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ABSTRACT
Microbial signatures show remarkable potentials in predicting colorectal cancer (CRC). This study 
aimed to evaluate the diagnostic powers of multimodal microbial signatures, multi-kingdom 
species, genes, and single-nucleotide variants (SNVs) for detecting precancerous adenomas. We 
performed cross-cohort analyses on whole metagenome sequencing data of 750 samples via 
xMarkerFinder to identify adenoma-associated microbial multimodal signatures. Our data revealed 
that fungal species outperformed species from other kingdoms with an area under the ROC curve 
(AUC) of 0.71 in distinguishing adenomas from controls. The microbial SNVs, including dark SNVs 
with synonymous mutations, displayed the strongest diagnostic capability with an AUC value of 
0.89, sensitivity of 0.79, specificity of 0.85, and Matthews correlation coefficient (MCC) of 0.74. SNV 
biomarkers also exhibited outstanding performances in three independent validation cohorts 
(AUCs = 0.83, 0.82, 0.76; sensitivity = 1.0, 0.72, 0.93; specificity = 0.67, 0.81, 0.67, MCCs = 0.69, 0.83, 
0.72) with high disease specificity for adenoma. In further support of the above results, functional 
analyses revealed more frequent inter-kingdom associations between bacteria and fungi, and 
abnormalities in quorum sensing, purine and butanoate metabolism in adenoma, which were 
validated in a newly recruited cohort via qRT-PCR. Therefore, these data extend our understanding 
of adenoma-associated multimodal alterations in the gut microbiome and provide a rationale of 
microbial SNVs for the early detection of CRC.
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Introduction

Colorectal cancer (CRC), currently the second most 
frequently diagnosed cancer, accounts for approxi-
mately 10% of all new cancer cases globally.1 Recent 
data reveal a rising incidence of CRC in individuals 
aged under 50 y,2 indicating a heavier burden in the 
coming years for the health-care system worldwide. 
Of note, precancerous adenoma is a major precur-
sor form of CRC about 10–15 y preceding cancer 
initiation, the early detection and removal of which

could significantly alleviate the incidence and mor-
tality of CRC.1,3

A wide variety of strategies are available for CRC 
diagnosis, including the combination of colono-
scopy and histopathology as the gold standard, 
noninvasive test kits such as fecal occult blood 
test and fecal immunochemical test,4 and risk- 
prediction score with simple metadata factors.5 

Progresses have also been made in blood or stool- 
based biomarkers, such as circulating tumor cells
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(CTC), circulating tumor DNA (ctDNA) and exo-
somes, broadly applied as noninvasive tools for 
tumor diagnosis, and for predictions of tumor 
recurrence and metastasis.6,7 However, these 
approaches are dissatisfactory with high false- 
positive rates (up to 76.4%) and poor sensitivity 
(down to 38%) for adenoma.8,9 Thus, there is an 
urgent need to explore and identify novel biomarkers 
specifically targeting the precancerous adenoma stage 
for the purpose of early detection of CRC.

As a frequently used proxy of intestinal micro-
biome, fecal sample has demonstrated some 
potentials for detecting CRC in diagnostic models 
based on bacterial abundances.10–12 For early 
screening of CRC, bacterial species achieved an 
area under the ROC curve (AUC) of 0.80 for 
diagnosing adenomas with multiple cohorts.13 

Besides bacteria, the previously neglected non- 
bacteria microorganisms, such as fungi, archaea 
and viruses, are gaining attentions as novel can-
didate disease biomarkers. Alterations in non- 
bacterial enteric microbiome and of intra- and 
inter-kingdom microbial interactions have also 
been revealed in nonalcoholic fatty liver disease 
(NAFLD),14 inflammatory bowel disease 
(IBD)15,16 and CRC.17–20 Along this direction, 
we recently achieved improved specificity and 
accuracy for early-stage CRC screening with 
microbial multi-kingdom species compared to 
single-kingdom species.21 On the other hand, it 
has been reported that CRC associates with 
microbial genes more robustly than with micro-
bial species,22 reflecting the importance of the 
functional omics in health and disease.23 Yet 
another type of microbial features, single- 
nucleotide variants (SNVs), representing intra- 
species level variations, has emerged as effective 
diagnostic biomarkers for CRC and other 
diseases.24,25 As such, one immediate question 
is, what are the predictive capabilities of the 
microbial multi-kingdom species, genes, and 
SNVs for precancerous adenomas, and whether 
the combination of different types of microbial 
features could outperform the individual type of 
microbial features?

To address these questions, we performed com-
prehensive analyses on whole metagenome sequen-
cing (WMS) data from seven cohorts (750 samples) 
to systematically explore the capability of

multimodal biomarkers for detecting adenoma, 
aiming to facilitate the early detection of CRC. 
We observed that the SNV-based diagnostic 
model achieved superior accuracy (AUC = 0.89), 
drastically outperforming species- and gene-based 
models for adenoma diagnosis. Furthermore, func-
tional dysbiosis related to microbial quorum sen-
sing, purine and butanoate metabolism was 
observed in the microbiome of adenoma patients.

Results

Characteristics of multiple cohorts and consistent 
processing of metagenome data

In this study, we included fecal WMS data of 750 
samples from six published studies and one in- 
house cohort with samples collected in China. To 
conduct a comprehensive analysis, 622 samples 
including 183 colorectal adenomas and 439 con-
trols from four cohorts were set as the discovery 
dataset for adenoma-associated signature identifi-
cation, model construction, and association analy-
sis. To ensure the reliability of our results, the 
remaining 128 samples (63 adenomas and 64) 
from three cohorts were used to evaluate the 
robustness of our findings (Figure 1a, Fig. S1, 
Data S1). In addition, 59 samples (29 adenoma 
patients and 30 healthy controls) were newly col-
lected in China to conduct qRT-PCR validations.

The primary objective of this study is to investi-
gate cross-cohort adenoma-associated microbial sig-
natures, including the taxonomic, functional, and 
SNV levels. To avoid technical bias across cohorts, 
all raw sequencing data were reprocessed consis-
tently for microbial multimodal profiling. 
Considering the heterogeneity caused by various 
factors across different cohorts, the effects of major 
metadata variables on profiles of each modality were 
estimated by Permutational multivariate analysis of 
variance (PERMANOVA) test, which revealed the 
predominant impact of “cohort” explaining the lar-
gest proportions of variances in all data layers 
(Figure 1b). Following “cohort”, disease status, 
body mass index (BMI), age, and gender exhibited 
lower but significant impact on the microbial pro-
files. Therefore, “cohort” was treated as the major 
confounder, while gender, age, and BMI were used 
as covariates in the identification of multimodal
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Figure 1. Experimental design and the integrated analysis of adenoma-associated microbiome. (a) Experimental design. A total of 622 
samples comprising 183 colorectal adenoma patients and 439 healthy controls were included in the discovery dataset. WMS data were then 
processed consistently to establish cross-cohort multimodal biomarkers and diagnostic models via xMarkerFinder. Further, the external 
validation dataset (128 samples) and datasets of other microbiome-linked diseases were used to independently assess the robustness and 
disease specificity of established biomarkers and diagnostic models. (b) The PERMANOVA test identified “cohort” as the major confounder 
and demographic indices (gender, age, and BMI) as minor confounders. Asterisks: statistical significance (*P < .05; **P < .01; ***P < .001). 
(c) Principal coordinate analysis (PCoA) of microbial taxonomic classifications showing that gut microbiota differed between adenoma 
patients and healthy controls (P = .001). P values of beta diversity based on Bray–Curtis distance were calculated with PERMANOVA test.
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differential signatures by Meta-analysis Methods 
with a Uniform Pipeline for Heterogeneity in 
Microbiome Studies (MMUPHin) wrapped in 
xMarkerFinder.

