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Abstract: Cyanobacteria, given their ability to produce various secondary metabolites utilizing solar
energy and carbon dioxide, are a potential platform for sustainable production of biochemicals. Until now,
conventional metabolic engineering approaches have been applied to various cyanobacterial species
for enhanced production of industrially valued compounds, including secondary metabolites and
non-natural biochemicals. However, the shortage of understanding of cyanobacterial metabolic and
regulatory networks for atmospheric carbon fixation to biochemical production and the lack of available
engineering tools limit the potential of cyanobacteria for industrial applications. Recently, to overcome
the limitations, synthetic biology tools and systems biology approaches such as genome-scale modeling
based on diverse omics data have been applied to cyanobacteria. This review covers the synthetic and
systems biology approaches for advanced metabolic engineering of cyanobacteria.

Keywords: cyanobacteria; photosynthesis; secondary metabolites; metabolic engineering; synthetic
biology; systems biology; genome-scale model

1. Introduction

Cyanobacteria are oxygenic photosynthetic bacteria that can produce various secondary
metabolites. Given the ability to utilize sunlight and atmospheric carbon dioxide (CO2) as a part of the
renewable photosynthetic process, cyanobacteria are considered sustainable bioproduction hosts [1].
A number of secondary metabolites naturally synthesized by cyanobacteria, such as carotenoids,
phycocyanins, and squalene, are used in the pharmaceutical, cosmetic, and healthcare industries [2–4].
In addition, owing to their rapid growth and increased scope for engineering, multiple efforts have
been made to utilize cyanobacteria as production hosts for valuable biochemicals by introducing
heterologous pathways [5,6].

While continuous development has been reported in metabolic engineering strategies for producing
biochemicals in bacterial hosts, the synthetic biology approach accelerated the development by
providing diverse genetic parts and engineering tools. For other model platforms such as Escherichia coli,
there is an abundant catalog of genetic parts including synthetic promoters and ribosome binding
sites (RBSs), which have been successfully introduced to improve gene expression in heterologous
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pathways [7]. However, owing to the lack of genetic parts for pathway engineering in cyanobacteria,
application of metabolic engineering tools is limited [8]. Thus, development of various tools for
pathway engineering and subsequent engineering strategies are required for industrial-scale production
of target compounds in cyanobacteria.

With the recent progress in systems biology, genome-wide information of diverse layers such as
the genome, transcriptome, translatome, proteome, metabolome, and interactome are being constantly
accumulated [9]. Massive amounts of data formed the basis for establishment and development of an
in silico genome-scale model (GEM) [10]. It is expected that the application of system-level approaches
with the integration of omics data and GEM would address the existing limitations of cyanobacterial
engineering. The current review not only describes the value-added secondary metabolites produced
by cyanobacteria and current metabolic engineering approaches for their production but also introduces
the synthetic and systems biology approach for further development.

2. Secondary Metabolite Production by Cyanobacteria

Bacteria produce two kinds of metabolites: primary metabolites essential for survival and secondary
metabolites required for auxiliary purposes, such as stress responses, defense mechanisms, metal carrying,
and signaling [11]. Secondary metabolites include terpenes, alkaloids, polyketides (PKs), non-ribosomal
peptides (NRPs), and ribosomally synthesized and post-translationally modified peptides (RiPPs), which
are produced via biosynthetic gene clusters (BGCs). BGCs are clusters of genes positioned in approximate
proximity to each other for the production and processing of a compound. Cyanobacteria, being rich in
BGCs, are capable of producing diverse secondary metabolites for various purposes, including toxins for
defenses or protectants for relieving photodamage and oxidative stress (Table 1).

Table 1. Bioactive secondary metabolites produced in cyanobacteria.

Class Metabolite Bioactivity Producing Species Ref.

Terpene Phycocyanin

Antioxidant,
anti-inflammatory,
neuroprotective,
hepatoprotective

All cyanobacteria [12–16]

Terpene Carotenoids Antioxidant, sunscreen All cyanobacteria [17,18]
Terpene Squalene Antioxidant Phormidium [19]

Alkaloid Saxitoxin Neurotoxin
Anabaena, Aphanizomenon,

Cylindrospermopsis, Lyngbya,
Planktothrix,

[20–22]

Indole Nostodione Antifungal Nostoc [23]

Indole alkaloid Scytonemin Anti-inflammatory,
sunscreen Scytonema, Nostoc [24–27]

Indole alkaloid Hapalindole Antibacterial,
anti-tuberculosis, anticancer Hapalosiphon [28,29]

Alkaloid/Polyketide
synthase (PKS) Anatoxin-a Neurotoxin,

anti-inflammatory

Anabaena, Aphanizomenon,
Cylindrospermum, Oscillatoria,

Planktothrix
[30,31]

Alkaloid/PKS Aplysiatoxin Cytotoxin, antiviral Moorea [32,33]
Alkaloid/Non-ribosomal

peptide synthetase (NRPS) Lyngbyatoxin Cytotoxin, dermatotoxin Moorea [34]

Alkaloid/PKS-NRPS Cylindrospermopsin Cytotoxin Aphanizomenon, Cylindrospermopsis,
Oscillatoria, Raphidiopsis [35–37]

PKS Fischerellin Antifungal, antialgal,
anti-cyanobacterial Fischerella [38]

NRPS β-N-methylamino-l-alanine Neurotoxin Anabaena, Nostoc [39]
NRPS Cyanopeptolin Protease inhibitor Planktothrix, Microcystis [40,41]

PKS-NRPS Microcystin Hepatotoxin Microcystis, Nostoc, Planktothrix,
Anabaena [40,42–45]

PKS-NRPS Nodularin Hepatotoxin Nodularia [46]
PKS-NRPS Apratoxin Anticancer Lyngbya [47]
PKS-NRPS Aeruginoside Protease inhibitor Planktothrix [48]
PKS-NRPS Aeruginosin Protease inhibitor Microcystis, Planktothrix [40,49]
PKS-NRPS Cryptophycins Cytotoxin Nostoc [50]
PKS-NRPS Nostophycins Cytotoxin Nostoc [51]
PKS-NRPS Curacins Cytotoxin Moorea [52]
PKS-NRPS Hectochlorin Cytotoxin Moorea [53]
PKS-NRPS Jamaicamides Neurotoxin Moorea [54]
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Table 1. Cont.

