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Background. Lung adenocarcinoma (LUAD) represents the most common histological subtype of lung cancer. Redox plays a
significant role in oncogenesis and antitumor immunity. In this study, we aimed to investigate the prognostic redox-associated
genes and construct a redox-based prognostic signature for LUAD. Materials and Methods. A discovery cohort containing 479
LUAD samples from ,e Cancer Genome Atlas (TCGA) was analyzed. We identified prognostic redox-associated genes by
weighted correlation network analysis (WGCNA) and univariate Cox regression analysis to construct a prognostic model via least
absolute shrinkage and selection operator (LASSO)-multivariate Cox regression analyses. ,e performance of the redox-based
model was validated in the TCGA cohort and an independent cohort of 456 samples by Cox regression analyses, log-rank test, and
receiver operating characteristic (ROC) curves. Correlations of the model with clinicopathological variables and lymphocyte
infiltration were assessed. Gene set enrichment analysis (GSEA) was used to clarify the underlying mechanism of the prognostic
model. We constructed a nomogram based on the model and created calibration curves to show the accordance between actual
survival and predicted survival of the nomogram. Results. Stepwise analyses identified 6 prognostic redox-associated genes of
LUAD and constructed a prognostic model that performed well in both the discovery and validation cohorts. ,e model was
found to be associated with tumor stage, mutation of TP53 and EGFR, and lymphocyte infiltration. ,e model was mainly
involved in the regulation of the cell cycle, DNA replication and repair, NADH metabolism, and the p53 signaling pathway.
Calibration curves showed the high predictive accuracy of the nomogram. Conclusions. ,is study explored the role of redox-
associated genes in LUAD and constructed a prognostic model of LUAD. ,e signature was also associated with tumor pro-
gression and therapeutic response to immunotherapy. ,ese findings contributed to uncovering the underlying mechanism and
discovering novel prognostic predictor of LUAD.

1. Introduction

Comprising 40% of lung cancer cases, lung adenocarcinoma
has occupied a core position in lung cancer due to its high
mortality and morbidity. Although the 5-year survival rate
has reached approximately 60% for patients with early-stage
LUAD, the number declines to 25% when all stages are
combined [1].

,e prediction of survival for patients with LUAD can
aid in tailoring optimal treatment strategies. ,e TNM
staging system remains the most frequently used indicator to
predict outcome for patients with LUAD. Targeted therapy
and immunotherapy represent emerging and effective
therapies for LUAD. For patients in the advanced stage
without targeted mutations, immune checkpoint inhibitor
(ICI) therapy may demonstrate satisfactory efficacy. With
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the rise of various treatment strategies, more reliable
prognostic biomarkers are needed to achieve individual
therapy.

Reactive oxygen species (ROS) are oxygen (O)-con-
taining molecules generated mainly by oxidative phos-
phorylation in mitochondria and NADPH oxidases (NOXs).
ROS are involved in various biological processes due to their
high reactivity toward proteins, nucleic acids, and lipids [2].
ROS can affect the function of proteins by modifying cys-
teine residues, giving rise to diseases such as asthma, dia-
betes, and cancer [3–6]. Redox homeostasis refers to the
balance between the generation and elimination of ROS [7].
Upsetting this delicate redox balance was related to the
initiation and progression of cancer [8–10]. Oncogenesis
and metastasis can be inhibited by high ROS concentration,
and cancer cells can promote the synthesis of antioxidants to
buffer ROS to avoid this inhibition [11]. Pathways that are
essential to oncogenesis, such as PI3K/AKT, MAPK, and
NF-κB, are regulated by redox [12–15]. Oncogenes and
tumor suppressor genes such as TP53, PTEN, and RAS can
also interact with the redox system to determine the fate of
cells [2, 16–20]. Cancer stem cells (CSCs) have been reported
to have unique redox profiles with low ROS level facilitating
the stemness properties and drug resistance of CSCs, and the
ability of cancer stem cells to generate tumorspheres can be
limited by ROS [21].

Given the great significance of redox in tumorigenesis,
we hypothesized that redox-associated genes may have
prognostic value in LUAD. We conducted multiple analyses
to identify the significant prognostic redox-associated genes
based on expression data of LUAD acquired from TCGA. A
prognostic model was constructed based on prognostic
redox-associated genes by LASSO and multivariate Cox
regression analyses, which could predict the survival out-
come and immunophenotypes of patients with LUAD.