Adenoma-associated microbial multi-kingdom 
species

With all samples from the discovery cohorts, beta 
diversity based on Bray–Curtis dissimilarity among 
the taxonomic profiles showed that gut microbiota 
highly differed between adenoma patients and healthy 
controls (R2 = 6.15%, P = .001, Figure 1c). On the 
other hand, a trend of increased alpha diversity was 
observed in adenoma patients than that of controls, 
albeit not statistically significant (Fig. S2a, b).

We then explored adenoma-associated microbial 
taxonomic signatures. As expected, different sets of 
bacterial species were identified as differential species 
in distinct cohorts (Figure 1d, e, Fig. S2c, d), necessi-
tating the integrated analysis on demographically 
distinct populations to identify cross-cohort ade-
noma-associated species that can transcend potential 
confounders. With the combined discovery dataset, 
we identified 46 differential bacterial species between 
adenoma and control (Data S2, Figure 1d). 
Consistent with our previous work,13 six bacterial 
species with decreased abundances in adenoma 
were observed, including Bifidobacterium longum, 
Ruminococcus bicirculans, Longibaculum sp. 
KGMB06250, Eggerthella lenta, Blautia sp. YL58, 
and Enterococcus faecium. Meanwhile, the abun-
dances of 40 bacterial species were increased in ade-
noma compared with control, including Alistipes 
shahii, Paraprevotella xylaniphila, Bacteroides helco-
genes, and particularly, two pathogenic bacteria, 
Bacteroides caccae and Prevotella intermedia.

Next, we examined the alterations in non- 
bacterial microorganisms including fungi, archaea 
and viruses. The abundances of 42 out of 50 differ-
ential fungal species were increased in adenoma 
compared to control, including Sistotremastrum 
suecicum, Postia placenta, Kwoniella bestiolae, and

Fusarium pseudograminearum, while the abun-
dances of Rhizophagus irregularis, Aspergillus niger, 
Aspergillus ochraceoroseus, Leucoagaricus sp. SymC. 
cos, Aspergillus japonicus, Hyphopichia burtonii, 
Nematocida parisii, and Enterospora canceri were 
decreased (Data S2, Figure 1e). For archaea, among 
11 significantly differential archaeal species, the 
abundances of Thermococcus eurythermalis and 
Methanothrix soehngenii were increased, while 
other nine archaeal species were decreased in ade-
noma patients (Data S2, Fig. S2c). For viruses, six 
differential signatures were identified. 
Enterobacteria phage P4, Salmonella phage epsi-
lon34, and giant viruses including Pandoravirus ino-
pinatum and Orpheovirus IHUMI-LCC2 were 
observed with greater abundances in adenoma com-
pared to control, while Mycobacterium virus Giles 
and Escherichia virus RB49 were with lower abun-
dances (Data S2, Fig. S2d). Our data highlighted not 
only bacterial signatures but also the previously 
overlooked non-bacterial signatures in adenoma.

Adenoma-associated microbial functional 
alterations

Microbial functional alterations were examined at 
KEGG orthology (KO) gene and pathway levels, 
respectively. Significant differences in the beta 
diversity analysis of the entire set of microbial KO 
genes between adenoma and control (R2 = 2.97%, 
P = .014, Figure 2a) indicated altered microbial 
functions in adenoma. On the other hand, 
increased alpha diversity of the microbial genes 
was observed in adenoma patients compared to 
controls (Fig. S3 a, b).

Similarly, the integrated analysis identified 386 
differential KO genes, including 150 KO genes with 
increased abundances and 236 KO genes with 
decreased abundances in adenoma patients com-
pared with healthy controls (Figure 2b, Data S3). At 
pathway level, 15 differential pathways were identi-
fied (Figure 2c, Data S4). Among these, five pathways 
enriched in adenoma were related to metabolism,

Each point in the PCoA plots represents a sample and the colors of points represent different groups. (d, e) Phylogenetic trees showing the 
differential bacterial ((d) 110 in total) and fungal ((e) 216 in total) species. The outer circles are marked for significant differential species (P  
< .05) in each cohort identified via Maaslin2 and in the meta-analysis identified via MMUPHin (META ring). Orange and blue indicate 
increased and decreased abundance of the species, respectively.
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such as butanoate metabolism, pyruvate metabolism, 
and styrene degradation, and organismal systems, 
including proximal tubule bicarbonate reclamation 
and transduction olfactory. Consistently, KO genes 
related to above pathways were more abundant in 
adenoma, such as propionate CoA-transferase (pct), 
and malate dehydrogenase (mdh) in pyruvate meta-
bolism, as well as acetate CoA/acetoacetate CoA- 
transferase alpha subunit (atoD), glutaconate CoA- 
transferase subunit B (gctB), butanol dehydrogenase 
(bdhAB), acetoacetyl-CoA reductase (phbB) and 
3-oxoacid CoA-transferase (OXCT) in butanoate

metabolism (Figure 2c). On the other hand, ten path-
ways and relevant KO genes were negatively asso-
ciated with adenoma. These pathways and KO genes 
were mainly involved in metabolism and cellular 
processes (Figure 2c). Specifically, the pathway of 
quorum sensing, a microbial cell-to-cell communi-
cation mechanism, was less represented in adenoma. 
Consistently, relevant KO genes, mainly genes of 
two-component systems, such as phosphorelay pro-
tein (luxU), and sensor histidine kinase (fusK) exhib-
ited lower abundances in adenoma group. Similarly, 
purine metabolism pathway and corresponding

Figure 2. Adenoma-associated microbial functional alterations. (a) PCoA of microbial functional KO genes showing that gut microbiota 
differed between adenoma patients and healthy controls (P = .014). P values of beta diversity based on Bray–Curtis distance were 
calculated with PERMANOVA. Each point in the PCoA plots represents a sample and the colors of points represent different groups. (b) 
Volcano plot showing the differential KO genes in all samples identified via MMUPHin. Each point represents a KO gene. Coefficient >  
0, P < .05 (in red): genes significantly more abundant in adenoma compared with control; Coefficient < 0, P < .05 (in blue): genes 
significantly less abundant in adenoma compared with control; P > .05 (in gray): non-differential genes. (c) The box plots (left) show 
the relative abundances of pathways in adenoma (red) and control (blue). Heatmap (right) shows the abundances of relevant 
differential KO genes in each of the four cohorts. Coefficient values were calculated via MaAsLin2 in each cohort and MMUPHin in 
meta-analysis with red for down-expression and blue for over-expression in adenoma patients compared with healthy controls. Only 
P values <.05 are shown in the cells.

