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Abstract

Neuronal oscillations exhibit complex amplitude fluctuations with autocorrelations that persist over thousands of oscillatory
cycles. Such long-range temporal correlations (LRTC) are thought to reflect neuronal systems poised near a critical state,
which would render them capable of quick reorganization and responsive to changing processing demands. When we concen-
trate, however, the influence of internal and external sources of distraction is better reduced, suggesting that neuronal systems
involved with sustained attention could benefit from a shift toward the less volatile sub-critical state. To test these ideas, we
recorded electroencephalography (EEG) from healthy volunteers during eyes-closed rest and during a sustained attention task
requiring a speeded response to images deviating in their presentation duration. We show that for oscillations recorded during
rest, high levels of alpha-band LRTC in the sensorimotor region predicted good reaction-time performance in the attention task.
During task execution, however, fast reaction times were associated with high-amplitude beta and gamma oscillations with low
LRTC. Finally, we show that reduced LRTC during the attention task compared to the rest condition correlates with better per-
formance, while increased LRTC of oscillations from rest to attention is associated with reduced performance. To our knowl-
edge, this is the first empirical evidence that ‘resting-state criticality’ of neuronal networks predicts swift behavioral responses
in a sensorimotor task, and that steady attentive processing of visual stimuli requires brain dynamics with suppressed temporal
complexity.

Introduction

Research on attention has a long tradition in investigating how we
selectively process one object while ignoring others (Driver, 2001).
In the face of limited processing abilities, task performance is
strongly influenced by the level of attention paid to the task (Kahne-
man, 1973 in: (Sarter et al., 2006)). Still, competing influences such
as additional sensory information (Theeuwes, 2010) or mind wan-
dering (Smallwood & Schooler, 2015) can cause distraction from
the task at hand and dramatically reduce performance.

Cognitive functions like mind wandering evolve across many
time scales, from brief mental images to long-lasting trains of
thoughts (Buckner et al., 2008; Seli et al., 2014). The underlying
mechanism therefore also needs to be capable of organizing the
coordination of neuronal activity on many time scales (Linken-
kaer-Hansen et al., 2005). Indeed, both hemodynamic (Fox et al.,
2006) and electrophysiological measures (Linkenkaer-Hansen
et al., 2001; Montez et al., 2009; Palva et al., 2005) indicate that
ongoing brain activity is highly variable and shows organization
on many time scales. Quantitatively, this coordination is reflected
in long-range temporal correlations (LRTC) of the type observed
in non-linear dynamical systems operating near the critical state
(Chialvo, 2010; Kello et al., 2010; Poil et al., 2012). This is indi-
cating that ongoing brain activity harbors a long-term memory
process known as 1/f noise (Gilden, 2001), a hallmark of healthy
physiological systems with high demands for swift adaptation
such as heartbeat (Goldberger et al., 2002) and gait (Hausdorff
et al., 1996), as well as the ability to produce repetitive taps
using the index finger (Torre et al., 2011) and threshold-stimulus
detection tasks (Palva et al., 2013). Deviations from the normal
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range of LRTC have been associated with diseases such as clini-
cal depression (Linkenkaer-Hansen et al., 2005), Alzheimer (Mon-
tez et al., 2009), epilepsy (Monto et al., 2007), Parkinson’s
(Hohlefeld et al., 2012), and autism (Lai et al., 2010). Therefore,
associating the success of overt behavior to oscillatory brain
dynamics can be valuable for understanding general functioning
of the brain and may have prognostic properties for optimal func-
tioning or disease.
LRTC have been suggested to reflect the degree to which the

brain remains capable of quick reorganization (Deco et al., 2013;
Linkenkaer-Hansen et al., 2001; Singer, 2013; Tognoli & Kelso,
2014) and, thus, is responsive to different processing demands.
The closer neuronal systems are to the critical point separating the
ordered sub-critical and the disordered super-critical regime, the
stronger the long-range temporal correlations in activity fluctuations
(Poil et al., 2012). The transition from resting state to attention-task
activity on the other hand shows a decrease in the long-range mem-
ory of the signal as found during focused attention meditation in
experienced meditators (Irrmischer et al., 2017), as well as during a
cued response task in electroencephalography (EEG) (He et al.,
2010) and in fMRI BOLD activations (He, 2011); however, large
fluctuations in ongoing oscillations remain during task execution
and these have been associated with trial-by-trial variability in per-
formance (Linkenkaer-Hansen et al., 2004a; He & Zempel, 2013).
Still, it remains unknown whether this change in temporal structure
of continuous amplitude modulations of oscillatory activity is a mere
by-product of the shift from idling resting state to task engagement
or whether it is behaviorally relevant in terms of performance suc-
cess. And, more specifically, whether brain states closer to the criti-
cal regime—previously associated with high adaptability and
versatile information processing (Bak, 1996; Kinouchi & Copelli,
2006; Shew et al., 2009)—is beneficial for a sustained attention
task, or whether a state characterized by less complex variability is
better?
In this study, based on earlier findings of reduced LRTC dur-

