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ToxId: an efficient algorithm to 
solve occlusions when tracking 
multiple animals
Alvaro Rodriguez1, Hanqing Zhang1, Jonatan Klaminder2, Tomas Brodin2 & Magnus 
Andersson   1

Video analysis of animal behaviour is widely used in fields such as ecology, ecotoxicology, and 
evolutionary research. However, when tracking multiple animals, occlusion and crossing are 
problematic, especially when the identity of each individual needs to be preserved. We present a new 
algorithm, ToxId, which preserves the identity of multiple animals by linking trajectory segments using 
their intensity histogram and Hu-moments. We verify the performance and accuracy of our algorithm 
using video sequences with different animals and experimental conditions. The results show that our 
algorithm achieves state-of-the-art accuracy using an efficient approach without the need of learning 
processes, complex feature maps or knowledge of the animal shape. ToxId is also computationally 
efficient, has low memory requirements, and operates without accessing future or past frames.

Animal behaviour is important in many research fields such as ecology, medicine, neurology, ecotoxicology or 
evolutionary research1. In these fields, automatic tracking often relies on video tracking software to detect animal 
positions in controlled arenas2,3. While several methods provide a reliable tool for tracking one single individ-
ual4,5, preserving the identity of multiple individuals after an occlusion remains a challenging problem1, see Fig. 1 
for an example. The complexity of this problem is illustrated in Pérez-Escudero et al.6, in a scenario where they 
solved correctly 99% of all crossings, but when considering error propagation only 11% of the animals were 
correctly identified after 2 minutes of tracking. Many state-of-the-art techniques, however, usually report a much 
lower accuracy. For example, in Itskovits et al.4 a multiple animal tracker system is proposed, which is able to solve 
only 77% of crossings between 2 animals.

To address the occlusion problem, some techniques tag the organisms with a visual marker to preserve their 
identity7. These solutions, however, may be invasive and are not applicable to the vast majority of animals. Other 
methods rely on improving the detection by using several cameras with different perspectives8,9. This technique 
adds complexity to the experimental setup and dramatically increases the amount of data generated. To improve 
detection and tracking, some techniques use a specific model of the animal body based on the head shape10,11, 
the body geometry12–14 or the symmetry axis15. Additionally, some authors discuss the use of features such as face 
properties16 or bilateral symmetry17. Nevertheless these methods can only be applied for animals geometrically 
compatible with the used model.

Other approaches to reduce occlusion problems rely on pattern recognition, matching specific texture maps6 
or using convolutional neural networks18 to identify the animals. These techniques are computationally and mem-
ory expensive and require access to past and future frames (offline tracking). Thus, offline tracking is generally 
slow and cannot be applied in real-time, streaming applications, or other situations where only the current frame 
can be accessed. In these situations the use of an online tracking is required19.

To overcome the mentioned limitations - animal specific algorithms, slow algorithms that operate only offline, 
and low accuracy - we developed a new online algorithm called ToxId. ToxId can handle a large variety of animals 
and it does not use future or past frames, thus it can be used as a post processing stage in real-time applications. 
We show that ToxId achieves the same accuracy as the best state-of-the-art algorithm, also when considering error 
propagation. ToxId identifies animals in 97% of the frames and achieves this using the intensity histogram and the 
Hu-moments of detected animals. ToxId requires no training or complex configuration steps, it does not use fea-
tures or characteristic fingerprint-like maps, and it requires significantly less memory than other algorithms6,18. 
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ToxId is implemented in the free tracking software ToxTrac5, which allows the user to extract locomotor activity 
such as; average speed, acceleration and distance traveled per time unit. In addition, it can also measure the time 
an organism spends near aquaria or terrarium walls. The software, the user manual and the documentation are 
available at https://toxtrac.sourceforge.io.

Results and Discussion
ToxId can be included into the workflow of any online tracking algorithm and can detect and handle occlusions 
of multiple animals in an efficient way. When an occlusion takes place, ToxId cuts the tracked trajectories of 
the animals involved in the occlusion. The resulting trajectory fragments then needs to be fused in order to 

Figure 1.  Occlusions. When animals cross or overlap, general tracking algorithms cannot preserve the identity 
of each individual; this scenario is called an occlusion. Occlusion examples are provided from the following 
datasets used in this study: (a) Mice326, (b) Zebrafish1118, (c) Zebrafish56, (d) Ant56. For the occlusion shown 
in (c), trajectory fragments before and after the occlusion are shown in (e). To solve the occlusion, the correct 
fragments should be merged. An incorrect identification is shown in (f) and the correct identification is shown 
in (g).

https://toxtrac.sourceforge.io
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reconstruct the complete movement of each animal. To do this in a fast and reliable manner, ToxId extracts a set 
of visual features and positions of each animal in every frame and, at the end of the process, uses these features 
to fuse the fragments that have the highest probability to originate from the same individual. The features and 
positions of the animals are the only information needed to solve the occlusions, thus making the algorithm very 
computational efficient. We implemented ToxId in the free tracking software ToxTrac to run the analysis and we 
recommend not to use more than 10–20 animals in a single experiment to have reliable tracking.