GUT MICROBES 5



genes, phosphoribosylformylglycinamidine synthase 
(purL), and urease subunit alpha (ureC) were less 
abundant in adenoma patients (Figure 2c). 
Collectively, these analyses revealed global altera-
tions in microbial genes and pathways in adenoma 
across multiple cohorts.

Adenoma-associated microbial SNV signatures

The microbial genetic variation, SNV, represents 
potential alterations in the intra-species strain 
level of microbial functionality. We next exam-
ined the SNV signatures of adenoma against 28 
commonly detected microbial strains (average 
coverage > 3X and prevalence > 10%) in the dis-
covery dataset (Data. S5). Among these, four 
strains belonged to the above identified differen-
tial species, including A. shahii (~11X) and 
B. caccae (~18X) with greater relative abundances 
in adenomas compared with controls and 
R. bicirculans (~27X) and B. longum (~27X) 
with lower relative abundances (Data. S2).

Meta-analytic differential testing identified SNVs 
with differential frequencies between adenoma and 
control samples across four cohorts (Data. S5). Most 
of the differential SNVs were located in coding 
sequence (CDS) with only 10% in intergenic region 
(Data. S6). Meanwhile, differential SNVs were mainly 
located in metabolism-related genes (Figure 3b), 
especially genes of purine metabolism (1362 SNVs) 
and pyrimidine metabolism (1084 SNVs) of nucleo-
tide metabolism pathways, as well as amino acid 
metabolism pathways, including arginine and proline 
metabolism (721 SNVs), cysteine and methionine 
metabolism (609 SNVs) and glycine, serine and 
threonine metabolism (550 SNVs). Notably, consid-
erable differential SNVs were related to the aforemen-
tioned differential functional pathways, such as 
purine metabolism, pyruvate metabolism (517 
SNVs), butanoate metabolism (320 SNVs) and styr-
ene degradation (one SNV). Additionally, several dif-
ferential SNVs were located in previously identified 
differential genes, such as SNV (1069713) of 
R. bicirculansin in purL and SNV (5044377) of 
Bacteroides vulgatus in bdhAB (Figure 3c). These 
findings further underlined the importance of micro-
bial genetic variations in the pathology of adenoma 
and the potential diagnostic capabilities of SNVs.

The diagnostic models for adenoma based on 
microbial multimodal biomarkers

The performance of diagnostic models highly 
depends on features. Thus, to determine optimal 
features for model construction, we employed 
Triple-E, a comprehensive three-step feature 
selection procedure in xMarkerFinder, which 
mainly comprises feature effectiveness evalua-
tion, collinear feature exclusion and recursive 
feature elimination (Figure 4a, detail in 
Methods). Furthermore, random forest (RF) 
models were optimized via adjustment of 
hyperparameters.

Models based on multi-kingdom species outperform 
models with single-kingdom species
Diagnostic models based on bacterial abundances 
are widely used approaches for disease 
screening.10,13,26 Considering the alterations in 
all four microbial kingdoms, we assessed the pre-
diction capabilities of microbial features in four 
kingdoms, respectively. Unexpectedly, the diag-
nostic model constructed with eight fungal spe-
cies displayed the strongest ability to distinguish 
adenoma from control (AUC = 0.71), superior to 
models based on archaeal species (AUC = 0.70, 
four biomarkers), bacterial species (AUC = 0.66, 
five biomarkers), and viral species (AUC = 0.66, 
four biomarkers, Figure 4b, Data S7). The AUC 
values of models based on two-kingdom and 
three-kingdom species features were slightly 
improved compared to those with single- 
kingdom features, ranging from 0.66 to 0.74 
(Fig. S4), suggesting additive predictive value of 
the combination of species biomarkers from dif-
ferent kingdoms. Notably, the diagnostic model 
constructed with a core set of optimal species 
biomarkers from all four kingdoms achieved the 
highest AUC of 0.75 for distinguishing adenoma 
patients from controls (Figure 4b). The observa-
tion that the best-performing multi-kingdom 
diagnostic model encompassed nine fungal spe-
cies biomarkers out of a total of 15 species, 
including Cyphellophora europaea and 
R. irregularis acting as the most contributing bio-
markers, further corroborated the prominent 
potential of the fungal kingdom in early detection 
of CRC (Figure 4c).
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Microbial functional biomarkers for adenoma 
prediction
Functional classifiers were constructed with the 
differential genes and pathways. The optimal gene- 
based model comprising 31 KO genes achieved an 
AUC of 0.74, higher than those of the models

constructed with single-kingdom species biomar-
kers while slightly lower than that of the best- 
performing multi-kingdom species model 
(Figure 4d). Genes involved in metabolic pathways, 
such as prepilin peptidase (pilD), ethanolamine 
utilization protein (eutN), and bdhAB, and genes

Figure 3. Microbial SNV signatures in adenoma. (a) Genomic locations of SNVs in the strains of F. prausnitzii (61481) and B. vulgatus 
(57955). Yellow outer rings represent the contigs of the reference genomes of the annotated strains. SNV frequencies in adenoma and 
control were indicated by blue lines in the second and third rings, respectively. The fourth ring indicates locations of identified 
differential SNVs (brown lines). (b) Bar plots showing the number of differential SNVs that belongs to each functional pathway with 
orange indicating previously established differential pathways. (c) Mapping of two differential SNVs located in differential genes. 
Mutated nucleotides (red) and corresponding amino acids were shown. The average SNV coverage of the two strains was provided.
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Figure 4. Diagnostic models based on microbial multimodal biomarkers. (a) The workflow of “Triple-E” feature selection procedure in 
xMarkerFinder. (1) Feature Effectiveness Evaluation. The differentially abundant signatures were identified using MMUPHin out of all 
multimodal signatures. Each single differential signature was then used to build an RF model with GroupKfold cross-validation and 
signatures with AUC values above 0.5 were defined as “effective features”. (2) Collinear Feature Exclusion. For all effective features, 
only those with absolute values of Spearman’s rank correlation coefficients less than 0.7 were reserved as “uncorrelated-effective 
features”. (3) Recursive Feature Elimination. The recursive feature elimination method was utilized to determine the “optimal 
biomarkers” as the best panel of features used for model construction. (b) Receiver operating characteristic (ROC) curve of the 
optimized models constructed with species-level biomarkers. Mean AUC and standard deviation of stratified fivefold cross-validation 
were shown. (c) Permutation feature importances of the optimized model constructed with multi-kingdom species-level features. 
Color represents different kingdoms. (d) ROC curve of the optimized models constructed with KO gene-level biomarkers. Mean AUC 
and standard deviation of stratified fivefold cross-validation were shown. (e) The upper plot showing the performances of single-strain 
SNV models and the multi-strain SNV model. Bar plot shows the mean coverage of each strain across all samples in the discovery 
dataset. The log-transformed numbers of annotated SNVs and differential SNVs in each strain are color-coded and indicated below the 
bar plot. (f) Box plot showing the cross-validation AUC values of models constructed with the combination of multimodal biomarkers. 
Mean AUCs and standard deviations are shown. (g) The process of selecting the minimal panel of SNV biomarkers with the inner plot 
showing the ROC curve of the minimal panel of SNV biomarkers.
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involved in genetic information process, such as 
putative DNA relaxase (nicK) and urease accessory 
protein (ureE), contributed most to the diagnostic 
capability of the model (Fig. S5). In addition, the 
diagnostic model based on seven optimal pathways 
achieved a relatively low AUC of 0.68 (Fig. S6), 
which may be rationalized by the fact that func-
tional pathways provide aggregated gene informa-
tion, thus neutralizing individual signatures’ 
variations.