2. Materials and Methods

2.1. Data Collection and Differential Expression Analysis.
Expression data, mutation data, and corresponding clinical
information of LUAD were downloaded from the TCGA
database. A total of 594 samples were analyzed (N (nor-
mal)� 59, N (tumor)� 535), among which 522 samples had
clinical information. Microarray data used for validation
were acquired from the Gene Expression Omnibus (GEO)
database (GSE32863, GSE43458, GSE37745, GSE31210, and
GSE50081). A total of 4338 redox-associated genes were
collected from the GSEA website (https://www.gsea-msigdb.
org), the Gene Ontology website (http://geneontology.org/),
OMIM database (https://omim.org/), and GeneCard data-
base (https://www.genecards.org/). ,e package “edgeR”
was used to remove the genes with low expression, nor-
malize the expression data, and identify differentially
expressed redox-associated genes. First, we conducted dif-
ferential expression analysis between the total tumor and
normal samples (N� 594). Next, the differential expression
analysis between the paired tumor and peritumoral tissues
(N� 114) was performed to eliminate the effect caused by the
huge difference in the total sample number between the

tumor and normal tissues. Genes meeting the filtering
criteria of false discovery rate (FDR)< 0.05 and |log2 fold
change (FC)|> 2.0 in two differential analyses were con-
sidered differentially expressed genes.

2.2. GO and KEGG Analyses. Gene Ontology (GO) en-
richment and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analyses were conducted using the R
package “clusterProfiler” to clarify the functions of the
dysregulated redox-associated genes. Selection criteria are
both q value and p value< 0.05.

2.3. Establishing a Prognostic Model. WGCNA is a powerful
bioinformatic tool for identifying co-expressed genes with
similar biological functions to generate co-expression
modules and correlating co-expression modules with pa-
rameters of interest [22].,us,WGCNA has been frequently
applied in identifying biomarkers that are associated with
specific biological functions or clinical characteristics
[23–25]. In our study, WGCNA was used to extract sig-
nificant gene modules associated with survival and clinical
variables, including age, gender, and stage, using the
“WGCNA” package. Next, univariate Cox regression anal-
ysis and log-rank test were performed for genes in the
survival-related gene module to further identify prognostic
redox-associated genes. LASSO and multivariate Cox re-
gression analyses were conducted using the “glmnet”
package to determine the prognostic genes for model
construction, and the coefficients obtained in multivariate
Cox regression were set as weights.

2.4. Verification of the Prognostic Model. Differential ex-
pression of the prognostic redox-associated genes in the
model was verified in GSM43458 (N= 110) and GSM32863
(N= 116) using the “limma” package. Survival curves of
these genes were obtained from Gene Expression Profiling
Interactive Analysis (GEPIA) (http://gepia.cancer-pku.cn/).
After removing the samples without complete survival and
clinical data, GSE37745 (N= 196), GSE31210 (N= 79), and
GSE50081 (N= 181) were merged into the GEO cohort
(N= 456). ,e prognostic performance of the model was
assessed in the TCGA and GEO cohorts. ,e Kaplan–Meier
survival curves were plotted to compare the overall survival
(OS) of the high- and low-risk groups.,e correlation of the
prognostic model with survival was indicated by the uni-
variate Cox regression analysis. ,en, the multivariate Cox
regression analysis was performed to evaluate whether the
risk score could affect the survival of patients with LUAD
independently. ,e “survival” package was used to conduct
the survival analyses. ,e predictive power of the prognostic
model was assessed by ROC curves using the “survivalROC”
package.

2.5. Relationship between the Prognostic Model and Clinical
Parameters and Gene Set Enrichment Analysis. ,e distri-
bution of the risk score in patients divided by clinical
variables was compared to show the correlation between risk
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score and cancer progression. ,e mutation rate of driver
genes was compared between the high- and low-risk groups
based on the chi-square test. GSEA was performed to reveal
the involved GO terms and pathways of our prognostic
model based on filter criteria of NOM p value< 0.01 and
FDR q value < 0.05.