ing focused attention meditation (Irrmischer et al., 2017), we
propose the working hypothesis that the human brain is poised
near a critical state that makes attention inherently unstable and,
consequently, a less volatile brain state is desired when sus-
tained focus of attention is required. A key prediction derived
from this hypothesis is that long-range temporal correlations in
human EEG oscillations are suppressed during sustained atten-
tion and that such suppression may be related to behavioral per-
formance. To test this, we analyzed the changes in LRTC from
rest to active state, and their correlation to performance in a
sustained attention task, which due to its repetitive nature and
length was specifically targeted at inducing distractions in the
form of mind-wandering.

Methods

Participants

The 57 participants were healthy students of the Vrije Universiteit
in Amsterdam, and volunteers from the general population aged 20–
48 years (M = 25 years, SD = 6.2; 35 females), with no history of
neurological complications including ADHD, depression, or sub-
stance abuse. All participants signed the informed consent, and the
protocol was approved by the Scientific and Ethical Review Board
(VCWE) of the Faculty of Psychology and Education, VU Univer-
sity Amsterdam.

EEG measurements

EEG recordings were acquired using the Electrical Geodesics EEG
system (GES200) with 128-EGI HydroCel channel sponge-based
EEG-caps at a sampling rate of 1000 Hz and using Cz as reference
electrode. Participants were measured while sitting alone in the
recording room in front of a computer screen. The experiment was
programmed in OpenSesame (Mathôt et al., 2012).

Experimental conditions

Eyes-closed rest

Participants were first measured during 5-min eyes-closed rest
(ECR) while sitting on a chair. The instruction was ‘Please keep
your eyes closed, relax, and try not to fall asleep’.

Continuous temporal expectancy task

Next, participants completed a sustained attention task (adaptation of
CTET (O’Connell et al., 2009)), which was designed to measure
lapses in attention through the number and timing of errors the par-
ticipants make. The task consisted of centrally presented photographs
of flowers shown at regular intervals (600 ms), resulting in a contin-
uous stream of pictures. Participants were asked to attend to the tem-
poral duration of each stimulus and press the space bar with their
right hand when a stimulus was presented longer (1200 ms) than the
standard duration (Fig. 1). Long-duration stimuli occurred semi-ran-
domly (every 4th–10th stimuli) 100 times. Identifying the duration
target is easy when fully attending to the stimuli; however, it quickly
becomes demanding to continuously focus on the boring task result-
ing in great variation as well as occasional misses during the 7.5-min
task. This makes the continuous temporal expectancy task (CTET)
(O’Connell et al., 2009) a measure of continuous deployment of
attention to the time domain, that is, duration of repetitive events.
The stimuli were made of naturalistic pictures taken from the Interna-
tional Affective Picture System (IAPS; (Lang et al., 1999)), with pic-
tures specifically chosen for their low arousal values. Additionally,
the color brightness, saturation, and size of the scenes were standard-
ized to decrease stimulus perception-dependent differences.

Eyes-open rest

In 23 subjects, we also recorded a 5-min eyes-open rest (EOR) con-
dition with the instruction ‘Please keep your eyes open, relax, focus
on the mark on the screen and try not to fall asleep’. This was per-
formed to assess whether differences in brain dynamics between the
resting state and the CTET experiment were solely due to having
eyes open or not.