Microbial SNVs are better diagnostic biomarkers for 
adenoma
Given that microbial genetic variations have pro-
found impact on microbial intra-species diversities 
and that the integrated analysis identified consider-
able cross-cohort differential SNVs, we next evalu-
ated the diagnostic potential of microbial SNVs. First, 
we identified optimal SNV biomarkers from each 
strain to construct single-strian models that achieved 
AUC values ranging from 0.67 to 0.78 (Figure 4e, 
Data S5). Of note, 3 out of 15 single-strain SNV 
models outperformed both multi-kingdom species 
and gene models, including F. prausnitzii (61481) 
(AUC = 0.78, ~21X), F. prausnitzii (57453) (AUC =  
0.76, ~18X), and A. hadrus (55206) (AUC = 0.76, 
~29X, Figure 4e). The observation that the taxonomic 
abundances of F. prausnitzii and A. hadrus did not 
differ between adenoma and control further testified 
for the prevailing diagnostic capabilities and sensitiv-
ity of microbial SNVs in detecting adenoma. 
Furthermore, to evaluate the predictive ability of the 
combination of multi-strain SNVs, optimal SNV bio-
markers from each single-strain models were pooled 
together and a multi-strain SNV model (143 SNV 
biomarkers) was established achieving a highest AUC 
value of 0.89 with a sensitivity value of 0.79, 
a specificity value of 0.85, and a Matthews correlation 
coefficient (MCC) value of 0.74 (Figure 4e).

To better understand the multi-strain SNV 
diagnostic model, we examined the biomarkers’ 
distribution and found that 61 of the 143 SNV 
biomarkers were located in the genome of 
F. prausnitzii (8 in strain 62201, 10 in strain 
57453, and 43 in strain 61481), one of the 
most abundant species in human intestines 
(Data S8).27 Of the 143 SNVs, 131 were located 
in CDS with nearly half (62 SNVs) being synon-
ymous mutations that commonly do not alter

the structure or function of the encoded pro-
teins. Here, we referred to these SNVs as “dark 
SNVs” due to their absence of alteration in 
encoded amino acids. These dark SNVs exhib-
ited diagnostic potential for adenoma.

To test the hypothesis that the combination 
of multimodal biomarkers might provide addi-
tive predictive capabilities, we then evaluated 
the predictability of models based on the com-
bination of optimal biomarkers from species, 
genes and SNVs. Improved performance (AUC  
= 0.78) was observed with the combination of 
species- and gene-level biomarkers (Figure 4f). 
However, we were surprised by the decreased 
diagnostic performances when adding species 
or gene biomarkers to the SNV model 
(Figure 4f). Thus, the SNV model was the best- 
performing diagnostic model for detecting 
adenoma.

Considering the efficiency and cost- 
effectiveness in clinical practice, we further iden-
tified a minimal set of SNV biomarkers via recur-
sive feature elimination and the classifier 
constructed with a core set of 36 SNV (with 21 
being synonymous mutations) biomarkers 
reached an AUC of 0.87 (Figures 4g, 5a, Data 
S9), outperforming the combination of multimo-
dal biomarkers (AUC = 0.86). The core set of 36 
SNV biomarkers were therefore considered the 
best panel of adenoma biomarkers for potential 
clinical application.

Given the rising prevalence of early-onset CRC 
(patients diagnosed before age of 50) in recent 
years, the identification of biomarkers that specifi-
cally target early-onset CRC has drawn much 
attention.28,29 Here, we further explored the cap-
abilities of microbial multimodal biomarkers for 
the detection of adenoma within a subset of the 
discovery datasets, including 11 adenoma patients 
and 73 controls aged under 50. The diagnostic 
model constructed with established species-, func-
tional-, and SNV-level biomarkers reached 
remarkable AUC values of 0.81, 0.56, and 0.82 in 
distinguishing younger patients from controls (Fig. 
S7). Although these results indicated the significant 
potential of microbial biomarkers for detecting 
early-onset adenoma, further large-sample analyses 
are required to gain a more comprehensive under-
standing of early-onset colorectal cancers.
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Microbial SNV biomarkers are robust and universal 
across cohorts

To ascertain the reproducibility of the best panel of 
SNV biomarkers, cohort-to-cohort and leave-one- 
cohort-out (LOCO) validations were performed. 
The AUC values of the models constructed with 
the best panel of SNV biomarkers ranged from 0.67 
to 0.94 with an average of 0.82 for cohort-to-cohort 
validation and ranged from 0.78 to 0.94 with an 
average of 0.87 in LOCO validation (Figure 5b). To 
further test the robustness of the established best 
SNV panel, we evaluated their diagnostic capabil-
ities with three external cohorts from different 
geographic regions and achieved AUC values of 
0.83, 0.82 and 0.76, respectively (Figure 5c, sensi-
tivity = 1.0, 0.72, 0.93; specificity = 0.67, 0.81,0.67, 
MCCs = 0.69, 0.83, 0.72). These substantial valida-
tions confirmed the robustness and generalizability 
of the identified best panel of microbial SNV bio-
markers for adenoma diagnosis.

Specificity of microbial SNV biomarkers for 
adenoma prediction

To evaluate the disease specificity of the best 
panel of SNV biomarkers, the diagnostic capabil-
ities of this SNV model were evaluated for pre-
diction of other microbiome-linked diseases, 
including CRC, Crohn’s disease (CD) and ulcera-
tive colitis (UC). The predictive AUC values of 
the SNV model for these three diseases were 
apparently lower than that of adenoma 
(Figure 5d), indicating a high disease specificity 
of SNV biomarkers for adenoma.

Additionally, we evaluated the correlations 
between each SNV biomarker and the disease sta-
tus in adenoma and three non-adenoma diseases, 
and observed distinct patterns for adenoma and 
non-adenoma diseases (Figure 5e). Importantly, 
in CRC compared to adenoma, these SNVs were 
less significantly correlated with disease status, 
reflecting the capabilities of these SNVs in distin-
guishing adenoma from CRC or the CRC early 
detection at precancerous stage (Figure 5e). CD 
and UC, the two main subtypes of IBD, shared 
similar SNV correlation patterns which differed 
from those of adenoma (Figure 5e). Altogether, 
these analyses together demonstrated the disease

specificity of the microbial SNV biomarkers for 
adenoma diagnosis.

