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ABSTRACT: Pb(II) complexes of bis(N-1,4-phenyl-N-(4-morpholinedithiocarbamato)) as Pb(II)−S and bis(N-diisopropyl-N-
octyldithiocarbamato) as Pb(II)−P were prepared and characterized by optical, structural, morphological, and electrochemical
techniques. The scanning electron microscopy analysis of Pb(II)−P and Pb(II)−S complexes consists of cubic crystals. X-ray
diffraction and high-resolution transmission electron microscopy spectral studies revealed that the diameter increases in length for
alkyl chain groups. This study demonstrates that the cubic shape of Pb(II) complexes can be synthesized from aromatic and aliphatic
dithiocarbamate ligands. Photoluminescence analysis of both complexes fell within the blue shift region. The CV curve for Pb(II)−S
revealed redox curves and the box-like shape as an indicative of a capacitive behavior, signifying limited catalytic redox activity. The
J−V results for both sensitizers displayed satisfactory conversion efficiency (% η) between 3.77 and 3.96%.

■ INTRODUCTION

The fabrication and designing of dye-sensitized solar cells
(DSSCs) as nonconventional photovoltaic innovation in the
last two decades have created more zeal for chemists and
materials scientists.1−4 The maximum power conversion
efficiency of 14.4% displayed by DSSCs makes this technology
similar in terms of relative advancement to the conventional
silicon-based photovoltaic cells.5 One of the major compo-
nents for a suitable DSSC architecture is the sensitized cell due
to its light harvesting and control ability over charge separation
properties.1 This enables the photosensitizer’s molecular
structure to be altered to promote its light-harvesting capacity.
This can be achieved by altering the anchoring groups and
chromophores.6 These have paved the ways for the use of
transition metal complexes as a sensitizer such as Zn
porphyrins, Ru-based sensitizers, and perovskites, which
promoted photovoltaic efficiencies.7−13 The high cost
associated with Ru-based sensitizers has limited their
application in large-scale commercialization. In addition,
various organic sensitizers have not enhanced DSSCs.6,14−16

Coordination chemistry involving sulfur ligands has attained
a very interesting ground due to their electrochemical

properties, electrical conductivity, biological processes, molec-
ular magnetism, and optoelectronic properties.17−19 The
versatility of coordination chemistry such as dithiocarbamate
complexes has emerged as one of the active areas of inorganic
materials chemistry research in recent years.20−23 They have
been found to exhibit better photoluminescence emission and
supramolecular arrays.6,24,25 The use of dithiocarbamate
complexes as sensitizers could serve new efficient photo-
sensitizers due to their wide-band-gap properties compared to
the organic sensitizer.26−32 Among these transition metal
complexes, Pb(II) complexes are shown to be interesting p-
block-based elements with various coordination geometries as
a result of the stereochemically active 6s2 electron influence at
its core.33 The distorted tetragonal pyramid has been
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highlighted as the common geometry of Pb(II) dithiocarba-
mate complexes.34,35 This geometry was obtained with
diisopropyldithiocarbamate having intermolecular interactions
around the isopropyl group.36 While hemidirected tetrahedral
Pb(II) complexes were used to synthesize lead sulfide
nanomaterials and thin films.37−39 This study reported on
the structural, optical, and electrochemical activity of lead(II)
complexes as photosensitizers in DSSCs.

■ RESULTS AND DISCUSSION

In Figure 1, the stretching frequencies for Pb(II)−S, complexes
at 1484 cm−1, implied a substantial double-bond attractiveness
of the C−N bond in the DTC ligands.40 IR vibrational
frequencies at 541 cm−1 correlate to the v(M−S).41 The main

peaks of high concerns in DTC complexes of Pb(II)−P are
three regions, which are 1495 cm−1 assigned to v(C−N) of
NCS, 930 cm−1 assigned to v(C−S) of CSS, and 541 cm−1

assigned to the M−S bond, as seen in Figure 1.42 The C−N
peak was observed at 1495 cm−1 for Pb(II)−P, and this
indicated that there is delocalization of electrons in the center
of the metals as a result of an increase in the character of the
C−N bond due to the DTC ligands’ coordination. The shift in
the complexes’ C−N stretching can be due to two major
reasons, an increase in the C−N single bond character43 and
the prevailing influence of the form DTC thioureide resonance
(see the highlighted proposed structure for Pb(II)−P).44 The
shift in C−S in both metal complexes showed that these
ligands could act as bidentate ligands with sulfur.45 The M−S

Figure 1. FTIR spectra of (a) Pb(II)−P and (b) Pb(II)−S with accompanying illustrations of the band stretching and vibrations.

