed that badger 
isolates were in a range of 0–4 SNPs apart from the nearest 
cattle isolate, and that transmission occurred more frequently 
from badgers to cattle than vice versa (Biek et al., 2012; Crispell 
et al., 2019). Using a Bayesian approach, a recent study performed 
in France revealed a high rate of interspecies transmission 
between cattle and badger populations (Duault et  al., 2022). 
Additionally, a high rate of genetic exchange between sampled 
livestock and wildlife populations was also suggested in 
New  Zealand (Crispell et  al., 2017).

Overall, time and geographical origin of isolates were good 
predictors of genetic distances regardless the host species of 
origin of the isolate. Genetic heterogeneity was geographic 
rather than host species-specific, as isolates recovered from 
different animal species within the same provinces tended to 
be  more closely related than those originating from the same 
species and different provinces. However, despite the potential 
for interspecies transmission suggested by the findings in our 
study, the overall clustering of isolates by host species pointed 
that M. bovis strains recovered from wild hosts were less diverse 
than those coming from cattle, and that genetic distances were 
associated with the province of origin (Figure  2; 
Supplementary Table S2). This was particularly evident in 
the case of the wild boar samples, with isolates recovered 
either from the same or neighboring provinces being few SNPs 
away from each other. In fact, previous study conducted in 
Catalonia suggested that proximity and neighborhood were 
the two most important risk factors associated with the observed 
genetic heterogeneity (Perea et  al., 2021). In our study, a 
substantially higher heterogeneity in the pairwise genetic distances 
among cattle isolates in Spain compared with isolates from 
wildlife and pairs from cattle and wildlife was observed, what 
could be  due to the transmission of a larger pool of SB0339 
strains in the cattle reservoir that do not reach wildlife (Figure 3; 
Supplementary Table S3). In contrast, in the analysis of strains 
from Madrid the genetic diversity of isolates recovered from 
cattle and from wildlife was more similar. Although a substantial 
genetic homogeneity at the spoligo-VNTR level was identified 
among cattle isolates in Madrid in a previous study (de la 
Cruz et al., 2014), genome-wide analyses performed here revealed 
an overall high degree of genetic heterogeneity irrespective of 
the host species of origin suggesting a long history of SB0339 
endemic circulation from multiple sources in Madrid 
(Supplementary Table S4). However, no information on the 
VNTR profiles were available for this study, as VNTR typing 
is no longer routinely performed in our laboratory. Even though 
significant relationship between M. bovis genetic and geographic 
distance was identified in the region, the lack of association 
of the host species with the genetic distance separating two 
isolates recovered from Madrid may be  also suggestive of 
evolution of strains in unsampled hosts not considered here 
(that could include cattle populations with no transmission 
linkage with wildlife, Supplementary Table S4; Price-Carter 
et al., 2018). In contrast, if only provinces with a large proportion 
of cattle and wildlife isolates (i.e., Madrid, Ciudad Real, and 
Toledo) were considered in the analysis, results obtained were 
the same as those of the overall analysis of Spain (data not 
shown). This analysis confirmed that, even after performing 
a more similar comparison of the genetic diversity in regions 
with a higher number of wildlife isolations, Madrid is 
representative of a convoluted and interspecific SB0339 
transmission scenario. Additionally, the overall genetic diversity 
of isolates included in clade A.2 (Supplementary Figures S2, 
S4) revealed similar results as in Madrid, as no significant 
differences in the distances found between isolates from the 
same species (median range within-cattle = 31–32 SNPs; median 
within-wildlife = 27 SNPs) or different species (median range 
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cattle-wildlife = 28–29 SNPs) were identified (data not shown). 
The large heterogeneity (range 55–163 SNPs) identified when 
clade A.2 was compared with the remaining clades identified 
in regions other than Madrid (Supplementary Table S2) concurs 
with the hypothesis of long history of endemicity of this 
spoligotype established in this study. Nevertheless, phylogenetic 
relationships described in this study may be particularly sensitive 
to selection bias in the sampled population of Madrid Vs. the 
overall sequenced isolates recovered in multiples provinces of 
Spain, and differences in the observed effect explained here 
should be  interpreted with caution. In spite of the observed 
association between genetic and geographic distances, in several 
instances genetically unrelated (i.e., highly distinct) isolates 
were retrieved from close locations (and in some instances 
even from the same herd), suggesting that infection could 
have occurred in a different location, particularly in cattle, 
since most (>81%) wildlife isolates were retrieved from animals 
in fenced hunting states and thus limited animal movement 
was expected. Unfortunately, the individual movements of all 
sampled cattle were not available for this study, and therefore 
the hypothesis of new introductions due to movement of 
infected animals could not be  confirmed.