Cross-modality associations among the microbial 
signatures are indicative of pathogenic mechanisms 
in adenoma

To explore the potential mechanisms for the 
microbial multimodal signatures to participate in 
adenoma pathogenesis, we constructed the micro-
bial co-abundance networks in adenoma patients 
and healthy controls and observed distinct com-
munity structures. The microbial network of ade-
noma patients (76 species, 259 associations, Data 
S10) was far more complex than that of healthy 
controls (52 species, 185 associations, Data S11, 
Figure 6a). Notably, adenoma network contained 
more frequent intra- and inter-kingdom connec-
tions, such as interactions among intra-fungal spe-
cies, C. europaea-Thermothelomyces thermophilus, 
Cladophialophora bantiana-Ustilago maydis, and 
Aureobasidium melanogenum-K. bestiolae, and 
fungal-batcerial interactions among H. burtonii- 
A. shahii, Aspergillus versicolor-Prevotella enoeca 
and Jaminaea rosea- Sorangium cellulosum, indi-
cating potential fungal involvement in adenoma 
pathogenesis through contributing to the microbial 
dysbiosis. Moreover, eight species biomarkers from 
the fungal and bacterial kingdoms, including 
C. europaea, C. bantiana, K. bestiolae, Lasallia pus-
tulata, Fomitopsis pinicola, Enterobacter hormae-
chei, Actinomyces pacaensis and Blautia sp. YL58, 
presented more associations than other species, 
suggesting a core set of microbiota contributing 
to adenoma pathogenesis.

Besides, considerable associations were 
observed between differential functional path-
ways and species, as well as the optimal multi- 
kingdom species biomarkers (Fig. S8, Figure 6b). 
Specifically, the species-level biomarkers 
A. ochraceoroseus, C. bantiana, C. europaea and 
K. bestiolae of fungal kingdom and Blautia sp. 
YL58 of bacterial kingdom were positively asso-
ciated with pathways of purine metabolism and 
quorum sensing. Counterintuitively, the bacterial 
biomarkers E. hormaechei and Blautia sp. YL58, 
two of the butyrate-producing species, were 
negatively associated with butanoate metabolism. 
Interestingly, one of the most important fungal
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Figure 5. Characterization and validation of the best panel of SNV biomarkers. (a) SNV biomarkers’ distribution in each cohort and in 
meta-analysis. Heatmap of the coefficient values calculated via MaAsLin2 in each cohort or via MMUPHin in meta-analysis, with red for 
higher frequencies and blue for lower frequencies in adenoma patients compared with healthy controls. Asterisks indicate statistical 
significances (P < .05). Biomarkers are ordered according to their permutation importances in the diagnostic model (Rank column).
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biomarkers, R. irregularis, and bacterial biomar-
ker V. atypica displayed rather distinct patterns 
from other species-level biomarkers and were 
negatively correlated with most differential func-
tional pathways.

As described above, the abundances of key 
genes in these pathways displayed consistent 
alterations, such as decreased abundances of 
two-component system luxU, fusK in quorum 
sensing pathway, ureC, purL in purine metabo-
lism and increased abundances of atoD, gctB, 
bdhAB, phbB and OXCT in butanoate metabo-
lism. Further, we validated these genes using 
qRT-PCR on our newly collected samples 
(CHN2 cohort, Data S12). Consistent with 
metagenomic analysis, genes of butanoate meta-
bolism were enriched in adenoma samples, such 
as bdhB and gctB (Figure 6c, Fig. S9). 
Conversely, genes of quorum sensing (fusK) 
and purine metabolism (ureC, purL) were 
decreased in adenomas (Figure 6c, Fig. S9). 
Notably, three of the identified SNV biomar-
kers, SNV 1,069,713 of R. bicirculans, SNV 
2,604,473 of F. prausnitzii (61481), and SNV 
222,146 of B. vulgatus were located in genes of 
purine metabolism, such as SNV 1,069,713 in 
the differential gene of purL (Data S8). Taken 
together, these analyses revealed the functional 
connections among the multimodal microbial 
signatures.

Discussion

A major and prevalent challenge in the current 
microbial research is the considerable heterogeneity 
among different cohorts that obscure our under-
standing of the true associations between microbiota 
and disease. The heterogeneity comes from various

biological factors and inconsistent standards for 
metagenomic data generation and processing. 
Therefore, several pioneer studies and ours identi-
fied core microbial signatures related to specific dis-
eases by integrated analyses against multiple 
metagenomic sequencing cohorts.10,13,21,26 Here, 
we performed an integrated multi-cohort analysis 
to test for overall universal microbial-disease asso-
ciations that can transcend potential biological and 
technical confounders. This integrated analysis pro-
vided a comprehensive multimodal view of ade-
noma-associated microbial signatures, including 
microbial multi-kingdom compositions, functional 
profiles and microbial SNVs. We systematically 
assessed their performances as noninvasive biomar-
kers for CRC early detection at precancerous ade-
noma stage. Diagnostic models constructed with 
multi-kingdom species and genes achieved AUC 
values of 0.75 and 0.74, respectively. Particularly, 
fungal species showed superior distinguishing cap-
abilities compared with species from other king-
doms. Meanwhile, the SNV-based diagnostic 
model displayed the highest accuracy (AUC = 0.89) 
in distinguishing adenoma from control, the sensi-
tivity and specificity of which were validated with 
three external adenoma cohorts. In addition, altered 
gene abundances in quorum sensing, purine and 
butanoate metabolism were observed in adenoma 
patients, and were further validated via qRT-PCR.

Previous efforts for microbial early detection of 
CRC focus on bacterial species. With 16S rRNA 
gene sequencing data, adenoma-specific bacterial 
biomarkers achieved an AUC of 0.80.13 However, 
with WMS data in the current study, the diagnostic 
model based on bacterial species achieved 
a relatively low AUC of 0.66 (Figure 4b). 
Similarly, a WMS study by Thomas et al.10 reported 
a low AUC with bacterial species. The discrepancy

The second column indicates the mutation type of each SNV biomarker, with red for non-synonymous mutations, blue for 
synonymous mutations, and gray for SNVs located in the intergenic region. (b) Internal validation AUC matrix. Values on the diagonal 
refer to the average AUC values of fivefold cross-validation within each cohort. Off-diagonal values refer to the AUC values obtained by 
training the classifier on the cohort of the corresponding row and applying it to the cohort of the corresponding column. The LOCO 
row refers to the performances obtained by training the model using all but the cohort of the corresponding column and applying it to 
the cohort of the corresponding column. (c) The performances of the optimal SNV biomarker panel in three external validation 
datasets. (d) The barplot showing the comparison of the performances of SNV biomarkers in RF models for different microbiome- 
linked diseases: adenoma, CRC, CD, and UC. P values were from two-sided Wilcoxon rank-sum tests. (e) Patterns of the correlations of 
SNV biomarkers with disease status: distinct patterns observed for adenoma and other microbiome-linked diseases. Coefficient values 
calculated by MaAsLin2 and MMUPHin of each SNV biomarker are plotted by color gradients with orange for disease-enriched SNVs 
and blue for control-enriched SNVs.
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Figure 6. Cross-modality associations among the microbial signatures. (a) Multi-kingdom co-abundance networks in adenoma and 
control samples. Colors of nodes indicate different kingdoms: archaea (red), bacteria (yellow), fungi (green) and viruses (blue). Only 
correlations with P values <.05 and absolute correlation coefficients >.5 are included in the networks with peach lines for 
positive correlations and blue lines for negative correlations. (b) HAllA results showing associations between differential pathways