Rationale

The capability to monitor the duration of stimuli is increased when
attention is actively oriented toward it (Nobre et al., 2007) and
decreases if top-down attentional effort is diminishing. Lapses in
identifying targets are therefore a direct correlate of decreased atten-
tion, a phenomenon seen in many everyday life applications. Differ-
ent from conceptually similar attention tasks such as the go/no-go
‘Sustained attention to response task’ (SART; (Robertson et al.,
1997)), every stimulus is a potential target and only discriminated
by its longer presentation time and not by perceptual features. This
solves the problematic issue of target salience and automatically
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engaged exogenous attention interfering with the continuous atten-
tional aspect which is targeted in this study (Robertson & O’Con-
nell, 2012). Finally, it has been shown that performance declines
after just 3 min of task performance, but there is no broader decline
over blocks indicating that the CTET is a useful paradigm for trac-
ing drifts in the level of attention over time (O’Connell et al.,
2009). Therefore, in this study, a single block of 7.5 continuous
minutes was chosen to tap into long-term sustained attention abili-
ties of the participants.

EEG pre-processing

The EEG signals were FIR-filtered (0.5–45 Hz band-pass, Blackman
window with 1 Hz transition band), and noisy channels were
removed using the pre-processing functions available in EEGLAB
and the Neurophysiological Biomarker Toolbox (NBT, http://www.
nbtwiki.net) (Hardstone et al., 2012). All signals were visually
inspected in windows of 10 s and transient artifacts, for example,
caused by head movements or eye blinks were manually marked
and omitted from the subsequent computations of spectral power
and detrended fluctuation analysis (DFA). Typically, only 1–2 s
around an artifact were marked. Subsequently, we re-referenced the
signals to the common average and applied Independent Compo-
nents Analysis (Infomax) (Bell & Sejnowski, 1995; Makeig et al.
2000) for identification of independent components related to heart-
beat or eye movements, which were visually identified and removed
(on average only two components were removed). The remaining
components were projected back to signal space.

Behavioral and EEG analysis

The observed reaction-time averages were calculated from the point
in time when the target stimulus was displayed longer than non-tar-
get stimuli. The reaction time therefore includes both the time
needed to notice the deviant and the time to react. The next stimulus
is displayed 600 ms after and to prevent that wrong presses to non-
target stimuli would count as a very slow reaction to the target stim-
ulus, we defined the maximum allowed reaction time to 900 ms. To
avoid short reaction times in subjects responding very fast but also
missing several trials, and to obtain a comprehensive performance
measure that also included the misses and too slow responses, we
defined misses to have the longest reaction time allowed (i.e.,
900 ms). We note that reaction times and number of errors exhibited
very similar associations with LRTC of neuronal oscillations during

CTET and, therefore, we only report the results for the reaction-time
measure defined above.
For the EEG analysis, we computed the power in the five clas-

sical frequency bands (delta 1–4 Hz, theta 4–8 Hz, alpha 8–13 Hz,
beta 13–30 Hz, and gamma 30–45 Hz) using the Welch method
with a 4096-point Hamming window and a frequency resolution
of 0.25 Hz. The relative power was calculated by dividing the
absolute power in each frequency band with the integrated power
in the range 1–45 Hz. The EEG analysis was performed per chan-
nel with a non-directional t-test (significance level: P < 0.05), and,
due to the continuous nature of the reaction times, the parametric
Pearson’s correlation coefficient was used to test for correlations
with reaction times (significance level: P < 0.05). To prevent
chance-level effects, we used the binomial multiple-comparison
correction method, which tests whether a significant number of
channels reach the significance level of P < 0.05 within a specific
frequency band. The likelihood of having 12 channels of 128 by
chance is <2% (cf. binomial distribution) (Montez et al., 2009;
Nikulin et al., 2012; Schiavone et al., 2014). All exponents
reported in the main text are averages of significant electrodes
across subjects, � SEM.

Quantifying long-range temporal correlations

To quantify the strength of LRTC in the amplitude modulation of
the EEG oscillations, we first extracted the amplitude envelope of
each frequency band using band-pass filters (FIR-filter, Blackman
window with transition bandwidth of 1 Hz) and the Hilbert trans-
form. Next, the root-mean-square fluctuation of the integrated and
linearly detrended signals, F(t), was calculated as a function of time
window size, t (with an overlap of 50% between windows) and plot-
ted in double-logarithmic coordinates. The DFA exponent is the
slope of the fluctuation function F(t) in a given interval, which was
set to 5–30 s for delta and theta band, from 2–30 s for alpha and 1–
30 s for the beta and gamma bands. The lower time scale of fitting
the power law is higher for the slow oscillations in order to exclude
the temporal autocorrelations introduced by the band-pass filters. A
DFA exponent a = 0.5 indicates randomly fluctuating oscillation
amplitudes (no temporal structure), whereas 0.5 < a < 1.0 indicates
LRTC with the temporal inhomogeneity of fluctuations increasing
with increasing DFA exponents. The main steps from the broadband
signal to the quantification of LRTC using DFA have been
described in detail previously (Hardstone et al., 2012; Linkenkaer-
Hansen et al., 2001).