Figure 2. XRD spectra of (a) Pb(II)−P and (b) Pb(II)−S.
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vibration stretchings observed at 541 cm−1 for both complexes
correspond to the M ion bonded to DTC by the sulfur atoms.
In order to evaluate the crystal structure of the metal

complexes, X-ray diffraction (XRD) was employed and the
patterns were obtained as shown in Figure 2. The XRD
diffraction patterns for Pb(II)−P and Pb(II)−S complexes are
in accordance with the cubic type structure relating to the
standard card (JCPDS no. 05-0592). They are represented by
their corresponding miller indices in the spectra. The peaks
with values at 27.5, 34.7, and 79.2° are in accordance with
crystalline planes of (111), (200), and (422), respectively.46 A
d-spacing of 2.84 nm, an fwhm of 1.82 nm, and a particle size
of 17.29 nm correspond to the (111) plane for Pb(II)−P,
while Pb(II)−S has a d-spacing of 2.85 nm, an fwhm of 0.45
nm, and a particle size of 7.07 nm for the (111) plane. The
peak at angle (2θ) 63° was observed in the study by ref 47,
using similar secondary amines due to the S−Pb−S bond

angle. Also, the longer alkyl chain groups have a lower
crystallinity and uniform size compared to the smaller alkyl
chain groups according to the study by ref 48, using primary
and secondary amines similar to the present study. The
obtained values from the present study are in agreement with
the study by refs.47,48

According to Raman spectroscopy, Pb(II) has a cubic B1
structure corresponding to the tetragonal phase, as observed in
the XRD analysis, having the space group Fm3m with the unit
cell containing eight atoms. The phonon mode for 1LO was
observed at 429 cm−1, as shown in Figure 3, which is linked to
the first overtune occurring at the center of the BZ, which was
reported by ref 49, as Raman-active, while longitudinal optical
(LO) at 132 and 262 cm−1, regarded as forbidden, is in
agreement with the study by ref 50. Raman spectral peak at 74
cm−1 for the TO mode implies a reduced order spheroidal
acoustic mode for Pb(II)−P complexes, which is supported by

Figure 3. Raman spectra of (a) Pb(II)−P and (b) Pb(II)−S.

Figure 4. HRTEM images of (a,c) Pb(II)−P and (b,d) Pb(II)−S.
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the high-resolution transmission electron microscopy
(HRTEM) results. The peaks for the second overtones 2LO
and 3LO were not detected in this study. The Raman spectrum
of Pb(II)−S complexes displayed various vibrational modes
(see Figure 3b). Raman spectra revealed a broad peak at 68
cm−1 for the TO mode regarded as the lowest-order spheroidal
acoustic mode. This can be linked to the small size of Pb(II)−
S complexes and supported by its HRTEM. The peaks at 602
and 699 cm−1 ascribed to second overtones 2LO and 3LO
were observed in Pb(II)−S, which is linked to the sensitive
nature of the ligands of Pb(II)−S to the laser. The peak at 994
cm−1 might be related to the Pb(II) crystal shape or
photodegradation.51 These phonon modes for 1LO and LO
were not observed in this Pb(II)−S, in line with the report of
ref 50. It has been reported that Pb(II) having a characteristic
Raman mode and symmetry at 205 cm−1 belong to first-order
LO. While 454 cm−1 is the first overtone of the LO phonon
mode (2LO), 630 cm−1 is the second overtone of the LO
phonon mode (3LO), and peaks at 68 cm−1 are the lowest
acoustic modes (TO).50 The (TO) modes observed in both
samples attest to a good crystalline quality and epitaxy of the
film. The absence of LO phonon modes is attributed to the
metallization effect of semiconductors under high pressure.
This transition is also considered as an indication of the
material being transformed from a direct band gap into an
indirect one.52 The band structure can be modified by strain or
by reducing crystal size, and this further cemented the scanning
electron microscopy (SEM) result size diameter for Pb(II)−S.
TEM images and size distribution of Pb(II)−P and Pb(II)−