Class Metabolite Bioactivity Producing Species Ref.

PKS-NRPS Dolastatin Cytotoxin, anticancer,
antiprotozoal Moorea, Lyngbya, Symploca [55,56]

Lipopeptide Antillatoxin Neurotoxin Moorea [57]

Lipopeptide Carmabin Antimalarial, anticancer,
antiproliferative Moorea [58,59]

Lipopeptide Lyngbyabellin Cytotoxin, antifungal Moorea, Lyngbya [60,61]
Lipopeptide Kalkitoxin Neurotoxin Moorea [57]

Ribosomally synthesized
and post-translationally
modified peptide (RiPP)

Patellamide Moderate cytotoxicity Prochloron [62]

RiPP Microviridin Protease inhibitor Microcystis, Planktothrix [63,64]
RiPP Shinorin Sunscreen Anabaena, Nostoc [65]

Fatty acid amide Besarhanamide A Moderate toxicity to brine
shrimp Moorea [66]

Fatty acid amide Semiplenamide Toxicity to brine shrimp Lyngbya [67]
Lipopolysaccharide Lipopolysaccharides Endotoxin All cyanobacteria [68]

Polysaccharide Polysaccharide

Antitumor, antiviral,
antibacterial,

anti-inflammatory,
immunostimulant

All cyanobacteria [69–71]

Nucleoside Toyocamycin Antifungal Tolypothrix [72]
Nucleoside Tubercidin Antifungal Tolypothrix [73]

2.1. Prediction of Biosynthetic Gene Clusters (BGCs) in Cyanobacterial Genomes

To investigate the secondary metabolites produced by cyanobacteria, 196 complete genome sequences
of cyanobacteria available at the National Center for Biotechnology Information (NCBI) genome portal
were inspected for BGCs using antiSMASH [74]. Thirty-three different types of BGCs were identified.
The 196 complete genome sequences of cyanobacteria used in the BGC search were arranged according
to the phylogenetic tree. The heatmap representing the numbers of each type of BGC found in each
cyanobacterium showed that the cyanobacteria from the same genera had similar classes and numbers of
BGCs (Figure 1A). It was evident that a single genome contained several BGCs with multiple occurrences.
In particular, there were cyanobacteria with large number of bacteriocin, terpene, and non-ribosomal
peptide synthetase (NRPS) BGCs, which accounted for 74.4% of the total predicted BGCs (n = 2119).
For example, it was predicted that the genome of Moorea producens PAL-8-15-08-1 carries 18 NRPS
BGCs. The most widely distributed BGC was the terpene BGC, which was found in all cyanobacteria
except for two species (Limnospira fusiformis SAG 85.79 and Nodularia spumigena UHCC 0039). Terpene is
essential for photosynthetic organisms. Undetected terpene BGCs in the two species could have resulted
from the deviations in the BGC search criteria of antiSMASH. The 33 BGCs were classified according
to their structural and functional similarities to the following categories: terpene, indole, PK synthase
(PKS)/NRPS (type 1, 2, 3 PKSs, NRPS, cyclodipeptide synthase-based tRNA-dependent peptide, resorcinol,
and siderophore), RiPP (bacteriocin, lanthidin, linear azole-containing peptide, microviridin, lasso
peptide, cyanobactin, thiopeptide, trifolitoxin, proteusin, and lanthipeptide), lipid/saccharide/nucleoside
(heterocyst glycolipid synthase, ladderane, arylpolyene, aminoglycoside/aminocyclitol, oligosaccharide,
and nucleoside), and others (phosphonate, phenazine, ectoine, β-lactone, and homoserine lactone).

2.2. Terpenes

Terpene is a family of compounds with varying structures that occupies a large proportion of
the natural products [75]. Terpenes are mainly produced by plants or fungi, as well as the bacterial
species via mevalonate (MVA) pathway or methylerythritol-phosphate (MEP) pathway using acetyl-CoA
or glyceraldehyde 3-phosphate and pyruvate as substrates [76]. While MVA and MEP pathways are
mutually exclusive in most organisms, cyanobacteria mainly utilize the MEP pathway, using substrates
generated during photosynthesis. The MEP pathway produces isomeric 5-carbon compounds, isopentyl
pyrophosphate (IPP), and dimethylallyl pyrophosphate (DMAPP), which are further condensed into
geranyl pyrophosphate (GPP), the building block in terpene biosynthesis. From the GPP, terpenes
of varying structures can be generated. Terpenes conduct various cellular processes necessary for
survival, such as the ubiquinone in the electron transport chain associated with cellular respiration,
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chlorophyll, carotenoids, and plastoquinones in photosynthetic processes, and hopanoids in cell membrane
biosynthesis and stability (Figure 1B) [77]. In particular, photosynthetic cyanobacteria contain a wide
variety of carotenoids. Most of the genome-sequenced cyanobacteria have β-carotene BGC. Production of
other carotenoids, such as zeaxanthin and nostoxanthin are dependent on the presence of carotenogenesis
pathway connected to β-carotene [3,78]. The terpene compounds, including the carotenoids obtained
from cyanobacteria are of industrial value owing to their various applications. For example, β-carotene,
astaxanthin, and canthaxanthin are used as color additives or animal feeds. Phycocyanin exhibits
anti-oxidant, anti-inflammatory, neuroprotective, and hepatoprotective effects [2,13,79].
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Figure 1. Cyanobacterial secondary metabolites. (A) Heatmap of the predicted cyanobacterial secondary
metabolite biosynthstic gene clusters (BGCs). The left-most phylogenetic tree is constructed by up-to-date
bacterial core gene (UBCG) phylogenetic analysis of the 196 cyanobacterial complete genome sequences.
The evolutionary distances were provided by UBCG and plotted by RAxML [80,81]. The tree is not
to scale. Red: Nostoc, purple: Calothrix, green: Synechocystis, pink: Synechoccus, blue: Microcystis, and
yellow: Prochlorococcus. (B–F) Molecular structures of cyanobacterial secondary metabolites. (B) Terpenes,
(C) alkaloids, (D) polyketides (PKs), non-ribosomal peptides (NRPs), (E) RiPPs, and (F) fatty acid
amide. Abbreviations; NRPS, non-ribosomal peptide synthetase; HglE, heterocyst glycolipid synthase;
LAP, linear azol(in)e-containing peptide; TfuA, ribosomally synthesized peptide antibiotic trifolitoxin;
CDPS, cyclodipeptide synthase-based tRNA dependent peptide; PKS, polyketide synthase; Amglyccycl,
aminoglycosides/aminocyclitols; TransAT, trans-acyltransferase type I PKS.
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2.3. Alkaloids