Fig. 1. The Continuous Temporal Expectancy Task (CTET). An adaptation of the original task (O’Connell et al., 2009) was used which consisted of centrally
presented photographs of flowers shown at regular intervals (600 ms) and longer intervals (1200 ms), which occurred semi-randomly (every 4th–10th stimuli)
100 times. The entire task took 7.5 min, and participants were asked to press the space bar with their right hand when a stimulus was presented longer.
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Results

Sustained attention is associated with a reduction in LRTC

Numerous studies have documented the presence of significant
LRTC during eyes-closed rest; however, little is known about the
impact of focused attention on the temporal complexity of ongoing
oscillations. Comparing the CTET and ECR conditions, we observed
a widespread reduction in LRTC in the theta (aECR = 0.66 � 0.01,
aCTET = 0.61 � 0.01; t56 = �3.1, P = 0.002), alpha (aECR = 0.71
� 0.01, aCTET = 0.67 � 0.01; t56 = �3.5, P = 0.001), and beta
(aECR = 0.66 � 0.01, aCTET = 0.64 � 0.01; t56 = �2.9, P = 0.005)
bands, especially at fronto-parietal and occipital regions (Fig. 2).
In a subset of 23 subjects, we had eyes-open rest data available,
which showed a similar effect, from EOR to CTET theta (aEOR =
0.69 � 0.02, aCTET = 0.63 � 0.01; t22 = �4.5, P = 0.0002), alpha
(aEOR = 0.75 � 0.02, aCTET = 0.68 � 0.01; t22 = �5.2, P =

0.0003), beta (aEOR = 0.70 � 0.01 aCTET = 0.66 � 0.01; t22 =
�3.1, P = 0.0005) (Fig. 2). Thus, actively engaging in a sustained
attention task is associated with reduced LRTC in occipito-parietal and
frontal scalp regions in the theta, alpha, and beta-frequency bands rela-
tive to rest—whether resting with eyes open or closed.

High sensorimotor LRTC during rest predict fast reaction
times

Previous studies have found that resting-state oscillatory dynamics is
predictive of temporal fluctuations in perceptual (Palva et al., 2013)
and motor task performance (Smit et al., 2013). To test whether
resting-state LRTCs can predict performance in a sustained visual
attention task (see Methods and Fig. 1), we correlated the LRTC of
oscillations during eyes-closed rest with the reaction-time perfor-
mance in the CTET that required speeded reactions to deviant

Fig. 2. Strong reduction in long-range temporal correlations (LRTC) during attention task compared to rest. Difference in detrended fluctuation analysis (DFA)
exponents are shown in the left column for continuous temporal expectancy task (CTET) minus eyes-closed rest (n = 57), and in the right column for CTET
minus eyes-open rest (n = 23). Individual-subject exponent values averaged across significant electrodes are shown next to the topographic plots with lines con-
necting paired values. Subjects showing increases in LRTC are plotted in red, whereas decreases are plotted in blue. Following either rest condition, a wide-
spread reduction in LRTC in the theta, alpha, and beta bands was found during CTET, especially in fronto-parietal and occipital regions. White circles denote
channels with P < 0.05 (t-test, multiple comparisons corrected).
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stimulus durations. Interestingly, high LRTC of resting-state oscilla-
tions in the alpha band over the sensorimotor region—contralateral
to the right hand used in the subsequent attention task—predicted
better reaction-time performance (r56 = �0.37, P = 0.007; Fig. 3).
We did not observe significant associations between normalized
oscillation power and reaction time for any of the frequency bands
(data not shown).