2.6. Association of the Prognostic Model With Infiltration of
Lymphocytes. Estimation of STromal and Immune cells in
MAlignant Tumours using Expression data (ESTIMATE),
an algorithm that can work out the proportion of stromal
cells and immune cells [26], was applied to obtain the
immune score and stromal score, which represented the
abundance of immune cells and stromal cells, respectively.
Major immune cells in the tumor microenvironment of the
TCGA cohort were downloaded from TIMER [27, 28]
(http://timer.comp-genomics.org). Cell-type Identification
By Estimating Relative Subsets Of RNA Transcripts
(CIBERSORT) is a computational method that uses a
deconvolution algorithm to qualify the composition of cells
based on expression data. Here, the CIBERSORT algorithm
was run by R language to further show the proportion of
tumor-infiltrating lymphocyte subsets [29]. ,e number of
permutations was set to 1000.

2.7. Construction and Validation of a Nomogram. A no-
mogram based on the prognostic model was established
using the “rms” package to estimate the survival probability
of patients. To show the concordance between predicted
survival and actual survival, the calibration curves were
created for both the TCGA and GEO cohorts.

2.8. Statistical Analysis. All statistical analyses were carried
out with R software 4.0.0. GSEA was conducted by the GSEA
software version 4.1.0. ,e p value was corrected using the
Benjamini–Hochberg approach in differential expression
analysis between the normal and tumor tissues. Survival
differences were evaluated by the log-rank test. Differences
in gene expression and immunophenotypes between the
high- and low-risk groups were assessed by the Wilcoxon
test, and gene mutation rates between the two groups were
compared by the chi-square test. P< 0.05 was considered
statistically significant.

3. Results

3.1.DifferentiallyExpressedRedox-AssociatedGenes ofLUAD.
Figure 1 presents the flowchart of our research. A total of 366
and 331 dysregulated redox-associated genes meeting the
cutoff value of |log2 fold change (FC)| >2.0 and adjusted p
value (FDR)< 0.05 were identified in the differential ex-
pression analysis of overall samples and paired samples,
respectively (Figures 2(a) and 2(b)). A total of 290 over-
lapping dysregulated redox-associated genes were identified
from these two differential expression analyses, including 75
downregulated genes and 215 upregulated genes
(Figure 2(c)).

3.2. Functions of Dysregulated Redox-Associated Genes.
,e dysregulated redox-associated genes participate in the
response to oxidative stress, NADP activity, hormone
metabolism, DNA packaging, and oxygen binding
(Figures 3(a) and 3(c)). ,e dysregulated genes are mainly
involved in alcoholism, neutrophil extracellular trap forma-
tion, systemic lupus erythematosus, IL-17 signaling pathway,
and transcriptional misregulation in cancer (Figures 3(b) and
3(d)).,e response to oxidative stress is the most significantly
activated function of these dysregulated redox-associated
genes, with almost 20% of the dysregulated redox-associated
genes participating in this function.

3.3. Establishment of a Prognostic Model. Two gene modules
(MEblue and MEturquoise) were found to correlate with the
survival of LUAD patients in WGCNA (Figure 4(a)). ,e
MEturquoise module was selected for further analyses since it
correlated with not only survival but also clinical parameters,
including stage, age, and gender. ,en, log-rank test and
univariate Cox regression analysis identified 36 prognostic
genes from 145 redox-associated genes in the MEturquoise
module (Figure 4(b)). Ten prognostic genes (AHNAK2,
IGF2BP1, CDC25C, ABCC2, CPS1, CDX2, NTSR1, SLC2A1,
ARNTL2, and SLC7A5) were identified by the LASSO re-
gression (Figure 4(c)). Next, to avoid underestimation of co-
efficients and minimize variables, the multivariate Cox
regression was performed to select 6 prognostic genes
(AHNAK2, CDC25C, CPS1, CDX2, NTSR1, and SLC2A1) to
construct a prognostic model (Figure 4(d), Supplementary
Table 1). All six prognostic genes were oncogenes adversely
affecting survival and were statistically significant in the
multivariate Cox regression analyses except NTSR1. ,e risk
score can be calculated by adding together the products of the
expression level of genes and corresponding coefficients for
each patient (Supplementary Table 1). Patients in the TCGA
and GEO cohorts were classified into a high-risk group and a
low-risk group by the cutoff value of themedian risk score.,e
clinical characteristics of the discovery cohort and validation
cohort are shown in Table 1 and Supplementary Table 2.