Moreover, three out of the six groups of highly similar (≤3 
SNPs) strains recovered from livestock and wildlife were found 
in Madrid (Figure  2; Supplementary Figure S2). In fact, the 
SB0339 pattern has been recurrently found in certain areas, 
especially in Monte de El Pardo Nature Reserve located in 
Madrid municipality and in Colmenar Viejo, where risk factors 
such as extensively managed herds and abundant presence of 
wildlife reservoirs may explain the observed interspecies genetic 
similarity and that bTB prevalence has remained historically 
high in both livestock and wildlife (Aranaz et  al., 2004; 
Rodriguez-Campos et  al., 2010).

The analyses of the within-herd genetic diversity in isolates 
from chronically infected herds were aimed at providing some 
information on the degree of difference expected over time 
in a given herd, what could help to differentiate the source 
of an outbreak (i.e., relapse Vs. reinfection; Hatherell et  al., 
2016). A ≤ 3 SNPs threshold was used here to define transmission 
clusters in which we  are confident that similar strains are 
circulating in different hosts. This value was lower than that 
selected in the study performed in Catalonia, where a pairwise 
distance of ≤12 SNPs was considered to define putative 
transmission clusters based on the observed clustering patterns 
(Perea et  al., 2021). In our study, isolates with ≤3 SNPs were 
considered closely related because most epidemiologically linked 
isolates recovered from the same herd and sampled within 
the same year did not exceed this level of divergence. When 
a ≤ 10-SNPs threshold was applied in our analyses, 2 additional 
herds (namely, CS_A and M_H) out of the 15 analyzed herds 
had >50% of the sampled strains within this cut-off circulating 
during the sampled period (Figure  4). The use of different 
thresholds may impact the inferences suggested here (i.e., relapse 
Vs. new introductions). However, our aim here was to identify 
clusters of molecular patterns that are likely to have arisen 
out of epidemiological links instead of the acquisition of SNPs 
derived from evolution process. Additionally, we  selected this 

harsh cut-off as it concurred with that derived from extended 
literature review of the MTBC to accurately identify events 
of recent transmission, relapse, and re-infections (Kato-Maeda 
et  al., 2013; Roetzer et  al., 2013; Lee et  al., 2015). Overall, 
we  identified a strong relationship of time and spatial origin 
and genetic variability, so that those factors were highly 
informative to characterize circulation as isolates tended to 
cluster in a within-herd pattern. Genetic distances observed 
both between- and within-herds were highly heterogeneous 
depending on the epidemiological history (number of years 
with bTB isolations in the herd) as median pairwise genetic 
distances observed in the 10 chronically sampled herds varied 
largely (range 2–44 SNPs) compared with those that were not 
chronically bTB infected (range 0–6 SNPs). This was expected 
as non-chronically infected herds were sampled over a 1-year 
period Vs. a median number of 3.5 different years with isolations 
in chronically infected herds. However, in half of the chronically 
infected herds, the majority of isolates recovered over multiple 
years were ≤ 3-SNPs apart. The limited within-herd genetic 
diversity found recurrently in several sampled herds, on many 
occasions despite the considerable time elapsed between their 
isolations, suggests that animals chronically infected in the 
herd (that would have been missed in the bTB herd tests) 
may have contributed to disease persistence (Guta et al., 2014a). 
Additionally, genetic clustering of strains coming from the 
same herds (and same provinces) indicated that M. bovis was 
continuously circulating in the sampled herds (without 
introductions of new strains). Alternatively, persistence of highly 
similar strains may also suggest re-introductions from other 
sources such as neighboring herds, environmental persistence, 
or alternative hosts as suggested elsewhere (Biek et  al., 2012).