S complexes. Figure 4a shows the Pb(II)−P complex with
spherical, monodispersed, and slight agglomeration with an
average diameter size of 23.43 nm. The Pb(II)−S complex
shape is slightly smaller in diameter size at 21.09 nm, as seen in
Figure 4b. This variation in the diameter size could to be

linked to the alkyl group’s chain lengths. The longer the alkyl
group chain, the lower the diameter size; also, there is a slight
difference in the morphology quality of the Pb(II)−P complex
compared to Pb(II)−S. This finding is in agreement with the
studies by refs.48,53

The SEM images of the Pb(II)−P and Pb(II)−S are seen in
Figure 5a,b. The morphology for the Pb(II)−P complex
consists of cubic crystals and a degree of plane-related growth
of conjoined interlocking crystals. Two main morphologies
observed in Pb(II)−S (Figure 5b) have a varying size of
irregular flakes and with the small snowy crystallites, forming
large cubic clusters.48,54 Figure 5a,b displays the average
diameter size of around 0.5−0.71 μm for Pb(II)−P, while the
Pb(II)−S complex has a diameter size around 0.48−0.61 μm.
The smaller size of Pb(II)−S complexes is attributed to the
relative peak intensity of the TO phonon mode and the
absence of the LO phonon mode, indicating lower crystallinity
due to photodegradation, which confirms the Raman and XRD
results.
The electronic spectra of both complexes are shown in

Figure 6, and Pb(II)−P has a wavelength of 350 nm with
broad peaks. This could be due to correlation between the
metal ion and donor atoms, which are sulfur atoms attached to
the metals.55 The Pb(II)−S revealed electronic transitions of π
→ π* at 325 nm with a band gap of 3.87 eV. The small
absorption peak observed for the Pb(II)−S complex is linked
to d−d transition. Their d-orbitals are free for π-bonding which
resulted in the formation of covalent complexes with
absorption in the UV region.56,57

The shape and size of semiconductor materials are one of
the major indications of good optical properties, while lower
absorption wavelength is influenced by small size, which is in
good agreement with SEM and HRTEM results from this
study and the report by ref 58.

Figure 5. SEM images of (a) Pb(II)−P and (b) Pb(II)−S.

Figure 6. UV−vis spectra of (a) Pb(II)−P and (b) Pb(II)−S.
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Photoluminescence spectra of the complexes are displayed
in Figure 7. The peaks of great significance for better
photosensitizers are the excitation and trapped luminescence.
The broad band is regarded as trapped emission ascribed to
the variation in particle size, while the sharp emission is
regarded as excitation. The absorption spectra with the highest
excitation emission peak were observed at 464.5 nm for
Pb(II)−P. This falls within the blue shift region where
optimum efficiency is attained, making these materials good
candidates for solar cell application.56 The Pb(II)−S
complexes follow the same trend with Pb(II)−P, with
maximum emissions found at 455 nm Pb(II)−S.56 The
observed sharp and broad emission peaks at 455 and 464.5
nm for Pb(II)−S and Pb(II)−P also increase with the increase
in excitation wavelength. These peaks are related with
transition of electrons from the conduction band to holes,
trapped at interstitial Pb2+ sites.58

The CV technique was employed to verify the catalytic
properties of Pb(II)−P and Pb(II)−S sensitizers using the
three-electrode cell consisting of the TiO2 electrode, Pt
counter electrode, and Ag/Ag+ as the reference electrode in
HI-30 solution (as seen in Figure 8).
Cyclic voltammetry measurements were conducted in the

potential range from 0.0 to 0.4 V. The electrochemical
parameters of Pb(II)−P and Pb(II)−S complexes are
summarized in Table 1. Both sensitizer complexes display a
similar redox behavior exhibiting the quasi-reversible redox
process. The potential peak separation was lesser for Pb(II)−P
electron transfer, with the ratio of anodic to cathodic peak
currents at 0.97 V, while for Pb(II)−S, it is larger at 1.12 V.
The redox behavior emanated from the complex moieties and
in the redox reaction of the metal center is due to the effect of
electrons withdrawing from the group attached to complexes
with the ligands. This is in good agreement with the work by
others.59,60