3.4. =e Prognostic Model Had Robust Prognostic
Performance. Six prognostic redox-associated genes were
differentially expressed in GSE36823 (Supplementary
Figure 1(a)) and GSE43458 (Supplementary Figure 1(b)).
,e results of survival curves in GEPIA were also consistent
with our findings. AHNAK2 (HR� 1.5, p value� 0.0088),
CDC25C (HR� 2.5, p value< 0.001), CPS1 (HR� 1.5,
p value� 0.052), CDX2 (HR� 1.6, p value� 0.011), NTSR1
(HR� 1.6, p value� 0.0035), and SLC2A1 (HR� 1.6, p val-
ue< 0.001) are unfavorable indicators of survival (Supple-
mentary Figure 2(a)–(f )). In addition,AHNAK2 (HR� 1.7, p
value� 0.017), CDC25C (HR� 1.9, p value� 0.0039), CPS1
(HR� 1.6, p value� 0.028), NTSR1 (HR� 1.7, p val-
ue� 0.038), and SLC2A1 (HR� 1.6, p value� 0.028) ad-
versely affected disease-free survival (DFS) (Supplementary
Figures 2(g), (h), (i), (k), and (l)), whereas no obvious
difference in DFS was observed between the low-CDX2 and
high-CDX2 groups (Supplementary Figure 2(j)).
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After verifying the differential expression and prog-
nostic value of the genes in the model, the performance of
the prognostic model was confirmed in the discovery
(TCGA) and validation cohorts (GSE37745, GSE31210, and
GSE50081). By survival curves and univariate Cox re-
gression analysis, we identified the risk score as an unfa-
vorable indicator of survival in both the TCGA
(HR � 1.233, p value< 0.001) (Figures 5(a) and 5(c)) and
GEO cohorts (HR � 1.222, p value � 0.003) (Figures 5(b)
and 5(d)). ,e results of multivariate Cox regression
analysis demonstrated that the prognostic value of our
model was not affected by clinicopathological parameters,
including age, gender, and stage, in the TCGA (HR � 1.23, p
value< 0.001) (Figure 5(e)) and GEO cohorts (HR � 1.188,
p value � 0.012) (Figure 5(f )). ,e AUCs for 1-, 3-, and 5-
year survival in the TCGA cohort (Figure 5(g)) were 0.709,
0.705, and 0.635, respectively. ,e AUCs for 1-, 3-, and

5-year survival in the GEO cohort (Figure 5(h)) were 0.617,
0.633, and 0.612, respectively.

3.5. Risk Score Was Associated with Tumor Stage and Driver
Gene Mutation. A statistically significant difference in the
distribution of risk score between patients stratified by
clinicopathological status was observed. Although no as-
sociation was observed between age and risk score
(Figure 6(a)), the risk score was associated with gender,
stage, lymph node metastasis, and distant metastasis
(Figures 6(b)–6(f )). ,e risk score was higher in male pa-
tients and patients with advanced tumor, suggesting that the
prognostic model was related to tumor progression and
clinical outcome. Based on analysis of mutation data in
TCGA, we found that the low-risk group and the high-risk
group had significantly different gene mutation frequencies
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data from TCGA 

Differentially expression analysis
( 290 Redox-associated genes) 

GSEA enrichment analysis 

Relationship between prognostic
model and Immunophenotypes 

WGCNA
LASSO regression

analysis 

Establishing a prognostic model
(6 Redox-associated genes) 

Survival analysis ROC curve Univariate Cox
regression analysis
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GEO 

Nomogram and
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regression analysis
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GO and KEGG
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Figure 1: Flowchart of this study.
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(Figures 7(a) and 7(b)). ,e low-risk group had a higher rate
of mutated EGFR (15.38% vs 8.9%, p value� 0.031) and a
lower rate of mutated TP53 (35.04% vs 51.69%, p val-
ue< 0.001) than the high-risk group (Table 2). Gene set

enrichment analysis revealed that the prognostic model was
mainly involved in the regulation of the cell cycle, DNA
replication and repair, NADH metabolism, and the p53
signaling pathway (Figures 7(c)and 7(d)).
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Figure 2: Differential expression analyses of redox-associated genes. (a) Heat map of differentially expressed redox-associated genes
between overall lung adenocarcinoma tissues and normal lung tissues. (b) Heat map of differentially expressed redox-associated genes
between paired lung adenocarcinoma tissues and peritumoral lung tissues. (c) Venn diagram of overlapping redox-associated genes in the
two differential expression analyses.
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Figure 3: Involved GO terms and pathways of the dysregulated redox-associated genes. (a) Bar plots for the involved GO terms of the
dysregulated redox-associated genes. (b) Bar plots for the pathways involved in the dysregulated redox-associated genes. (c) A bubble chart
for the involved GO terms of the dysregulated redox-associated genes. (d) A bubble chart for the involved pathways of the dysregulated
redox-associated genes. GO�Gene Ontology.
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Table 1: Clinicopathological variables of the discovery cohort and validation cohort.