Good performance is associated with low LRTC and high
spectral power during CTET

Next, we investigated the direct relationship between behavioral
performance and brain oscillations during the CTET experiment.
Positive correlations between LRTC and reaction times were
most pronounced in occipital and parietal regions of the beta
(r56 = 0.44, P = 0.001) and gamma (r56 = 0.40, P = 0.003) fre-
quency bands (Fig. 4). For the theta (r56 = 0.38, P = 0.005) and
alpha (r56 = 0.39, P = 0.004) oscillations, the correlations were
also positive, with similar topographic distribution to that of the
beta and gamma oscillations, but with fewer significant channels.
Additionally, we found that traditional EEG spectral power in
the beta (r56 = �0.38, P = 0.005) and gamma (r56 = �0.43,
P = 0.001) frequency bands showed the opposite correlation
with performance in similar regions to those that showed signifi-
cant associations with LRTC (Fig. 4). Together, this indicates
that focusing well and responding quickly to deviant image dis-
play times is facilitated by stable and strong high-frequency
oscillations.

The change in LRTC from ECR to CTET also predicts
performance

Additional analysis revealed that not only during the CTET task
there is a positive correlation of LRTC with performance, but also
the change of LRTC from ECR to CTET that is correlated with
reaction time in the theta (r56 = 0.37, P = 0.006), alpha
(r56 = 0.41, P = 0.002), beta (r56 = 0.34, P = 0.001), and gamma
(r56 = 0.39, P = 0.004) bands (Fig. 5). A reduction in LRTC from
rest condition to CTET correlates with better performance, while
an increase is associated with reduced performance. EEG spectral
power only showed significant associations in the gamma band
over occipital regions (r56 = �0.45, P = 0.0007) and a trend in the
beta band. This shows that not only the state of oscillatory proper-
ties during the task, but also changes and the direction of changes
in LRTC from resting state to the attentional state that are related
to performance.

Discussion

In this study, we have tested the hypothesis that the temporal
complexity of oscillations is related to behavioral performance
during sustained attention. We have investigated the change in
amplitude and LRTC of neuronal oscillations in a task requiring
a single and sustained focus. We found that performance success
during a sustained attention task was related to ongoing oscilla-
tions in the human EEG: Good performance in the behavioral
task was related to higher spectral power and lower LRTC of
beta and gamma oscillations especially in occipital regions.
Interestingly, the opposite relationship between reaction times
and LRTC was observed in the resting state: the higher the
LRTC of alpha oscillations, the better the performance.

Therefore, we showed that good performance is not only associ-
ated with the state of weak LRTC during the task (Fig. 4), but
also to the ability to suppress an increase in LRTC relative to
the individual resting-state values (Fig. 5). This was especially
clear in the beta and gamma bands in occipital and mid-frontal
regions. Specifically, we note that the positive associations in
Fig. 5 relates to the poor performance of participants presenting
with an increase in LRTC during the attention task compared to
rest, which is the opposite association to what one would have
expected if the correlations were caused by the statistical phe-
nomenon of regression to the mean (Barnett et al., 2005). Taken
together, our results suggest that the framework of critical brain
dynamics is relevant for understanding mass-neuronal mecha-
nisms of sustained attention.

Why would critical-state dynamics be beneficial for attention?

The human attention system combines two seemingly opposing
functional properties: the ability to stay focused for a sustained per-
iod of time and rapid switching in response to changing internal or
external demands. This is conceptually similar to the properties of
dynamical systems operating near a critical state in which meta-
stable patterns form and rapidly dissolve upon perturbations (Deco
et al., 2013; Linkenkaer-Hansen et al., 2001; Singer, 2013; Tognoli
& Kelso, 2014). A system operating near criticality is poised
between ordered (sub-critical) and disordered (super-critical) states,
optimally combining the ability to form patterns while also
responding swiftly to input. Indeed, critical-state dynamics have
been related to optimal information processing (Shew & Plenz,
2013) and capacity (Shew et al., 2009), high robustness against
perturbations (Hahn et al., 2010), and largest dynamic range in
sensory processing (Gautam et al., 2015; Kinouchi & Copelli,
2006). In a supercritical state, the brain would be in a state of
hyperarousal, whereas in a subcritical state propagation of neuronal
activation is suppressed. Empirical (Beggs & Plenz, 2003) and the-
oretical (Poil et al., 2012) studies have highlighted the importance
of balanced excitation and inhibition for a network to exhibit criti-
cal dynamics, which may be an explanation for why scale-free