GUT MICROBES 13



on the diagnosis power of bacteria species between 
16S and WMS approaches could be attributed to 
insufficient coverage of the microbiome by the 
WMS approach. Recently, there has been an 
increasing interest in the roles of fungal kingdom 
in CRC.17,30 We and other researchers have shown 
that the gut mycobiome displayed promising 
potentials in the early detection of CRC.20,21 

Taking advantage of the multi-kingdom informa-
tion in WMS data, the current study was able to 
compare the efficacies of species from different 
kingdoms for the early screening of CRC. 
Notably, the diagnostic accuracy of models con-
structed with fungal species (AUC = 0.71, 
Figure 4b) was higher than that with bacteria and 
other kingdoms. The best-performing species-level 
model comprising 15 multi-kingdom species dis-
played superior diagnostic capability with an AUC 
of 0.75, and a majority of these best-performing 
features were also from the fungal kingdom, with 
C. europaea and R. irregularis acting as the most 
contributing biomarkers. In addition to the promi-
nent diagnostic capabilities of the fungal kingdom, 
we further investigated its potential roles in the 
pathogenesis of adenoma and found that fungal 
species, especially those with diagnostic powers, 
presented extensive associations with each other 
and with species from other kingdoms. Further, 
fungal biomarkers also exhibited significant asso-
ciations with key functional pathways in the devel-
opment of colorectal cancer. Therefore, these 
results highlight the importance of fungal species 
in CRC early screening, as well as potential fungal 
involvement in the adenoma pathogenesis.

One remarkable finding in our study is that 
diagnostic models constructed with microbial 
SNV biomarkers achieved the highest AUC. 
Classification models constructed with SNVs 
from single strains outperformed both multi- 
kingdom species- and gene-models. Further, the 
classification model constructed with SNVs from 
multiple strains achieved the highest accuracy 
(AUC = 0.89, Figure 4e). Then, a minimal set of 
36 SNVs from 12 strains achieved an AUC of 0.87

with high robustness and specificity for adenoma, 
which could serve as a cost-effective noninvasive 
biomarker panel for CRC early screening. 
Although the bacterial kingdom did not display 
strong diagnostic ability in the species-level bio-
markers, the abundant bacterial species enabled 
a more in-depth perspective toward the gut micro-
biome as in the high-resolution SNVs31. The obser-
vation that most SNV biomarkers belong to non- 
differential species, such as F. prausnitzii and E. coli 
(Figure 5a, Data S8 and S9), further highlights the 
importance of analyzing the genetic variations and 
their prominent roles as novel biomarkers for early 
detection at precancerous stage of CRC. 
Interestingly, more than half of these SNV biomar-
kers were synonymous mutations. From the per-
spective of their feature importance, these dark 
SNVs demonstrated equivalent, if not superior, 
contributions to the predictive model compared 
to non-synonymous mutations. Despite the 
absence of alteration in encoded amino acids, 
dark SNVs held great capability in distinguishing 
adenoma patients from controls. Our study 
emphasized the significance of dark SNVs as an 
indispensable modality for diagnostic biomarkers 
that warrant increased attention. Furthermore, 
although they were once referred to as silent muta-
tions, recent evidence demonstrates their capacity 
to impact protein conformation and function by 
affecting post-transcriptional processing and regu-
lation of RNA.32

Gut microbiome influence host homeostasis 
in multiple ways,33,34 and the disruption of this 
harmonious interaction affects the initiation 
and progression of CRC.1,35,36 Quorum sensing, 
a way of cell-to-cell communication, plays an 
important role maintaining the healthy gut 
microbial state through small molecules, such 
as autoinducers,37 enabling microbial popula-
tions to efficiently synchronize microbial den-
sity and behavior with the surrounding 
environment like multicellular organisms. 
Here, damaged quorum sensing function in 
the microbiome of adenoma was observed,

and multi-kingdom species biomarkers. Significant associations between pathways and species were plotted (P < .05). Correlation 
coefficients are coded in color: red and blue indicate positive and negative correlations, respectively. Only P values <.05 are shown in 
the cells. (c) qPCR results showing the expression level of key genes in purine metabolism, butanoate metabolism, and quorum 
sensing. P values were from two-sided Wilcoxon rank-sum tests.
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consistent with extensively altered intra- 
kingdom and fungal-bacterial interactions in 
patients with adenoma, suggesting impaired 
gut homeostasis (Figures 2c, 6a). This hypoth-
esis was further supported by the associations 
detected between quorum sensing pathway and 
bacterial- and fungal- biomarker species 
(Figure 6b), and the decreased representations 
of two autoinducer receptors, luxU and fusK, in 
the microbiome of adenoma from both meta-
genomic analysis and qRT-PCR (Figures 2c, 
6c). Meanwhile, the purine metabolism was 
impaired in the microbiome of adenoma 
patients, with two of the key genes, purL and 
ureC, exhibiting decreased abundances in ade-
noma (Figure 6c). Notably, three SNV biomar-
kers were located in the differential purine 
metabolism pathway, one of which was in 
purL, suggesting potential microbiome-driven 
mechanisms of impaired purine metabolism in 
the pathogenesis of adenoma. Abnormal purine 
level has been associated with microbial dys-
functions and cancer progression.38,39 Here 
our results highlighted several ways that the 
microbiota of adenoma may impact the purine 
metabolism. On the other hand, adenoma 
patients were observed with increased butano-
ate metabolism capability. This is consistent 
with our previous observation of increased 
abundance of butanoate metabolizing genes in 
CRC patients compared to controls,21 and sup-
ports an essential role of butanoate metabolism 
in the development of CRC.40 This was further 
supported by the increased abundances of key 
genes in butanoate metabolism, bdhAB and 
gctB, via qRT-PCR. F. prausnitzii, one of the 
most abundant species in human intestines, is 
a major producer of butanoate,27 and also pos-
sesses the most contributing features of the 
best-performing SNV model (Data S6). Taken 
together, these specific multimodal alterations 
related to microbiota metabolism and quorum 
sensing and their close relationships may illu-
minate future efforts to unravel the convoluted 
pathological mechanisms of adenoma and CRC, 
and provide reasonable explanations for the 
outstanding performances of the microbial bio-
markers in detecting adenoma.

Collectively, we uncover comprehensive ade-
noma-associated microbial alterations and 
reveal the outstanding potential of microbial 
SNVs as a novel noninvasive tool for CRC 
early screening. In addition, we propose poten-
tial pathological mechanisms for adenoma 
based on the extensive alterations in the multi-
modal microbial interactions and the associa-
tions among the microbial biomarkers of 
different modalities, and of different kingdoms.