Characteristics Discovery cohort (N� 479) Validation cohort (N� 456)
Age (years), n (%)

<65 213 (44.47) 210 (46.05)
≥65 266 (55.53) 246 (53.95)

Gender, n (%)
Female 260 (54.28) 208 (45.61)
Male 219 (45.72) 248 (54.39)

Stage, n (%)
I 259 (54.07) 308 (67.54)
II 117 (24.43) 117 (25.66)
III 78 (16.28) 27 (5.92)
IV 25 (5.22) 4 (0.88)

Survival status, n (%)
Dead 177 (36.95) 238 (52.19)
Alive 302 (63.05) 218 (47.81)

p=8.312e−10
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Figure 5: Continued.
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3.6. =e Prognostic Model Was Related to Infiltration of
Lymphocytes. We analyzed the infiltration
of lymphocytes to gain an insight into the immune
implications of the prognostic model. ,e immune score
and stromal score were higher in the low-risk group than
that in the high-risk group (p < 0.001) (Figures 8(b) and
8(c)). ,e abundance of immune cells such as B cells,
CD4+ T cells, dendritic cells, and mast cells was higher in
the low-risk group than that in the high-risk group
(p < 0.001) (Figures 8(a), 8(d), 8(e), 8(f ), and 8(g)). ,us,
ICIs may achieve better therapeutic effects in the low-risk
group since tumor-infiltrating immune cells are essential
for the response to ICIs.

3.7. EstablishedNomogramCouldPredict SurvivalAccurately.
Next, we established a nomogram to visualize the prognostic
model for clinical application (Figure 9(a)). High prediction
accuracy of the nomogram was reflected by calibration
curves at 3 and 5 years in the TCGA (Figures 9(b) and 9(c))
and GEO (Figures 9(d) and 9(e)) cohorts.

4. Discussion

Patients with LUAD have poor prognosis because of the
presence of distant metastases. Only 7% of LUAD patients
with distant metastases can survive 5 years or longer [1]. ,e
carcinogenesis mechanism of LUAD is complex and
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Figure 5: Validation of the prognostic model in the TCGA and GEO cohorts. (a) Survival curves of the low- and high-risk groups in the
TCGA cohort. (b) Survival curves of the low- and high-risk groups in the GEO cohort. (c) Univariate Cox analysis of risk score and clinical
variables in the TCGA cohort. (d) Univariate Cox analysis of risk score and clinical variables in the GEO cohort. (e) Multivariate Cox
analysis of risk score and clinical variables in the TCGA cohort. (f ) Multivariate Cox analysis of risk score and clinical variables in the GEO
cohort. (g) ROC curves of the prognostic model for predicting 1-, 3-, and 5-year survival rates in the TCGA cohort. (h) ROC curves of the
prognostic model for predicting 1-, 3-, and 5-year survival rates in the GEO cohort. TCGA�,e Cancer Genome Atlas; GEO�Gene
Expression Omnibus.

8 Journal of Healthcare Engineering



0.68

2

4

6

<=65 >65
age

Ri
sk

 sc
or

e

age
<=65
>65

(a)

Fmale
Male

0.015

2

4

6

Fmale Male
gender

gender

Ri
sk

 sc
or

e
(b)

stage1-2
stage3-4

8.7e−05

2

4

6

stage1−2 stage3−4
stage

stage

Ri
sk

 sc
or

e

(c)

T1-2
T3-4

0.055

2

4

6

T1−2 T3−4
T

T

Ri
sk

 sc
or

e

(d)

N0-1
N2-3

0.0055

2

4

6

N0−1 N2−3
N

N

Ri
sk

 sc
or

e

(e)

0
1

0.043

2

4

6

0 1
M

M
Ri

sk
 sc

or
e

(f )

Figure 6: (a–f) Distribution of risk score between patients classified by clinical parameters (age, gender, stage, T stage, N stage, M stage).