Alkaloids comprise various nitrogen containing compounds that are produced from diverse
organisms, including fungi, plants, bacteria, and animals. Alkaloids produced by cyanobacteria
often show toxic characteristics. For example, the anatoxin-a produced by species of the Anabaena
genera is a neurotoxin that binds irreversibly to nicotinic acetylcholine receptors causing paralysis or
even death in fish and mammals (Figure 1C) [31]. Anatoxin-a is also categorized as a PK, which is
synthesized by PKS [82]. Another well-known example, saxitoxin, blocks the sodium (Na+) channels in
shellfish and induces paralytic shellfish poisoning in humans on consumption of saxitoxin-accumulated
seafood. The chemical derivatives carrying the indole rings are classified as indole alkaloids. They are
biosynthesized using tryptophan as a precursor. Cyanobacterial indole alkaloids have diverse
functions. For example, the hapalindole synthesized from cyanobacteria Hapalosiphon fontinalis exhibits
antibacterial, anti-tuberculosis, and anticancer activities [83]. In addition, the scytonemin produced
by Scytonema sp. renders photoprotective effects to the cyanobacterial cells by absorbing the harmful
ultraviolet (UV)-A radiation [84].

2.4. Polyketides/Non-Ribosomal Peptide/Lipopeptides/Siderophores

PKS and NRPS are representatives of enzymes responsible for the biosynthesis of secondary
metabolites in various organisms. Enzymes of these classes consists of at least three essential modular
domains that facilitate chain elongation and modification [85]. First, the catalytic domain binds to and
activates the building block, which then is transferred to the carrier protein domain. Second, the carrier
protein domain loads the activated building block to the growing PK/NRP chain it holds. Third, the
other catalytic domain catalyzes the bond formation between the growing chain and the newly loaded
building block. PKS and NRPS differ in their use of precursors for the building block. While PKS utilizes
malonyl-CoA or methylmalonyl-CoA, the NRPS uses proteinogenic and non-proteinogenic amino
acid monomers. In addition, there are cases wherein compounds are synthesized via the PKS–NRPS
hybrid system. A well-known example could be microcystin, the BGC of which contains two PKS,
single PKS–NRPS, and three NRPS [42,86]. Microcystin produced from various cyanobacterial species
belonging to the genus Microcystis, Nostoc, Planktothrix, and Anabaena, shows hepatotoxic activity in
humans (Figure 1D). Various other toxins synthesized by the PKS, NRPS, or PKS–NRPS hybrid system
includes lyngbyatoxin, apratoxin, and aplysiatoxin.

The NRPS includes lipopeptides owing to their lipid linked peptide structures synthesized by a
combination of lipid tails and amino acids. Examples of lipopeptides include antillatoxin and carmabin
from M. producens, and lyngbyabellin from M. bouillonii (Figure 1D). Antillatoxin and lyngbyabellin
show neurotoxic activity and cytotoxicity, and carmabin exhibit anti-malarial activity. Siderophores are
included in the NRPS-produced compounds. Iron is essential for bacterial survival. However, since it
exists in an insoluble form in the environment, some bacteria have evolved to facilitate iron uptake by
producing small molecules with high affinity to ferric iron, called siderophores.

2.5. Ribosomally Synthesized and Post-Translationally Modified Peptides

RiPP is a class of secondary metabolites that includes, as its name depicts, ribosomally synthesized
and post-translationally modified peptides. Post-translational modifications include leader peptide
hydrolysis, cyclization, and disulfide bond formation. RiPP BGC generally consists of a short precursor
peptide with an N-terminal leader and a C-terminal core sequence, and post-translational modification
(PTM) enzymes [87,88]. The PTM enzymes shape the linear peptide by several modifications that
provide structural and functional diversity to the mature scaffold. Compounds that were previously
classified as lanthipeptide, lasso peptide, microviridin, cyanobactin, and microcin are now re-classified
under RiPP, which have a broad range of bioactivities such as protease inhibition, cytotoxicity, signaling,
anti-cancer, and anti-human immunodeficiency virus (anti-HIV) (Figure 1E) [87]. For example,
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microviridin, which was first isolated from M. viridis, is a serine protease inhibitor, and patellamide A
produced by Prochloron didemni has moderate cytotoxicity [62].