From electrochemical impedance spectroscopy (EIS) as
seen in Figure 9, Pb(II)−P has a higher resistance, indicating
that the materials did not fully cover the TiO2 electrode and
poor connection. The high Rct observed in the Pb(II) electrode
implies a nonconductive charge transfer, emanating from poor
connections involving the particles and the electron trans-
portation of the Pb(II)−P/electrolyte interface from the
external circuit. Based on this fact, Pb(II)−P catalytic sites
could not be optimizers to their full potentials which led to
higher Rct. The Pb(II)−S complex plots revealed the kinetics
around the electrode/electrolyte interface by providing
adequate details. The delay in electron recombination is
favorable at the electrode/electrolyte interface when there is a
higher value in τ. Lower efficiency observed in the Pb(II)−S
cells is linked to low electron lifetimes due to lower chemical
capacitance properties at the electrode/electrolyte interface.
Their good recombination resistance could not improve the
electron lifetime due to their poor low chemical capacitance
yield.61−63 Figure 9c displays the equivalent circuit model
fitted for the obtained semicircles.

Figure 7. Photoluminescence spectra of (a) Pb(II)−P and (b) Pb(II)−S.

Figure 8. CV curve of (a) Pb(II)−P and (b) Pb(II)−S.

Table 1. J−V Parameters and Electrochemical Data of
Pb(II)−P and Pb(II)−S

parameters Pb(II)−P Pb(II)−S
Jsc (mA/cm2) 10 10
Voc (V) 0.59 0.57
FF 0.67 0.66
η (%) 3.96 3.77
Ep,a (V) 0.27 0.27
Ep,c (V) 0.15 0.17
ΔEp = Ep,a − Ep,c (V) 0.12 0.1
E° = 1/2(Ep,a − Ep,c) (V) 0.06 0.05
ip,a/ip,c 0.97 1.12
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The current−voltage (J−V) curve for both sensitizer
complexes is shown in Figure 10 and Table 1. The J−V

parameters for this cell indicates that the short-circuit current
(Jsc) was 10 mA cm−2 for both complexes and open-circuit
(Voc) values were 0.59 and 0.57 V, respectively, for Pb(II)−P
and Pb(II)−S, with efficiencies (η) of 3.96 and 3.77%,
respectively. The fill factor is an essential parameter for
assessment of the solar cell performance depending on their
series resistance (Rs). The FF obtained in this study at 0.67
and 0.66% affirmed that recombination has taken place in both
cells. The parameters of both complexes are very similar, and
their better conversion could be linked to relatively better dye
loading and wide electronic absorption properties. The
obtained efficiencies in this study further agree with achieved
efficiencies of the complex-based sensitizers from the studies
by refs.59,60

■ CONCLUSIONS

Based on the findings of the present study, it can be concluded
that the synthesized complexes as sensitizers can act as better

Figure 9. EIS spectra of (a) Pb(II)−P and (b) Pb(II)−S and (c) equivalent circuit model for fitting.

Figure 10. I−V of (a) Pb(II)−P and (b) Pb(II)−S.

Scheme 1. Synthesis and Assembling of Pb(II)−P and Pb(II)−S Cells
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sensitizers. XRD and HRTEM spectral studies revealed that
the diameter increases with the increase in length of alkyl chain
groups. This study demonstrates that the cubic shape of Pb(II)
complexes can be synthesized from aromatic and aliphatic
dithiocarbamate ligands. Both photosensitizers show maximum
emission peaks at 464.5 nm for Pb(II)−P and at 455 nm for
Pb(II)−S which fell within the blue shift region where
optimum efficiency was obtained. The cyclic voltammetry
curve reveals pseudo-behavior, implying a better electrical
conductivity. Their good recombination resistance could not
improve the electron lifetime due to their poor low chemical
capacitance yield. The J−V results for both sensitizers
displayed satisfactory photovoltaic performance with an
efficiency (η) of 3.77−3.96%. The presented study will create
curiosity among materials scientists to synthesize and fabricate
new complex photosensitizers that can enhance DSSC
applications. It is also recommended that attention should be
placed on the assembling of the solar cells, in order to reduce
the rate of recombination at the photoanode/dye/electrolyte
that will enhance the Voc.