The genetic diversity observed in the SB0339 analyzed 
M. bovis isolates was not seemingly caused by recent exogenous 
introductions in Spain. Instead, the observed genetic distances 
suggested an endemic self-maintaining infection within different 
animal species in each region, with certain events of interspecies 
transmission, which was particularly evident in the case of 
Madrid. Despite the small sample size included in this study, 
this picture is in agreement with findings of previous studies 
in Spain and elsewhere on the potential effect of local risk 
factors (i.e., spatial proximity, extensive management in beef 
herds, contact with other sources of infection) in bTB endemic 
areas (Green et  al., 2008; Biek et  al., 2012; Pozo et  al., 2020). 
Additionally, our results are in agreement with a previous study 
conducted in Portugal, where the observed genetic diversity 
supported the natural circulation of M. bovis for a long time 
with multiple interactions of different host species (Reis et  al., 
2021). Interaction with wildlife reservoirs was identified as the 
second most important cause of herd breakdowns in Spain, 
after residual infection (Guta et  al., 2014a). Indeed, M. bovis 
isolates retrieved from wildlife species in Doñana National 
Park were in fact more prevalent in cattle, thus contributing 
to bTB persistence (Romero et  al., 2008). Cattle and badgers 
found in Northern Spain in the same geographical area and 
over the same period shared similar spoligotypes, suggesting 
common dynamics of infection (Balseiro et al., 2013). All things 
considered, the higher host diversity identified in the 
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epidemiology of bTB in Spain leads to increased and more 
diverse transmission chains (Barasona et  al., 2019). 
Epidemiological links across different hosts involving the same 
species analyzed here (i.e., wild boar and red deer) were also 
identified in neighboring countries such as Portugal (Cunha 
et  al., 2012; Reis et  al., 2020) and France (Hauer et  al., 2015; 
Michelet et  al., 2019), although different molecular patterns 
were identified. Results obtained here are of importance 
considering the relatively high degree of persistence that exist 
in several regions of Spain, such as the central and south-west 
parts of the country.

Sampling from different host species performed here matched 
over similar temporal (years) and spatial (province of origin) 
units. However, due to the strong dependence on isolate 
availability in the VISAVET strain collection and the moderate 
degree of success (~60%) in the re-culture of isolates, biases 
included in this study were unavoidable.

The potential of WGS-derived analyses may be compromised 
when a poorly sampled host population contributes to transmission, 
which in this case could be  the wildlife reservoirs. Additionally, 
host population sampling is often limited to outbreak investigations 
in which sampling is reduced to the affected herds and inclusion 
of other sources, such as nearby farms or wildlife reservoirs, 
faces financial, ethical or logistical constraints. More than half 
of the wildlife isolates included here (n = 20) originated from 
samples collected from wild boar, mostly from Madrid, and the 
majority (n = 15/17) of the red deer and fallow deer M. bovis 
isolates were sampled in the central regions of the country as 
well. In contrast, other provinces were clearly underrepresented 
in our collection: Central Spain was more intensively sampled 
compared with southern regions, where bTB is highly prevalent 
in both cattle and wildlife (Ministerio de Agricultura, Pesca, 
Alimentación y Medio Ambiente, 2020; Ministerio de Agricultura, 
Pesca y Alimentación, 2021). Differential sampling effort across 
regions may have impacted the robustness of our findings, 
particularly regarding wildlife, when considering the whole 
country. Therefore, our findings should not be  extrapolated to 
other areas unless further studies confirm the degree of diversity 
within and between species found here. Nevertheless, isolates 
belonging to the SB0339 spoligotype mostly originate from 
Madrid, which was the most intensively sampled region and in 
which a better livestock-wildlife balance was achieved (49% of 
the total isolates, relationship cattle:wildlifeMADRID 2:1 Vs. 
cattle:wildlifeOVERALL 3:1). Regarding cattle, a similar test-and-
slaughter strategies based on annual testing using the single 
intradermal tuberculin test was in place in all provinces included 
here during the study period, and thus, a reasonable representation 
of bTB positive cattle infected with SB0339 circulating in Spain 
was available. Although bTB control and surveillance in wildlife 
is not as standardized as is in cattle and fewer wildlife isolates 
were available for the analysis, a high fraction of wildlife isolates 
were retrieved from Madrid (with both a high bTB prevalence 
and wildlife density), suggesting that results observed here may 
be  a fair approximation of the actual scenario of SB0339 not 
only in cattle, but also in wildlife (Ministerio de Agricultura, 
Pesca, Alimentación y Medio Ambiente, 2020; Ministerio de 
Agricultura, Pesca y Alimentación, 2021).