2.6. Lipids/Saccharides/Nucleosides/Others

Lipids, saccharides, and nucleosides are generally categorized as primary metabolites. However,
there are exceptions, when they are considered as secondary metabolites instead of primary metabolites.
For example, besarhanamide A and semiplenamide exhibiting toxicity against brine shrimp are fatty
acid amides isolated from M. producens and Lyngbya semiplena, respectively (Figure 1F) [66,89]. It is
known that cyanobacterium Cyanothece sp. 113 can produce up to 22 g/L of polysaccharide, which
exceeds the producing ability of eukaryotic microalgae, such as Dunaliella salina [90,91]. Polysaccharides
are generally used as stabilization or thickening agents for emulsions. In some cases, they are used
as bioactive compounds owing to their antitumor, antiviral, antibacterial, anti-inflammatory, and
immunostimulatory properties [92–95]. Toyocamycin and tubercidin are both anti-fungal nucleoside
chemicals isolated from Tolypothrix tenuis [96]. In addition, a small number of phosphonate, phenazine,
ectoine, and β-lactone BGC were also detected.

3. Engineering Cyanobacteria for Industrial Production of Secondary Metabolites

Engineering efforts have been made to increase the production of industrially important
cyanobacterial natural compounds. The model cyanobacteria such as Synechocystis sp. PCC 6803 and
Synechococcus elongatus PCC 7942 are often used as engineering hosts for the increased ease of genetic
manipulation. The biosynthetic pathways of other cyanobacteria are adopted to these model species by
heterologous expression for production of value-added compounds. In addition to the cyanobacterial
natural products, cyanobacteria have also been identified as a suitable heterologous platform for the
production of biofuels, such as ethanol, butanol, and 2,3-butanediol [5,97–99]. Episomal expression
using a self-replicating vector is a popular method for introducing foreign genetic elements in other
organisms such as E. coli. Compared to chromosomal integration through homologous recombination,
the episomal expression is more advantageous owing to its higher expression level [100]. In addition,
the genome polyploidy of cyanobacteria can cause problems in the natural recombination process by
reversing the engineered genome copies back to the original sequence, resulting in poor engineering
efficiency and a laborious selection process. However, in cyanobacteria, there are minimal options for
vector systems; the only self-replicating vector origin currently available for application is RSF1010
(Figure 2A). Thus, chromosomal integration or deletion through homologous recombination is the
most dominant method used in cyanobacteria to increase the production of natural compound
or heterologous metabolites (Figure 2B). Recently developed clustered regularly interspaced short
palindromic repeat (CRISPR)/Cas is an effective genome engineering tool that can target specific loci
to generate a double-strand break, and thus it can solve the low engineering efficiency problem in
polyploids (Figure 2C) [101]. Additionally, the repurposed CRISPR/Cas system, namely the CRISPR
interference (CRISPRi), can repress the gene expression without nucleic acid strand excision, avoiding
lethality caused by knock-out of essential genes.

3.1. Heterologous Expression for Cyanobacterial Secondary Metabolite Production

Genetic manipulation tools explained above have been applied in cyanobacteria to increase the
production of secondary metabolites (Table 2). In recent years, multiple studies have targeted terpenes,
such as squalene and limonene. Squalene has widespread applications in the healthcare, cosmetics, and
pharmacological fields, and it is produced from several eukaryotes as well as the cyanobacteria, such as
Phormidium autumnale [19,102]. However, squalene production from cyanobacteria is not sufficient for
the industrial-scale production demands. Metabolic engineering efforts were made in cyanobacterium
model, S. elongatus PCC 7942 [103–105]. S. elongatus PCC 7942 has the methylerythritol phosphate
(MEP) pathway to biosynthesize diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) from
CO2. DMAPP is converted to farnesyl diphosphate (FPP), a substrate for squalene biosynthesis,
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by FPP synthase (ispA). Heterogenous genes, including 1-deoxy-d-xylulose-5-phosphate synthase
(dxs), isopentenyl diphosphate isomerase (idi), and ispA were introduced into the S. elongatus PCC
7942 genome by homologous recombination to increase the intracellular concentration of FPP. Next,
a squalene synthase (SQS) was also introduced by homologous recombination, resulting in a maximum
of 5.0 mg/L/OD730nm squalene production [103]. The titer was further increased to 12.0 mg/L/OD730nm

by constructing a fusion protein of SQS with cpcB1, which encodes the β-subunit of phycocyanin
and is highly expressed under the strong endogenous cpcB1 promoter [104]. Recently, CRISPRi was
applied to the squalene-producing S. elongatus PCC 7942 strain to repress two essential genes, acnB and
cpcB2 encoding aconitase and phycocyanin β-subunit, respectively, resulting in an improved squalene
production [105]. The results of these previous studies suggest that there is sufficient potential to
improve the production of target compounds in cyanobacteria through the discovery of new potent
promoters or the selection of additional engineering targets.
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Figure 2. Genetic engineering tools. (A) Homologous recombination method using the recombination
system in cyanobacteria. (B) RSF1010-derived vectors are self-replicating vectors used in episomal
expression vector system. (C) CRISPR/Cas system utilizes Cas endonuclease to generate double-strand
break to the gRNA-escorted loci inducing homologous recombination. Abbreviation; CRISPR, clustered
regularly interspaced short palindromic repeat; gRNA, guide RNA; DSB, double-strand break.