0

1197

KEAP1
ANK2

CSMD1
PCDH15

FAT3
COL11A1
ZNF536
NAV3
SPTA1

FLG
XIRP2
KRAS

USH2A
ZFHX4
LRP1B
CSMD3
RYR2

MUC16
TTN
TP53

11%
15%
16%
14%
15%
11%
15%
13%
15%
18%
16%
24%
22%
22%
26%
29%
26%
31%
31%
35%

0 82

Risk score
Missense_Mutation
Nonsense_Mutation
Frame_Shi�_Del
In_Frame_Del

Frame_Shi�_Ins
Translation_Start_Site
Multi_Hit

Risk score
High
Low

Altered in 191 (81.62%) of 234 samples.

(a)

Missense_Mutation
Frame_Shi�_Del
Nonsense_Mutation

Frame_Shi�_Ins
In_Frame_Del
Multi_Hit

Risk score
High
Low

0

1324

KEAP1
ANK2

CSMD1
PCDH15

FAT3
COL11A1
ZNF536
NAV3
SPTA1

FLG
XIRP2
KRAS

USH2A
ZFHX4
LRP1B
CSMD3
RYR2

MUC16
TTN
TP53

22%
17%
17%
20%
21%
24%
21%
24%
26%
25%
27%
26%
31%
34%
32%
37%
41%
45%
52%
52%

0 122

Risk score

Altered in 225 (95.34%) of 236 samples.

(b)

Figure 7: Continued.

Journal of Healthcare Engineering 9



0.0

0.2

0.4

0.6

0.8

En
ric

hm
en

t S
co

re

GOBP_CELL_CYCLE_DNA_REPLICATION
GOBP_CELL_CYCLE_G2_M_PHASE_TRANSITION
GOBP_CELLULAR_RESPONSE_TO_HEAT
GOBP_DNA_REPLICATION
GOBP_MICROTUBULE_CYTOSKELETON_
ORGANIZATION_INVOLVED_IN_MITOSIS
GOBP_MITOTIC_NUCLEAR_DIVISION
GOBP_MITOTIC_SISTER_CHROMATID_
SEGREGATION
GOBP_NADH_METABOLIC_PROCESS
GOBP_ORGANELLE_FISSION
GOBP_REGULATION_OF_CELL_CYCLE_
PHASE_TRANSITION

High Risk score<−−−−−−−−−−−>Low Risk score

(c)

0.0

0.2

0.4

0.6

0.8

KEGG_CELL_CYCLE
KEGG_DNA_REPLICATION
KEGG_GLYCOLYSIS_GLUCONEOGENESIS
KEGG_MISMATCH_REPAIR
KEGG_NUCLEOTIDE_EXCISION_REPAIR
KEGG_OOCYTE_MEIOSIS
KEGG_P53_SIGNALING_PATHWAY
KEGG_RNA_DEGRADATION
KEGG_SPLICEOSOME
KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS

High Risk score<−−−−−−−−−−−>Low Risk score

En
ric

hm
en

t S
co

re

(d)
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Table 2: Comparison of the mutation rates of TP53 and EGFR between the low- and high-risk groups by the chi-square test.

Variables High risk Low risk χ 2 p Value
TP53

Wild 114 (48.31%) 152 (64.96%)
Mutant 122 (51.69%) 82 (35.04%) 13.263 <0.001

EGFR
Wild 215 (91.1%) 198 (84.62%)
Mutant 21 (8.9%) 36 (15.38%) 4.639 0.031
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involves various biological processes, among which redox is
a critical part. Redox can affect the function of proteins or
lead to protein degradation by modifying the thiol side chain
of protein cysteine residues. Even fine-tuning of redox
homeostasis can incur changes in cellular functions such as
proliferation, differentiation, and immune response
[7, 30, 31]. Redox has been proven to be a significant
contributing factor of oncogenesis. However, no study has
explored the role of redox-associated genes in lung
adenocarcinoma.