Furthermore, among the 136 samples, there were 7 isolates 
with low (<20x) depth of coverage, with DNA regions of little 
or null coverage leading to the identification of unreliable SNPs. 
Likewise, the percent of the reference genome covered by these 
sequences was below 99%, which for clonal organisms as 
M. bovis, implies the need for a significant amount of correction. 
Although results obtained in these low coverage samples should 
be  viewed with caution, no major bias was expected due to 
erroneous SNPs calls. These ambiguous calls occurred in 
non-informative SNPs (SNPs shared by all the isolates included 
in the study that were not relevant to define the clustering 
pattern presented here). Erroneous calls were meticulously 
verified with IGV, and reliable SNPs were manually corrected 
as suggested by the vSNP documentation (Orloski et  al., 2018) 
and performed in several studies (Orloski et al., 2018; Salvador 
et  al., 2019; Perea et  al., 2021; Reis et  al., 2021). In case 
erroneous calls fell in areas with low coverage or mapping 
issues these were manually filtered out.

High-throughput genotyping methods such as WGS have 
created unprecedented opportunities for studying the 
transmission network of microorganisms such as M. bovis and 
enable trace back of sources of infection, which may complement 
other measures included in the bTB eradication program in 
Spain. Given the increasing cost-effectiveness of WGS-based 
characterization techniques, we  believe that WGS-based typing 
will eventually become the standard for bTB molecular 
epidemiological studies as has been also the trend with other 
pathogens (e.g., foodborne pathogens). This study confirmed 
that M. bovis is probably maintained in multi- rather than 
single-host populations in high but also low prevalence areas 
(e.g., Mallorca), and that the relative contribution of wildlife 
reservoirs to bTB maintenance in some regions may be  low 
when compared to central and southwestern Spain. While 
traditional typing techniques have demonstrated that M. bovis 
molecular patterns are maintained within well-defined spatial 
clusters, their power to further discriminate strains within 
clusters, what could help to explain persistence and transmission, 
is limited (Trewby et  al., 2016). In this sense, WGS results a 
valuable tool to improve the understanding of bTB epidemiology, 
even for slowly evolving and genetically conserved pathogens 
such as M. bovis (Garnier et  al., 2003). Here, WGS was used 
to describe the genetic heterogeneity in a highly predominant 
spoligotype in an attempt to assess the potential for interspecies 
transmission irrespective of the direction, as phylogenetic trees 
presented here are not equivalent to transmission trees. The 
combination of M. bovis sequence data and mathematical 
models considering the temporal structure inherent in selected 
heterochronous samples may increase the statistical power to 
infer M. bovis evolutionary processes, as conducted in previous 
research (Glaser et al., 2016; Crispell et al., 2017, 2019; Salvador 
et al., 2019). The inclusion of a molecular clock into the analyses 
performed here and the addition of a balanced selection of 
samples between livestock and wildlife will be  the subject of 
following analyses. Ultimately, the addition of the temporal 
scale in analysis of the genetic heterogeneities among isolates 
may help to quantify the role of wildlife reservoirs and livestock 
in M. bovis infection dynamics in Spain.
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