Besides terpenes, a xanthophyll carotenoid called astaxanthin has been gaining significant
attention in the healthcare field owing to the anti-inflammatory and antioxidant properties elucidated
in human cells [106]. Astaxanthin production was enhanced through the engineering of Synechocystis
sp. PCC 6803 [107]. First, the core biosynthetic genes, β-carotenoid ketolase (crtW) and β-carotene
hydroxylase (crtZ) were integrated for astaxanthin production. The promoter combinations with
diverse strength were tested for expressions of crtW and crtZ, because their relative expression level
is known to be critical to produce astaxanthin in E. coli [107]. However, astaxanthin production was
detected only when the super-strong promoter Pcpc560 was used for both genes, indicating that other
tested endogenous promoters (PnirA, PpetE, and PrnpB) were not sufficient to express those genes.
To test the relative expression level of the two genes, a promoter pool with more varied strength,
including the stronger promoter than Pcpc560, was required. By using Pcpc560 for crtZ expression
and a pea promoter PsbA for crtW expression, which showed two-fold higher activity than Pcpc560,
resulting in improved production of astaxanthin. Further, based on liquid chromatography-mass
spectrometry (LC-MS) metabolomics data, fructose-1,6-/sedoheptulose 1,7-bisphosphate (FBP/SBPase),
which is involved in the Calvin–Benson–Bassham cycle, was found as an additional engineering
target and overexpressed with episomal expression vector. Then, heterologous dxs and ispA gene
was introduced into Synechocystis sp. PCC 6803 genome, and the engineered strain was finally
able to produce astaxanthin of 29.6 mg/g dry cell weight, the highest level in the currently known
engineered strain.
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Table 2. Recent studies of engineering cyanobacteria for biochemical production.

Strategy 1 Strain Target 2 Gene Ref.

HR S. elongatus PCC 7942 Isoprene ispGS, idi, dxr [6]
HR S. elongatus PCC 7942 Succinate * ppc, gltA, kgd, gabD [108]
HR S. elongatus PCC 7942 Amorpha-4,11-diene, Squalene * dxs, idi, ispA, dxr [103]
HR S. elongatus UTEX 2973 Sucrose * cscB [109]
HR Synechocystis sp. PCC 6803 Isoprene ispS [110]
HR S. elongatus PCC 7942 Isopropanol * sadh, thl, atoAD’, adc [111]
HR Synechocystis sp. PCC 6803 Geranyllinalool NaGLS [112]
HR S. elongatus PCC 7942 Squalene * dxs, idi, ispA, SQS [104]
HR S. elongatus PCC 7942 Butyrate phaBJ, Ptb, buk, pte2, tesB, yciA [113]
HR Anabaena sp. PCC 7120 Ethanol pdc, adhA, sigE, ald, invAB [114]
HR S. elongatus PCC 7942 Sucrose * cscB, sps, glgC [115]
HR S. elongatus PCC 7942 3-Hydroxybutyrate phaAB, tesB, nphT7, pptesB, yciA, pte1 [116]
HR S. elongatus PCC 7942 Heparosan galU, PmHS2 [117]
HR Synechocystis sp. PCC 6803 1-Butanol phaAB, nphT7, fadB, phaJ, ccr, ter, pduP, mhpF, yqhD, yjgB, pk, pta, adh, sigE [97]
HR Synechocystis sp. PCC 6803 Sorbitol s6pdh, fbp, pnt, had1, had2 [118]
HR Synechocystis sp. PCC 6803 β-Phellandrene * GPPS, PHLS [119]
HR S. elongatus PCC 7942 Acetone pdc, ald6, acs, pps, ppc, mmc [120]
HR S. elongatus PCC 7942 Xylitol xylEFGH, XDH, DI, XR [121]
HR S. elongatus PCC 7942 Trehalose * tpsp, Tret1, mts, glgCX, cscB, mth [122]
HR S. elongatus PCC 7942 2,3-Butanediol alsD, alsS, adh, galP, zwf, edd, pgi, gnd, pfk, eda, cp12, rbcLXS, prk [5]
HR S. elongatus PCC 7942 α-Farnesene AFS [123]
HR Synechocystis sp. PCC 6803 Ethanol eno, pgk, pyk, prk [124]
HR S. elongatus PCC 7942 Limonene * ls, GPPS, dxs [125]
HR Synechococcus sp. PCC 7002 d-Lactate acsA [126]
epi Synechocystis sp. PCC 6803 Isoprene ispS [127]
epi Synechocystis sp. PCC 6803 p-Hydroxyphenylacetaldoxime, dhurrin CYP71E1, CYP79A1, UGT85B1 [128]
epi Anabaena sp. PCC 7120 Lyngbyatoxin A * ltxA-C, ltxA-D [129]
epi Synechocystis sp. PCC 6803 Ethanol pdc, adh, rbcSC, 70glpX, tktA, fbaA [98]
epi Synechocystis sp. PCC 6803 Shinorine * FsABCD, APPT [130]
epi S. elongatus UTEX 2973 Hapalindole * famH1, famH2, famH3, aph3, famE2, famD2, famC1, famC2, famC3 [131]
HR + epi Synechocystis sp. PCC 6803 Astaxanthin* crtWZ, dxs, idi, ispA, F/SBPase, RuBisCO, rpe, tktA, psy [107]
HR + epi S. elongatus PCC 7002 2,3-Butanediol alsDS, adh [132]
HR + epi Synechocystis sp. PCC 6803 Isobutanol kivd, adh [133]
HR + epi Synechocystis sp. PCC 6803 Limonene * lims, rpi, rpe, GPPS [134]
CRISPR S. elongatus PCC 7942 Succinate * glgC, gltA, ppc [135]
CRISPR + epi Synechocystis sp. PCC 6803 Fatty alcohol * Maqu2220, DPW, plsX, aar, ado, sll1848, sll1752, slr2060 [136]

CRISPR Synechocystis sp. PCC 6803 N-Butanol, ethanol adhA, pdc, pduP, phaJ, ter, phaBCE, nphT7, sth, yqhD, xfpk, PL22, SAS2203,
gltA, odhB, ackA, pyrF, nrtA, ndhD [99]

CRISPR S. elongatus PCC 7942 Squalene * acnB, cpcB2 [105]
1 HR, homologous recombination; epi, episomal expression 2, * cyanobacterial natural product.
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3.2. Heterologous Expression for Biofuel Production