In this work, we conducted a systematic analysis to
identify novel prognostic biomarkers of LUAD based on
datasets in TCGA and GEO. First, 290 dysregulated redox-
associated genes were identified and found to be related to
oxidative stress, NADP activity, oxygen binding, DNA

packaging, nucleosome assembly, and transcriptional mis-
regulation in cancer. ,e functions of these genes reflected
that redox-associated genes were involved in not only redox
actions but also the regulation of DNA replication and
transcription. ,en, the stepwise analyses identified six
prognostic redox-associated genes (AHNAK2, CDC25C,
CPS1, CDX2, NTSR1, and SLC2A1) and constructed a
prognostic model. ,ese six redox-associated genes are all
oncogenes that could adversely affect survival. Among the
six redox-associated genes, NTSR1 did not reach statistical
significance in the multivariate Cox regression analysis. ,e
effect of NTSR1 on survival may be dependent on other
factors, such as downstream target genes or upstream reg-
ulatory genes. Although the expression of NTSR1 is not
independently associated with survival, it may represent a
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Figure 8: Correlation of the prognostic model with immunophenotypes. (a) Composition of immune cells of each sample in the low- and
high-risk groups. (b–f) Immune score, stromal score, B cells, CD4+ T cells, and CD8+ T cells between the low- and high-risk groups.
(g) Proportion of immune cells between the low- and high-risk groups.
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class of genes with similar effects on survival since it was
selected as a significant prognostic gene in both LASSO and
multivariate Cox regression analyses.

AHNAK2 belongs to the AHNAK family and was re-
ported to act as an oncogene in papillary thyroid carcinoma,
pancreatic ductal adenocarcinoma, and clear cell renal cell
carcinoma [32–34]. AHNAK2 was found to facilitate inva-
sion and migration in uveal melanoma and LUAD [35, 36].
Additionally, AHNAK2 was correlated with immune infil-
tration in LUAD and papillary thyroid cancer [37, 38].
CDC25C encodes the cell division cycle 25C protein,
serving as an activator of cyclin-dependent kinase 1, which
regulates G2/M cell cycle transition. CDC25C is essential to
the regulation of cell cycle and DNA damage repair. ,e
overexpression of CDC25C aided in the evasion of cell death
in nonmelanoma skin cancer [39]. CDC25C is upregulated
in many tumors and associated with unfavorable outcome
[40–44]. CPS1 encodes carbamoyl phosphate synthetase 1, a
key enzyme regulating the urea cycle. ,e inhibition of CPS1
in lung cancer cells carrying KRAS/LKB1 mutations sup-
pressed tumor growth [45].,e downregulation ofCPS1was
related to unfavorable survival in hepatocellular carcinoma
[46]. Consistent with our findings, CPS1 was identified as an
oncogene in LUAD, and the knockdown of CPS1 could
suppress cell growth and enhance the efficacy of gemcitabine
[47]. Interestingly, evidence has shown that p53 can
downregulate CPS1 to inhibit tumor growth [48]. Studies
have shown that caudal type homeobox 2 (CDX2) acts as a
tumor suppressor gene to inhibit malignant phenotypes of
colorectal cancer and that the low expression of CDX2 is
correlated with poor survival [49–52].Wang et al. found that
CDX2 was able to activate natural killer cells to enhance the
immune response in head and neck squamous cell carci-
noma by upregulating CXCL14 [53]. Neurotensin receptor 1
(NTSR1) can combine with neurotensin (NTS) to form a
complex to promote tumor progression in solid tumors such
as prostate cancer, colorectal cancer, and pancreatic cancer
[54–56]. ,e overexpression of NTSR1 has been shown to
indicate poor survival of patients with hepatocellular car-
cinoma and result in the activation of EGFR [57]. SLC2A1

encodes GLUT-1 protein, which is an important glucose
transporter in glucose metabolism. Evidence suggests that
GLUT-1 is upregulated in prostate cancer and that the
knockdown of GLUT-1 leads to proliferation inhibition and
cell cycle arrest of prostate cancer cells [58]. SLC2A1 was
identified as an adverse prognostic factor of gastric cancer
[59]. A recent study also demonstrated that SLC2A1 was
overexpressed in LUAD and was associated with shorter
survival of patients, which was consistent with our findings
[60,61].