■ METHODOLOGY
Materials. Lead(II) chloride (PbCl2) salts, ammonia

solution, morpholine, diisoproylamine, methanol, diethyl
ester, octylamine, carbon disulfide, methanol, and 1,4-phenyl-
enediamine were purchased from Merck and used with no
further purification. Complete testing kits from Solaronix
containing the TiO2 fluorine-doped tin oxide (FTO) substrate,
platinum FTO, masks, gaskets, HI-30 electrolyte iodide,
chenodeoxycholic acid (CDC), and hot seal were purchased.
Synthesis of Ligands and Complexes. Synthesis of

Ammonium N-1,4-Phenylendiaminedithiocarbamate, 1,4-
PH DTC. In a distinctive synthetic process, a mixture of 9.921
mL of 1.4-phenylenediamine (1.4 PHDTC) and 30 mL of
concentrated aqueous ammonia in ice was injected into 6.043
mL of ice-cold carbon disulfide and stirred for 1 h, to give a
white color precipitate. This was then washed with diethyl
ether and dried for further analysis. Yield: 2.0732 g (20.89%).
1,4-PH DTC, 1H NMR (DMSO): δ 6.9 (m, 8H−C6H5), 3.4
(s, 2H−NH), 1.2 (t, 2H−CH2), 2.5 (s, 1H−SH). 13C NMR
(DMSO): δ 40 (−NH2), 40 (−S−C) 207 (−CS2). Selected IR
(cm−1) 1507 v(C−N), 974 v(C−S), 3075 v(N−H). UV−vis
(CH3OH solution, nm): 325. Similar procedures were used for
other ligands such as ammonium N-(4-morpholine)-
dithiocarbamte (as seen in Scheme 1), of 8.31 mL (0.1 mol)
of morpholine, 9.64 mL (0.1 mol) of diisopropylamine, 16.548
mL of octylamine, and concentrated aqueous ammonia (30
mL) in ice bath, and 6.04 mL (0.1 mol) of cold carbon
disulfide was added for each ligands. The liquid mixture was
stirred for 1 h to obtain the final product which was filtered by
suction and rinsed three times with cold diethyl ether.
Yield: 10.8450 g (125.73%). MODTC, 1H NMR (DMSO)

3.5 (s, 2H−NH), 2.1 (s, 1H−SH). 13C NMR (DMSO): δ 40
(S−C), 40 (NH2), 66 (C−O). Selected IR (cm−1): 1558 v(C−
N), 983 v(C−S), 3177 v(N−H). UV−vis (CH3OH solution,
nm): 325.
Yield: 14.8493 g (89.74%). OctDTC, selected IR (ATR,

cm−1) v: 1470 (C−N), 939 (C−S), 3195 (N−H), 2920
(CH3), 2955 (CH2).

1H NMR (400.1 MHz, DMSO-d6, ppm):
δ 1.3 (t, 2H−CH2), 3.5 (s, 2H−NH), 0.9 (t, 3H−CH3), 2.5 (s,
1H−SH). 13C NMR (100.6 MHz, DMSO-d6, ppm): δ = 14
(−CH3), 40 (−NH2), 19 (−CH2), 40 (C−S), 56 (C−NH).
UV−vis (CH3OH solution, nm): 315.

Yield: 1.462 g (32.00%). Di-isoproylDTC, selected IR
(ATR, cm−1) v: 1470 (C−N), 1095 (C−S), 3381 (N−H),
2821 (CH3).

1H NMR (400.1 MHz, DMSO-d6, ppm): δ 9.6
(s, 2H−NH),0.9 (t, 3H−CH3), 1.3 (s, 1H−SH). 13C NMR
(100.6 MHz, DMSO-d6, ppm): δ 19−36 (−CH2), 202
(−CS2), 14 (−CH3), 56 (−C−NH). UV−vis (CH3OH
solution, nm): 260.