Along with the naturally produced cyanobacterial secondary metabolites, cyanobacteria also serve
as an attractive platform for diverse heterologous biochemical production. For instance, cyanobacterial
genome engineering was performed to use S. elongatus PCC 7942 as a host for producing 2,3-butanediol,
a biochemical building block for plasticizers, liquid fuel additives, and industrial solvents [5]. In this
study, homologous recombination was used for the integration of galactose-proton symporter (galP),
glucose-6-phosphate dehydrogenase (zwf ), and 6-phosphogluconate dehydrogenase (gnd) into neutral
sites, and phosphoribulokinase (prk) and RuBisCO subunits (rbcLXS) into the cp12 site, resulting in
a maximum production of 12.6 g/L of 2,3-butanediol. In addition, in Synechocystis sp. PCC 6803,
metabolic engineering was performed to enhance the biofuel production [99]. To improve ethanol
production in the pyruvate decarboxylase (pdc)-inserted ethanol-producing Synechocystis sp. PCC 6803
strain, pyruvate dehydrogenase complex subunit (odhB) was repressed by CRISPRi. Repression of
citrate synthase (gltA) in the phosphoketolase (xfpk) and acetoacetyl-CoA synthase (nphT7)-inserted
n-butanol-producing strain increased N-butanol production.

Isoprene is a plant-derived building block, mainly used in the manufacturing of synthetic rubber.
While most of the current synthetic rubber production depends on the petrochemical source, there
have been efforts made to increase the cyanobacterial production of isoprene directly from CO2.
On introducing the isoprene synthase (ispS) obtained from various plants into the Synechocystis sp.
PCC 6803 genome by homologous recombination, a maximum of 4.3 mg/L/h isoprene production rate
was achieved with the aid of dxs and idi overexpression [6]. The heterologous inducible promoter Ptrc
or endogenous promoters Pcpc and PpsbA2 were tested for expression of diverse ispS, and as a result,
expression of Eucalyptus globulus ispS with Ptrc promoter showed the highest isoprene production.
As demonstrated in various studies, cyanobacteria can produce industrially valuable biomaterials
by utilizing light and CO2. Therefore, cyanobacteria have the potential to be developed into an
eco-friendly and economical photoautotrophic biofactory.

3.3. Improvement of Photosynthetic Efficiency

The value-added biochemicals that we have discussed are all products of photosynthesis. Thus,
enhancement of the photosynthetic efficiency is crucial for supplying sufficient energy and reducing
power for productivity increment. Some of the strategies for improving photosynthesis include
expansion of the absorption spectra to capture more light energy, downsizing of the antenna to increase
high illumination tolerance, and optimization of the electron transport chain. Furthermore, efficient
use of photosystem-generated energy is another strategy that can be achieved by enhancing carbon
fixation or reducing carbon loss [137].

3.4. Current Limitations in Engineering Cyanobacteria

Until now, we have presented studies showing the potential of cyanobacteria in producing
various metabolites and that continuous engineering efforts can enhance the native and non-native
metabolite production from cyanobacteria. However, despite the proposed and demonstrated potential
as a production host, the production levels in cyanobacteria are not compatible with those in model
organisms such as E. coli or Saccharomyces cerevisiae. In the case of E. coli, which is most widely
used engineering host with a lot of information about genetic features and metabolic network, it is
easy to apply knowledge-based engineering approaches such as enzyme structure modification,
feedback inhibition removal, and precursor pool or cofactor level increasement [138]. In addition,
a high-throughput screening technique through random mutagenesis is applicable using well-developed
screening systems in E. coli. On the other hand, since cyanobacteria is a photoautotroph, more complex
energy generation and distribution, and redox state should be considered when manipulating the
metabolic network, and thus a more systematic insight is required. Additionally, when engineering
multiple targets in the metabolic pathway, it is difficult to fine-tune the relative expression levels
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of the genes due to the lack of available bioparts such as neutral site, promoter, and RBS. In order
to overcome these limitations, it is essential to systematically understand the complex metabolic
network within the cell and to develop various genetic tools by genome-scale screening of native
promoters and RBSs or constructing synthetic bioparts. In recent studies, a systematic approach through
genome-scale modeling (GEM) has been successfully applied to engineering cyanobacteria [124,125].
For more effective and efficient engineering of cyanobacteria, the systematic approach should be
further advanced.

4. Advanced Engineering Approaches through Synthetic and Systems Biology

Synthetic biology involves development of genetic parts, combination design to fulfill the desired
function, and application of the combined tool into an organism. Quantification and standardization of
the genetic parts represented by promoters, RBS, untranslated region (UTR) sequences, and terminator
sequences are critical for proper employment of synthetic biology. Systems biology deals with the
living system as an interactive network more than just a collection of reductive components. Therefore,
understanding of the organism as a system is required for precise designing of the synthetic biology
tools, and the introduction of synthetic biology tools into an organism affects the system, making the
two biological approaches inseparable. The general synthetic and systems biology research flow is
represented as the design–build–test–learn cycle (Figure 3). In the design step, the host for metabolite
production is selected, and the biosynthesis pathway is designed using prior knowledge. Then, in
the build step, a bioproduction host is engineered using either random, rational, or both methods.
The constructed strain may undergo various tests for data generation. The data are then analyzed to
produce and update the understanding of the bioproduction system. Systems and synthetic biology as
an integrative approach, assisted the engineering of various organisms, including cyanobacteria.
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4.1. Synthetic Biology