,en, a series of analyses were conducted to verify the
prognostic performance of the model. First, the differential
expression of the prognostic genes in the model was vali-
dated in GSM43458 and GSM32863. ,en, the prognostic
value of these genes in the model was validated in GEPIA,
and the results confirmed that all of the genes were onco-
genes adversely affecting survival. Next, the robust prog-
nostic performance of the model was demonstrated in the
TCGA and GEO cohorts (GSE37745, GSE31210, and
GSE50081). ,e results of the Kaplan–Meier survival curves
and the univariate Cox regression analysis in both the TCGA
and GEO cohorts showed that patients with low-risk score
had a better prognosis.,emultivariate Cox analysis further
indicated that the risk score based on our model was an
independent risk factor for survival. ,e AUCs for 1, 3, and
5 years in the TCGA and GEO cohorts suggested that the
prognostic model possesses robust predictive power.

We also evaluated the relationship of the prognostic
model with clinicopathological variables. ,e low-risk score
was associated with early stage, low mutation rate of TP53,
and high mutation rate of EGFR, which supported our
findings that the patients with low-risk score had favorable
survival. TP53 encodes p53, which is a common tumor
suppressor protein. ,e mutation of TP53 can lead to loss of
its function in tumor suppression and was proven to be
correlated with unfavorable prognosis in lung cancer
[62, 63]. A clinical trial suggested that the mutation of TP53
indicated poor survival in lung cancer patients receiving
chemotherapy after surgery [64]. Patients with mutations in
EGFR are more likely to respond to tyrosine kinase
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Figure 9: Visualization and verification of the prognostic model. (a) Nomogram based on the prognostic model for survival prediction.
(b) Calibration curves showing the accuracy of the nomogram for predicting 3-year survival rates in the TCGA cohort. (c) Calibration curves
showing the accuracy of the nomogram for predicting 5-year survival rates in the TCGA cohort. (d) Calibration curves showing the accuracy
of the nomogram for predicting 3-year survival rates in the GEO cohort. (e) Calibration curves showing the accuracy of the nomogram for
predicting 5-year survival rates in the GEO cohort. TCGA�,e Cancer Genome Atlas; GEO�Gene Expression Omnibus.
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inhibitors. GSEA revealed that the prognostic model was
mainly involved in the regulation of cell cycle, DNA rep-
lication and repair, NADH metabolism, and p53 signaling
pathway, which are vital processes affecting the proliferation
of cancer cells and tumor progression.

Since redox can affect the function of lymphocytes and
immune response [7, 65], we speculated that the prognostic
model was associated with antitumor immunity. We eval-
uated the correlation between the prognostic model and
immunophenotypes to find out that the low-risk score was
associated with high infiltration of lymphocytes such as
B cells, CD4+ T cells, and dendritic cells. ,e abundance of
tumor-infiltrating lymphocytes was positively related to the
efficacy of immune checkpoint inhibitors [66, 67]. B cells
produce immunoglobulins and regulate T cells to enhance
the antitumor response [68]. CD4+ T cells can increase
immune response by activating CD8+ T cells [69, 70]. ,e
antigen-presenting function of dendritic cells is essential for
the activation of Tcells. ,ese results suggested that patients
with low-risk score may have stronger antitumor immunity,
and immunotherapy may work better in these patients than
in those with high-risk score. Our model can be a potential
tool to identify proper candidates for immunotherapy.

Limitations of our study are listed as follows. First, since
our study was a retrospective study based on the analyses of
data in public databases, the prognostic performance of the
model constructed in our study needs to be tested in a
prospective cohort study. Second, mechanistic exploration
was not performed in our study, which needs to be con-
ducted by in vivo and in vitro studies to explain the exact role
of prognostic redox-associated genes in tumorigenesis and
tumor immunity.

5. Conclusions

In conclusion, we introduced a novel redox-based prog-
nostic model, which had robust prognostic performance in
LUAD. ,e prognostic model can be a potential theranostic
indicator that aids in predicting the survival of patients and
identifying proper candidates for immunotherapy. Our
findings explored novel prognostic biomarkers and con-
tributed to tailoring optimal treatment strategies for patients
with LUAD.
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GSE43458. GEO=Gene Expression Omnibus. Supplemen-
tary Figure 2. Validation of 6 redox-associated genes in
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and SLC2A1). (G–L) Survival curves showing the disease-
free survival of patients with LUAD divided by expression of
6 redox-associated genes (AHNAK2, CDC25C, CPS1, CDX2,
NTSR1, and SLC2A1). GEPIA=Gene Expression Profiling
Interactive Analysis. Supplementary Table 1: multivariate
Cox regression analysis of prognostic redox-associated
genes. Supplementary Table 2: clinical features of the dis-
covery cohort. (Supplementary Materials)
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