Fig. 3. Long-range temporal correlations (LRTCs) during eyes-closed rest
(ECR) predict reaction times in the subsequent attention task. Correlations
between the reaction-time performance and LRTC during the rest condition
for the alpha oscillations indicate significant negative associations over the
contralateral sensorimoter region (white circles denote channels with
P < 0.05, multiple comparisons corrected). Participants with high detrended
fluctuation analysis (DFA) in brain activity during resting state showed better
performance (faster reaction times) during the subsequent attention task.
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dynamics of oscillations is altered in many brain disorders, includ-
ing depression (Linkenkaer-Hansen et al., 2005); Alzheimer (Mon-
tez et al., 2009); epilepsy (Monto et al., 2007); Parkinson’s
(Hohlefeld et al., 2012), and autism (Lai et al., 2010). It could also
be that the excitation–inhibition balance is altered during task
engagement.

Why would focus change the temporal structure of the
attentional system?

We showed that during the attention task the brain shifts from com-
plex resting-state dynamics to a temporally more homogeneous state.
We interpret this change in dynamics as a transition from a ‘default’

Fig. 4. Low long-range temporal correlations (LRTC) and high power in beta/gamma oscillations during high-performance sustained visual attention. Left col-
umn: Correlation (Pearson’s r) between LRTC during continuous temporal expectancy task (CTET) and reaction-time performance in the theta, alpha, beta, and
gamma frequency bands. Participants with lower detrended fluctuation analysis (DFA) in brain activity during the attention task showed faster reaction times.
Right column: Correlation between the behavioral performance and the spectral power of the beta and gamma frequency bands (white circles denote channels
with P < 0.05, multiple comparisons corrected). Participants with higher power in brain activity during the attention task showed better performance (faster
reaction times).
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close-to-critical resting state optimized for a broad range of environ-
mental and internal demands (Beggs & Plenz, 2003) to a state of
reduced propagation of input but increased attentional stability.

Therefore, our observation allows for the hypothesis that changes in
cognitive control according to demand can be quantified as an abil-
ity to suppress LRTC of ongoing neuronal oscillations.

Fig. 5. Suppressed long-range temporal correlations (LRTC) and elevated power in beta/gamma oscillations during high-performance sustained visual attention
compared to rest. Left column: Correlation between the reaction-time performance and the continuous temporal expectancy task (CTET) minus eyes-closed rest
(ECR) difference in detrended fluctuation analysis (DFA) exponents for theta, alpha, beta, and gamma frequency bands. Participants with little change or slight
decrease in DFA during the attention task compared to the rest condition showed better performance. Right column: Oscillation power in beta and gamma bands
shows the opposite pattern: Performance is best in participants with the strongest change in neuronal oscillation power from rest to the attention task (white cir-
cles denote channels with P < 0.05, multiple comparisons corrected). Note: The correlation with the beta-band power did not pass the binomial criterion, but
the similarity with the topography of the association with LRTC of beta oscillations speaks for a valid trend. Here, the correlation with an occipital channel
neighboring to O2 is shown.
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It needs to be stated that it is not known which exact DFA expo-
nent corresponds to the critical state, especially not if different
oscillations have different maximum DFA exponents. That said, a
high DFA exponent will always be closer to the critical state than
a lower. Even if a network is in a super-critical state DFA expo-
nents will exhibit an increase when the network moves closer to
the critical state. Therefore, our results support the idea that on the
one hand, a state close to criticality may be beneficial when versa-
tility is required, whereas continued attentive visual processing is
associated with a reduction in criticality fluctuations. Possibly due
to successfully suppressing, the occurrence of non-task-related
information propagation such as mind-wandering episodes and the
increased variability these would cause. Similarly, dynamical
changes have also been shown in a transition from resting state to
task activity in EEG during a cued response task (He et al., 2010)
and fMRI BOLD activations (He, 2011), which in both cases were
associated with a decrease in the long-range memory of the signal.
A reduction in exponents indicates less autocorrelations and, there-
fore, less influence on future dynamics (Eke et al., 2002; Mandel-
brot & Van Ness, 1968), hence possibly less distractions from the
focused task at hand, for example the mind wandering off the task.
Further, it has been argued that less temporal redundancy leads to
more efficiency in processing (He, 2011), perhaps enhancing the
conscious experience of the object of focus, therefore possibly
allowing for faster recognition of the deviant display time and sub-
sequent quicker reaction.
Therefore, we believe part of the importance of our results relate

to showing that critical-state dynamics of oscillations are not per se
beneficial for the performance of a given task, despite much of the
interest in critical brain dynamics has been motivated by the supe-
rior computational properties of neuronal networks poised at the crit-
ical state. Default mode network alpha oscillations have previously
been associated with attention to internal as opposed to sensory
information and could also have influenced the current task (Car-
hart-Harris et al., 2014). However, the occipital topographies of
effects—and especially the increasing beta/gamma power jointly
with a reduced complexity of the temporal structure of these oscilla-
tions—suggest that successfully sustaining attention is reflected in
an uninterrupted processing of the visual stimuli.