S y n t h e s i s o f B i s ( N - 1 , 4 - p h e n y l - N - ( 4 -
morpholinedithiocarbamato))Pb(II) Complex as Pb(II)−S.
Pb(II)−S was synthesized according to the literature
method,64 and 0.4502 g (2.5 mmol) of morpholine dtc and
0.5025 g (2.5 mmol) of 1.4-phenylenediamine dtc were
dissolved in about 15 mL of distilled water separately with the
help of continuous stirring. PbCl2 (0.6953 g, 2.5 mmol) was
also dissolved in 15 mL of distilled water separately at a ratio of
1:1:1, under constant stirring. Both ligand solutions were
poured rapidly into PbCl2 solution under constant stirring. A
dark brown precipitate was obtained, and the solution was
allowed to stir for an hour to ensure complete reaction. The
obtained precipitate was collected by vacuum filtration, washed
three times with distilled water, and allowed to dry under
vacuum over CaCl2. A similar procedure was used for the
bis(N-diisopropyl-N-octyldithiocarbamato)Pb(II) complex,
Pb(II)−P. Di-isopropyl dtc (0.4859, 2.5 mmol), 0.555 (2.5
mmol) of octyl dtc, 15 mL of distilled water, and 0.6953 g (2.5
mmol) of PbCl2 were used.

Assembling of DDSCs. QDSSCs were assembled
according to the literature by ref 65 (as seen in Scheme 1),
using platinum and TiO2 electrodes of 2 × 2 cm2 FTO
substrate glass with 6 × 6 mm2 active areas coated on the TiO2
FTO. Sensitization of the prepared Pb(II)−P and Pb(II)−S
was carried out using 10 mL of warm distilled water with CDC
added as coadsorbents. The TiO2 substrate was soaked into
the solution of sensitizers for 24 h. The two electrodes were
held together using polyethylene and soldering iron, one
coated with platinum and the other with TiO2 sensitized with
the transition metal complexes. The commercial HI-30
electrolyte was introduced with a syringe as mediating solution
with a content of iodide species of 0.05 M.

Physical Measurements. A PerkinElmer Lambda 25
UV−vis spectrophotometer was used to determine optical
absorption properties of the samples at room temperature. The
photoluminescence of the samples was obtained using a
PerkinElmer LS 45 fluorimeter. All NMR analyses were carried
out on a Bruker AV-400 spectrometer operating at a 1H
frequency of 400.13 MHz, a temperature of 300 K, and a
sample-spinning rate of 4 kHz. The 1H NMR and 13C NMR
spectra were determined through a standard Bruker high-
resolution magic-angle spinning probe with a magic-angle
gradient. Raman spectra of the samples were obtained using a
confocal Raman AFM imaging system (WITec GmbH)
alpha300RS. A fiber coupled with DPSS laser of wavelength
532 nm that has an output power of 44 mW and a greatest
yield control after a single mode fiber coupling was utilized as
the excitation source. Fourier transform infrared (FTIR) nets
were carried out by the Spectrum Two model PerkinElmer
FTIR spectrophotometer at a 4 cm−1 resolution in the
attenuated total reflection (ATR) mode using a ceramic light
source, KBr/Ge beam splitter, and lithium tantalate (LiTaO3)
detector. The spectra of FTIR were scanned between 370 and
4000 cm−1. Electrochemical studies were carried out using
Metrohm 85695 Autolabelectrochemical analyzer with Nova
1.10 software. Scanning around the steady state of the DSSCs
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with i = 0 avoided a progressive change in the excitation state
of the dye and its regeneration by the mediator at the cathode.
Platinum sheet was used as a counter electrode, and titanium
oxide was used as the anode, while the HI-30 iodide electrode
was used as a reference electrode. CV was performed at various
scan rates in the range of 0.05−0.35 V s−1 with an increase of
0.05 V s−1. All the experiments were performed at room
temperature, including EIS that was carried out in the
frequency range of 100 kHz to 100 mHz. Current density−
voltage parameters were collected through a Keithley 2401
source meter and a Thorax light power meter. A Lumixo
AM1.5 light simulator was employed, and the lamp was fixed at
50 cm height to avoid illumination outside of the working area.
To avoid cell degradation, temperature was kept below 25 °C
and the light power density was kept at 100 mW cm−2

(AM1.5). The XRD measurements were carried out on a
Rigaku Ultima IV X-ray diffractometer using Cu Kα radiation
(λ = 0.15406 nm). Field emission scanning electron
microscopy (FE-SEM, Zeiss Auriga SEM) at a quickening
voltage of 30 kV and JEOL JEM 2100 HRTEM instrument
operating at 200 kV was utilized to study the size distributions
and morphological properties of the complexes.
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