Materials and Methods

Patient recruitment and sample collection

Two in-house cohorts collected in Shanghai, 
China, were included in this study. First, we col-
lected WMS data from CHN1 cohort, including 40 
adenoma patients and 47 healthy controls.41 

Besides, fecal samples were collected from CHN2 
cohort, which was newly recruited from the 
Shanghai Tenth People’s Hospital of Tongji 
University, containing 29 adenoma patients and 
30 healthy controls. Written informed consent 
was obtained from each subject before data and 
biospecimen collection. Patients were recruited at 
initial diagnosis with no reception of any treatment 
before fecal sample collection. Patients with her-
editary colorectal syndrome, or with a previous 
history of colorectal disorder, were excluded. This 
study was approved by the Ethics Committee of the 
Shanghai Tenth People’s Hospital of Tongji 
University (ethical approval No. 20KT863).

Public data collection

To conduct an integrative multi-cohort analysis, 
we further collected published fecal WMS data of 
six cohorts consisting adenoma patients and 
healthy controls covering samples from five dif-
ferent countries. Raw sequencing data of these 
samples were downloaded from Sequence Read 
Archive (SRA) and European Nucleotide 
Archive (ENA) using the following accession 
IDs: ERP008729 for Feng et al. (AUT cohort),42 

ERP005534 for Zeller et al. (FRA cohort),43 

SRP136711 for Thomas et al. (ITA cohort),10 

DRA006684 and DRA008156 for Yachida et al.
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(JPN cohort),44 SRP108915 for Hannigan et al. 
(USA1 cohort),45 and SRP327788 for Avelar- 
Barragan et al. (USA2 cohort).41 The metadata 
were manually curated from relevant original 
publications. Only colorectal adenoma samples 
and healthy controls were included for down-
stream integrative analysis, while samples of 
CRC patients were used to validate the specificity 
of microbial biomarkers, along with samples from 
CD and UC patients (SRP129027).

Study design

In total, WMS data of 750 samples of adenoma 
patients and healthy controls from seven geogra-
phically distinct cohorts were included in the meta-
genomics analysis of this study. To identify and 
validate global microbial biomarkers across 
cohorts, 622 samples from four cohorts were set 
as the discovery dataset, including cohorts AUT, 
FRA, ITA, and JPN, while cohorts USA1, USA2, 
and one in-house cohort from China (CHN1) were 
used as the validation dataset. Meanwhile, samples 
of CRC, CD and UC patients were used to exter-
nally estimate the specifity of microbial biomarkers 
and classification models against adenoma. 
Further, newly collected samples from CHN2 
cohort were used to perform qRT-PCR validations 
of key genes.

Sequencing data preprocessing

KneadData (http://huttenhower.sph.harvard.edu/ 
kneaddata, V0.6.0) was used to perform quality 
control on sequencing data. First, low-quality 
reads were removed using Trimmomatic 
(SLIDINGWINDOW:4:20 MINLEN:50 
LEADING:3 TRAILING:3). Remaining reads were 
then mapped to the mammalian genomes (hg38, 
felCat8, canFam3, mm10, rn6, susScr3, galGal4 and 
bosTau8; UCSC Genome Browser), 21288 bacterial 
plasmids (NCBI RefSeq database accessed in 
January 2020), 3890 complete plastomes (NCBI 
RefSeq database accessed in January 2020) and 
6093 UNiVec sequences (NCBI RefSeq database 
accessed in January 2020) by bowtie2 (V.2.3.5) to 
remove sequences of human and laboratory 
contaminations46.

Microbial multimodal annotation

Microbial multi-kingdom assignment
A customized reference database comprising 
18,756 bacterial, 359 archaeal, 9346 viral reference 
genomes from the NCBI Refseq database (accessed 
in January 2020), and 1094 fungal reference gen-
omes from the NCBI Refseq database, FungiDB 
(http://fungidb.org) and Ensemble (http://fungi. 
ensembl.org, accessed in January 2020) was built 
for taxonomic assignment of the sequencing reads. 
Taxa were assigned to sequencing reads using 
Kraken2, an improved taxonomic classification 
system using exact K-mer matches.47 Further, 
Bracken was used for taxa abundance estimation 
based on Kraken2 results.48 Read counts of species 
were converted to relative abundances and only 
those with relative abundances more than 0.1% in 
at least 10% of samples and presented in at least 
three cohorts were subjected to further analysis.

Functional annotation
For microbial functional profiling, high-quality 
reads were assembled into contigs using Megahit 
(V1.2.9) and only contigs longer than 500 bp were 
selected for downstream analysis. Microbial genes 
were predicted by Prodigal (V2.6.3) via the meta-
genome mode (−p meta). Then, a non-redundant 
microbial gene reference was constructed with CD- 
HIT using a sequence identity cutoff of 0.95, and 
a minimum coverage cutoff of 0.9 for the shorter 
sequences. The reference was annotated using 
EggNOG mapper (V2.0.1) based on EggNOG 
orthology. CoverM (https://github.com/wwood/ 
CoverM, V4.0) was used to estimate gene abun-
dances by mapping high quality reads to reference 
sequences and to calculate the coverage of genes in 
the original contigs. The relative abundances of 
KEGG orthologous (KO) groups or pathways 
were calculated by summing the relative abun-
dances of genes annotated to the same KOs or 
pathways.

SNV calling
Metagenomic Intra-Species Diversity Analysis 
System (MIDAS, V1.3.2) was used to perform 
microbial SNV annotation49. First, to ascertain 
the analytical robustness while guaranteeing an 
adequate number of features for subsequent
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analysis, 28 strains were selected based on their 
coverage and prevalence. Only those with sufficient 
read depth of marker genes (>3X as default para-
meter in MIDAS) in at least 10% of all samples 
were used to construct a customized reference 
database. A local bowtie2 database was then con-
structed that contains one representative genome 
per strain. To perform SNV calling, high-quality 
WMS reads were aligned to the database using 
Bowtie2, and the read depth and observed alleles 
at each position were quantified. Subsequently, the 
SNV profiles of each sample were merged, and only 
bi-allelic positions were chosen. Other parameters 
were in accordance with the preset option “—cor-
e_snps”. For feature selection, model construction, 
and other analyses in this study, SNV frequencies 
per genomic site of each sample were used, and 
samples that do not contain the designated SNV 
were assigned a value of zero.

Integrated analysis of microbiome-derived 
differential signatures

xMarkerFinder, an integrated workflow designed 
to address the cross-cohort heterogeneity of human 
microbiome, was employed in this study.50 This 
workflow mainly comprises differential signature 
identification, model construction, model valida-
tion, and biomarker interpretation, as detailed in 
the following paragraphs.

Cross-cohort differential signature identification
Firstly, MMUPHin (V1.4.2) was used for the iden-
tification of signatures that are differential across 
cohorts with respect to combined phenotypes.51,52 

Respective regression analyses in individual 
cohorts were performed and then aggregated with 
established fixed effect models to test for consistent 
differential signatures between adenoma and con-
trol samples with “cohort” set as the main batch 
and demographic indices, including gender, age 
and BMI, as covariates. Signatures with P values 
<.05 were identified as differential signatures and 
used as input for downstream feature selection 
procedure.