Importance of alpha oscillations during rest

The correlation of LRTC of resting-state oscillations in alpha with
reaction time was a noteworthy finding, because of its distinct sen-
sorimotor region topography. Although we did not perform source
modeling of oscillations, based on previous studies on alpha oscilla-
tions reactivity to finger movements (e.g., Fig. 2H in (Smit et al.,
2013)) such as required in the present paradigm—it seems very
likely that the correlation reflect sensorimotor oscillations. We see it
as preliminary evidence that a motor region operating close to criti-
cality is advantageous for a quick motor response, which warrants
further investigation.

Importance of beta and gamma oscillations

The strongest correlations with good performance were found in the
beta and gamma frequency bands. Both frequency ranges have been
reported for their significance in attentive processing of visual stim-
uli (Jensen et al., 2007; Wr�obel, 2000) and conscious perception
(Keil et al., 1999; Meador et al., 2002). Oscillatory phase synchro-
nization has been reported as a mechanism for long-distance

neuronal communication (Salinas & Sejnowski, 2001) and facilita-
tion of selective sensory gating (Jensen & Mazaheri, 2010). We
indeed find that higher power in the beta and gamma band during
the visual task is related to better performance. Interestingly, how-
ever, the temporal structure decreased in both frequency bands with
better performance. Showing that next to increased power and syn-
chronization, information propagation through temporal coding in
the form of LRTC is also of significance.

Observations are not confounded by signal-to-noise effects

A factor that could influence the DFA estimate is the signal-to-noise
ratio of the signal. The lower this ratio, the more the estimated scal-
ing is biased toward an uncorrelated noise signal (Linkenkaer-Han-
sen et al., 2007). Intriguingly, we found that the DFA showed a
negative correlation in relation to performance, while at similar scalp
locations, the spectral power in the beta and gamma showed a posi-
tive correlation (Fig. 3). Thus, subjects presenting with high perfor-
mance on the sustained visual attention task had the weakest LRTC
and the highest power of beta and gamma oscillations. Therefore,
the LRTC results cannot be accounted for by signal-to-noise ratio
effects.

Impact of period stimulation on LRTC

The majority of past studies investigating LRTC in neuronal oscil-
lations have focused on resting-state recordings (Hardstone et al.,
2012). Periodic stimulation as used here, however, can introduce a
characteristic scale in the amplitude modulation of oscillations,
such as the mu rhythm during periodic stimulation of the median
nerve (Linkenkaer-Hansen et al., 2004b). Importantly, periodic
modulation—whether in the form of a reduction or an enhance-
ment of oscillation amplitudes—cannot in itself give rise to scale-
free modulation of oscillations. This has been studied previously,
also by simulating periodic modulation of amplitudes by stereo-
typical stimulus responses (Linkenkaer-Hansen et al., 2004b). We,
therefore, consider it unlikely that event-related potentials or mod-
ulation of neuronal oscillations could explain the associations
between LRTC and performance reported here. We find it a more
likely interpretation that steady focus of attention has a ‘whitening
effect’ on neuronal dynamics, suppressing the complexity of fluc-
tuations while trying to maintain a steady brain state, which is an
observation we have also made in the absence of sensory stimula-
tion while meditators perform focused attention meditation (Irrmis-
cher et al., 2017).

Observations are not due to the difference between eyes-
open test vs. eyes-closed rest

To test whether changes in LRTC between CTET and ECR were
dependent on the difference between eyes open vs. eyes closed, we
did the control experiment in which we included an eyes-open rest
(EOR). Results showed a reduction in LRTC in virtually the same
areas (Fig. 2). Therefore, we conclude that focused visual attention
suppresses LRTC beyond that of the eyes-open effect.

Outlook

Our results suggest that the framework of critical brain dynamics is
relevant for understanding mass-neuronal mechanisms of sustained
attention and reaction-time performance.
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