Development of the genetic parts is critical for applying synthetic biology to metabolic engineering
of cyanobacteria. While in other model species (e.g., E. coli), genetic parts such as promoters and RBS
with varying strengths are available, there has been a significant lack of information and diversity
concerning the cyanobacterial genetic parts. Currently used genetic parts are cyanobacterial endogenous
promoters (PpsbA and Pcpc) and E. coli origin promoters (Ptrc, PBAD, Plac, and PnrsB) [139]. Promoters
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currently used in cyanobacteria are cataloged in previous literature [140]. However, to expand the
promoter selection pool, several PT7 derivatives, PpsbA* derivatives, Ptrc-based hybrid, and synthetic
promoters have been developed and tested in Synechocystis sp. PCC 6803 [141,142]. Recently, a mutant
promoter library from two popular promoters, PpsbA and Pcpc of S. elongatus PCC 7942, were generated
to achieve promoters of varying strength [143]. A collection of 48 unique promoters were validated in
three additional S. elongatus strains, expanding the cyanobacterial synthetic biology toolbox. The RBSs
for cyanobacterial gene expression are mostly wild-type RBS associated with native promoter, or RBS
of highly expressed genes such as psbA2 and rbcL [144]. In addition, synthetic RBSs from BioBrick
Registry of standard biological parts, and a newly designed RBS based on Synechocystis sp. PCC 6803
genome sequence (RBS*) are also used in several studies [145]. Recently, research has been conducted
to diversify the RBS types used in cyanobacterial engineering. Twenty types of native RBS from
Synechocystis sp. PCC 6803 were additionally identified, and 13 RBSs were rationally designed based
on the known strong RBS sequences [142,146].

Riboswitches are another class of bioparts operated based on their RNA structures. A riboswitch
comprises of an aptamer and an expression part. While the aptamer directly binds to a corresponding
small molecule, the expression part regulates gene expression post-transcriptionally by causing
structural changes in accordance with the small molecule binding. In S. elongatus PCC 7942, the operation
of the synthetic theophylline riboswitch confirmed that it could control translation initiation [147].
Recently, this riboswitch was applied for flexible regulation of intracellular glycogen storage by
controlling the expression of ADP-glucose pyrophosphorylase (glgC) [148]. The theophylline riboswitch
was found to be operational in several other cyanobacterial species, including Leptolyngbya sp. BL 0902,
Nostoc sp. 7120, and Synechocystis sp. WHSyn [149]. The theophylline riboswitch has also been used
for chimeric riboswitch generation by combining it with a Bacillus subtilis phuE (adenine riboswitch).
The chimeric riboswitch was validated in Nostoc sp. 7120 [150]. Overall, various synthetic biology
toolboxes applicable to cyanobacteria are being developed to expand the pool of choice, which would
contribute to effective engineering by enabling precise gene regulation of cyanobacteria.

4.2. Next-Generation Sequencing/Omics/Genome-Scale Model

Approximately 1500 cyanobacterial genome sequences have been registered in the NCBI genome
database, and 196 of them, including the genome sequences of Synechocystis sp. PCC 6803 and
S. elongatus PCC 7942, are completely assembled. In particular, the complete genome sequence of
Synechocystis sp. PCC 6803 was reported as early as E. coli genome sequence, thus settling as a model
organism among cyanobacteria [151]. Since then, with the development of diverse next-generation
sequencing (NGS) techniques, various omics data such as transcriptome and translatome were
generated based on the genome sequence [9]. Previously, transcriptome changes in response to stress
conditions, such as temperature, light, and nutrition depletion, and effects of gene deletions were
analyzed using cyanobacterium models, including Synechocystis sp. PCC 6803, S. elongatus PCC
7942, and Nostoc sp. 7120 [9]. In addition to the model cyanobacteria, recent transcriptome studies
are being conducted in various non-model cyanobacterium species as well (Table 3). For example,
in Euhalothece living in a hypersaline habitat, various salt resistance-related genes, such as Na+

transporting multiple resistance and pH adaptation systems, and glycine betaine biosynthesis enzymes
were highly upregulated [152]. In addition, differential RNA-seq revealed genome-wide transcription
start sites (TSSs) in S. elongatus UTEX 2973 and two types of Fischerella strains, which were used
to elucidate the differences in transcriptional regulation resulting in different phenotypes [153,154].
Additionally, the application of Ribo-seq to observe the translatome responses of Synechocystis sp.
PCC 6803 under carbon starvation condition was reported in 2018 [155]. In order to observe the
post-transcriptional responses in cyanobacteria, omics studies such as proteomics through liquid
chromatography with tandem mass spectrometry (LC-MS/MS) analysis and metabolomics through
gas chromatography-mass spectrometry (GC-MS) and 13C isotopically nonstationary metabolic flux
analysis have been implemented [5,156]. The massive omics data generated from the sequencing
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techniques described above served as the basis for understanding the cyanobacterial system under
various conditions and also aided in the development of cyanobacterial GEMs.

GEM is an in silico tool that is useful for explaining the entire metabolism of an organism based on
its genomic information. Given the ability to predict cellular metabolic behavior under given conditions
or constraints, GEMs are mainly used for designing metabolic engineering strategies. GEM is an
iteratively evolving system mended by new input information starting from the prior draft. Thus,
more precise GEMs can be constructed by gathering greater types and amounts of genome information.
GEM has been witnessing significant advancements with continuous accumulation of massive omics
data supplied by various NGS techniques. Among cyanobacteria, Synechocystis sp. PCC 6803 has been
studied most extensively, starting with the central carbon metabolic reconstruction under heterotrophic,
mixotrophic, or autotrophic conditions [157,158]. The Synechocystis sp. PCC 6803 GEM was recently
updated with more detailed photosynthesis and electron transport chain data [159,160]. GEM of other
cyanobacterial species, such as Arthrospira platensis, Cyanothece sp., Nostoc sp., S. elongatus UTEX 2973, S.
elongatus PCC 7942, and Synechococcus sp., are being established and further enhanced [139]. Through
in silico GEM simulation, the bottleneck step can be selected for optimal engineering to enhance the
production of value-added biochemicals. In the near future, the continuously evolving GEM would
grow more useful in the metabolic engineering of cyanobacteria.