Feature selection
Based on multimodal differential signatures, 
Triple-E, a three-step feature selection procedure

implemented in xMarkerFinder, was employed to 
identify candidate biomarkers. The first step was 
feature effectiveness evaluation, aiming to select 
individual features with discriminative power 
(AUC >0.5) as effective features. Next, collinear 
feature exclusion was performed to exclude 
highly correlated features and features with abso-
lute values of correlation coefficient less than 0.7 
were considered as uncorrelated-effective fea-
tures and selected for the next step, recursive 
feature elimination for the identification of the 
panel of optimal biomarkers with the highest 
predictive capability. This is achieved by repeat 
modeling starting with all features and recur-
sively removing the weakest feature for model 
construction per loop to obtain the best panel 
with the highest cross-validation AUC value.

Model construction and optimization
The optimal biomarkers were then used to con-
struct RF models with stratified five-fold cross- 
validation to avoid overfitting. Further, to opti-
mize the diagnostic RF models, hyperparameters, 
including the number of estimator trees, the 
maximum depth of the trees, the numbers of 
features per tree, and the maximum samples 
were tuned using Bayesian-optimization (V1.2.0) 
package. Finally, with the selected optimal bio-
markers and the best combination of hyperpara-
meters, the best-performing RF models were 
constructed. For further evaluating the perfor-
mance of the model, MCC is used, and the nor-
malized MCC is presented which is defined as 
(MCC +1)/2 with MCC = 0.5 as the average value 
of the coin tossing classifier.53

SNV biomarker selection and model construction
For single-strain SNV models, differential SNVs 
from each single strain were used for feature selec-
tion by Triple-E and the selected features (SNV 
frequencies of each genomic site) were then used 
to construct respective diagnostic models.

For multi-strain SNV model, the selected best 
features from each single-strain models were 
pooled together as the input of the Triple-E fea-
ture selection process, and optimal multi-strain 
biomarkers were then selected to construct the 
best-performing SNV model. Further, to enhance 
the cost-effectiveness in clinical application of the
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SNV biomarkers, we conducted a recursive ana-
lysis. Multi-strain biomarkers were sorted by 
their respective contributions to the model, 
which were assessed by permutation feature 
importance. With each iteration, the least impor-
tant SNV feature was removed, thereby generat-
ing a new model, until only one feature 
remained. Based on feature number and corre-
sponding model performance, the best and mini-
mal panel of SNV biomarkers were established.

Evaluation of the biomarkers’ robustness and 
generalization
To test the robustness and generalization of identi-
fied optimal biomarkers among geographically dis-
tinct cohorts, we performed cohort-to-cohort and 
LOCO validation as described in our previous 
study.13 For cohort-to-cohort validation, diagnos-
tic models were trained on the profile of one single 
cohort and validated on the profile of each of the 
remaining cohorts, respectively. For LOCO valida-
tion, one single cohort was set as the validation 
dataset, while all other cohorts were pooled 
together as the discovery dataset. Further, four 
independent cohorts were used to externally vali-
date the robustness of identified optimal biomar-
kers, as well as the optimized SNV diagnostic 
model.

The specificity of adenoma predictive biomarkers
To avoid false positives in clinical diagnosis, we 
evaluated the disease specificity of the best panel 
of microbial biomarkers for adenoma by examina-
tion of their performances in discriminating non- 
adenoma diseases from controls. These non- 
adenoma diseases included CRC (386 cases and 
439 controls), CD (68 cases and 34 controls), and 
UC (53 cases and 34 controls).

Co-abundance analysis of differential multi-kingdom 
species
To investigate the associations among differential 
multi-kingdom species, we employed SparCC,54 

a widely used approach for estimating correlations 
with compositional data, to construct the microbial 
network in different disease status. Associations 
among differential multi-kingdom species were 
inferred with 50 iterations, after which the statisti-
cal significance was calculated with a permutation-

based approach. The significance of each correla-
tion is contingent upon the frequency of observing 
a more extensive correlation when compared to 
1000 random permutations of the original input 
data. Correlations with |r| >.5 and P value < .05 
were regarded as moderate correlations and were 
included in downstream analysis. Network was 
visualized with Gephi (V0.9.2).

Associations between microbial species and function
To further explore the potential associations 
between multimodal signatures, HAllA (V 0.8.18), 
a computational method to find multi-resolution 
associations in high-dimensional heterogeneous 
datasets, was applied to evaluate the associations 
between differential pathways and multi-kingdom 
species.55 First, paired high-dimensional microbial 
data were discretized to a unified representation 
and then clustered separately to generate a pair of 
data hierarchies. Spearman correlation coefficients 
were computed between features across the two 
input datasets, and the statistical significance of 
individual associations were determined by permu-
tation testing with 1000 permutations. Correlations 
with adjusted P values <.05 were preserved as sig-
nificant correlations.

qRT-PCR validation

To quantify the abundances of key genes, qRT-PCR 
analysis was performed in triplicates on newly col-
lected samples of CHN2 cohort (29 adenomas and 
30 controls). The genomic DNA was extracted with 
the TIANamp Stool DNA Kit (Cat# 4992205, 
TIANGEN) according to the manufacturer’s 
instructions. We used the primers in Data S13 for 
candidate genes, and standard primers F515 and 
R806 for 16S rRNA. To perform the qRT-PCR, the 
final primer concentration was diluted to 0.2 μM 
including 10 ng of genomic DNA in a 10 μL final 
reaction volume with the SYBR Green qPCR Mix 
(Thermo Fisher Scientific). The adopted qRT-PCR 
program was as follows: pre-denaturation at 95°C 
for 10 min; denaturation at 95°C for 15 s and anneal-
ing at 60°C for 60 s for 40 cycles; followed by 
a melting curve analysis. The qRT-PCR result was 
quantitated by calculate 2−ΔΔCt values between
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candidate genes and 16S Ct values as the relative 
expression level.

Statistical analysis

Considering the sparsity of microbial data, non-
parametric Wilcoxon tests and a threshold of 0.05 
in P values were used unless stated otherwise. 
PERMANOVA test was performed to quantify the 
contributions of the subjects’ physical variables to 
multimodal microbial profiles using R (V4.0.5) 
“vegan” (V2.5.7) package with 999 permutations.56 

Quantitative variables were transformed into cate-
gorical values for PERMANOVA analysis. Age was 
divided into quantiles, while BMI was transformed 
into three categories: <25 kg/m2 (lean), 25–30 kg/ 
m2 (overweight), and >30 kg/m2 (obese). Alpha 
diversity metrics, including Shannon and 
Simpson Index, and beta diversity based on Bray– 
Curtis distance of taxonomic and functional pro-
files were calculated. Differences between groups 
were then estimated with MaAsLin 2 (V1.4.0) and 
PERMANOVA, respectively.57 All statistical and 
bioinformatics analyses were implemented using 
R (V 4.0.5) and Python (V 3.8.5).
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