Table 3. Recent advances in omics studies of cyanobacteria.

Year Omics Study Strain Ref.

2016 Genome-scale model (GEM) + Metabolome Synechococcus sp. PCC 7002 [161]
2016 Metabolome S. elongatus PCC 7942 [6]
2016 Metabolome + Transcriptome Synechocystis sp. PCC 6803 [127]
2016 Proteome S. elongatus PCC 7942 [162]
2016 Proteome Synechocystis sp. PCC 6803 [163]
2016 Transcriptome S. elongatus PCC 7942 [164]
2016 Transcriptome Synechocystis sp. PCC 6803 [165]
2016 Transcriptome Prochlorococcus NATL2A [166]
2016 Transcriptome Nostoc sp. PCC 7120 [167]
2016 Transcriptome S. elongatus PCC 7942 [168]
2016 GEM S. elongatus PCC 7942 [10]
2016 Transcriptome M. aeruginosa [169]
2017 Metabolome Synechococcus sp. PCC 7002 [170]
2017 Metabolome S. elongatus PCC 7942 [171]
2017 Metabolome S. elongatus PCC 7942 [172]
2017 Metabolome S. elongatus PCC 7942 [5]
2017 Metabolome Synechocystis sp. PCC 6803 [173]
2017 Proteome Synechocystis sp. PCC 6803 [174]
2017 Proteome Synechocystis sp. PCC 6803 [175]
2017 Proteome Synechocystis sp. PCC 6803 [176]
2017 Proteome Synechococcus strains [177]
2017 Proteome Prochlorococcus strains [178]
2017 Proteome P. marinus SS 120 [179]
2017 Proteome Synechocystis sp. PCC 6803 [180]
2017 Transcriptome Synechocystis sp. PCC 6803 [181]
2017 Transcriptome + Interactome Synechocystis sp. PCC 6803 [182]
2017 Transcriptome + Metabolome Synechococcus sp. IU 625 [183]
2017 Transcription start site (TSS) F. muscicola PCC 7414 and F. thermalis PCC 7521 [154]
2017 GEM Synechocystis sp. PCC 6803 [184]
2017 GEM Nostoc sp. PCC 7120 [185]
2017 GEM S. elongatus UTEX 2973 [186]
2017 GEM Synechococcus sp. PCC 7002 [161]
2018 Transcriptome M. aeruginosa [187]
2018 Transcriptome + Translatome Synechocystis sp. PCC 6803 [155]
2018 TSS S. elongatus UTEX 2973 [153]
2018 GEM Synechocystis sp. PCC 6803 [161]
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Table 3. Cont.

Year Omics Study Strain Ref.

2019 Metabolome Synechococcus sp. PCC 7002 [188]
2019 Proteome Synechocystis sp. PCC 6803 [189]
2019 Transcriptome Prochlorococcus MIT9313 [190]
2019 Transcriptome N. punctiforme PCC 73102 [191]
2019 Transcriptome Leptolyngbya sp. PCC 6406 [192]
2020 GEM Synechocystis sp. PCC 6803 [160]
2020 Metabolome S. elongatus PCC 11802 and PCC 11801 [193]
2020 Metabolome Nostoc sp. UIC 10630 [194]
2020 Metabolome Leibleinia gracilis [195]
2020 Metabolome Synechocystis sp. PCC 6803 [196]
2020 Metabolome S. elongatus UTEX 2973 [197]
2020 Metabolome S. elongatus PCC 11801 [198]
2020 Metabolome M. aeruginosa PCC 7820 and PCC 7806 [199]
2020 Metabolome Synechocystis sp. PCC 6803 [200]
2020 Metabolome Nodularia spumigena [201]
2020 Proteome Nostoc sp. PCC 7120 [202]
2020 Proteome Synechococcus strains [203]
2020 Proteome Nodosilinea strains [204]
2020 Transcriptome Nostoc sp. PCC 7120 [205]
2020 Transcriptome Euhalothece sp. Z-M001 [152]
2020 Transcriptome Synechocystis sp. PCC 6803 [206]
2020 Transcriptome N. punctiforme PCC 73102 [207]
2020 Transcriptome Synechococcus sp. PCC 7002 [208]
2020 Transcriptome + Metabolome Synechocystis sp. PCC 6803 [107]
2020 GEM Synechococcus sp. BDU 130192 [209]
2020 GEM A. variabilis ATCC 29413 [210]

5. Conclusions and Future Perspectives

Cyanobacteria have significant industrial value owing to their ability to generate energy from
photosynthesis and to produce various secondary metabolites. However, several improvements
are required for cyanobacteria to meet the industry-level expectations and to establish themselves
as a potential bioproduction platform. First, when using cyanobacterial native promoter or RBS,
unexpected interaction may occur within the cell, which may reduce engineering efficiency. Therefore,
development and application of the variety of orthogonal tools for engineering cyanobacteria is crucial.
In addition, it is essential to obtain the precise metabolic network information to design strategies for
the concise use of the synthetic biology tools. For example, the optimal production conditions can
be discovered through promoter and RBS combination randomization, and the kind of neutral sites
that can be used for chromosome integration can be expanded based on essential gene information
found with transposon mutagenesis [143,146,211,212]. In addition, by applying the rapidly developing
CRISPR application, it is possible to repress or activate multiple target genes at once, which can shorten
the laborious and tedious engineering process caused by the polyploidy genome characteristic of
cyanobacteria [101]. Systems biology enabled the discovery of various genetic tools by generating
and accumulating massive omics data in cyanobacteria. In addition, development of GEM based on
the accumulating omics and experimental data would lead to the development of a more accurate
metabolic model.
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