To validate ToxId, we analyse multiple animals of different species under different experimental conditions 
and with different video resolutions and framerates. The main characteristics of these datasets, which are in total 
48 minutes long and consist of approximately 80,000 frames, are summarized in Table 1. We first generate trajec-
tory fragments from each video, where each fragment fJ is formed by a set of samples …d d{ , , }J Jn0 , representing 
consecutive animal detections. Thereafter, we compare how ToxId merges trajectory fragments with a manually 
labelled ground truth. We define the validation metrics by counting the number of samples of correctly and incor-
rectly assigned fragments. The validation procedure is in short done as follows:

•	 We chose the first detected fragment of the animals as their reference identity.
•	 The fragments subsequently assigned by ToxId are marked as correct if they correspond to the same animal 

as the reference identity, and marked as incorrect otherwise. The remaining fragments are marked as not 
assigned.

To quantify the algorithm performance we then use the following classification; the Identity Error Rate (IER) 
defined in equation (1), the Correct Fragment Rate (CFR) defined in equation (2), and the Correct Sample Rate 
(CSR) defined in equation (3).
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CF, IF, NF represent the correct, incorrect and unassigned fragments; and CF , IF , NF  represent the corre-
sponding number of samples. We discard short fragments without a sufficient number of samples (less than 25), 
and for the IER, we discard fragments that are shorter than one second.

A direct quantitative comparison with most published algorithms is not possible since different algorithms 
create the trajectory fragments differently. For example, tracking small features of the animal head will result in 
less occlusions than tracking the whole body, regardless of the occlusion solving strategy. Additionally, different 
algorithms cannot usually be applied to the same animals (restrictions in the animal shape) or to the same video 
(restrictions in resolution due to memory requirements). We therefore compare the performance of different 
techniques using the reported CSR when possible and the CFR or IER in other cases (Fig. 2).

Note that we use more strict CFR and ER definitions for ToxId than for other techniques. The reason for this 
is that other techniques do not consider error propagation. Thus, for ToxId a fragment is marked as correct if it 
is assigned to the original animal, while the compared techniques count correct and incorrect identifications 
independently for each crossing. In other words, we count identifications as incorrect if the same animal is iden-
tified before and after the crossing but the identity before the crossing was incorrect due to a previous error, other 
techniques will however count this as correct.

ToxId obtains a CSR of 97%, a CFR of 94% and an IER of 0.22 (Table 2). This is in line with the best published 
algorithm, Idtracker6, which results are discussed in the next paragraph. ToxId achieves very good results when 
processing fish and aquatic invertebrates (e.g. waterlouse), but does not perform equally well with ants and cock-
roaches. Thus, if we consider these datasets separately (Ant5, Cockroach3 and WingedAnt7) ToxId obtains a CSR 

Dataset Illumination Video Resolution (pixel) Frame Rate (fps) Frames Animal Size (pixel) Animals

Ant56 diffuse 1920 × 1080 25 15,000 925 5

Cockroach3 direct 2048 × 2048 25 10,000 15,500 3

Guppy2 direct 600 × 588 15 2,000 75 2

Mice326 infrared 320 × 240 30 10,000 200 3

Waterlouse5 backlight 936 × 952 25 20,000 140 5

WingedAnt7* direct 926 × 882 60 4,500 210 7

Zebrafish56 diffuse 1506 × 1078 32 15,000 560 5

Zebrafish1118 direct 2048 × 2048 50 3,300 1,500 11

Table 1.  Dataset details. (*) dataset provided by the department of evolutionary biology and environmental 
studies from the University of Zurich. The original video can be downloaded at http://www.roborealm.com/
tutorial/Blob_Tracking/index.php.

http://www.roborealm.com/tutorial/Blob_Tracking/index.php
http://www.roborealm.com/tutorial/Blob_Tracking/index.php
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of 94%, a RCF of 85% and an IER of 0.40. For the other datasets ToxId obtains a CSR of 99%, a CFR of 96% and a 
IER of 0.12. We explain this difference by the complex orientations and deformations of ant and cockroach bodies 
combined with a high similarity between individuals. We also find that ToxId achieves a very good accuracy for a 
wide range of video resolutions and animal sizes, regardless of the illumination conditions, as long as conditions 
are uniform and constant. Video sequences with backlight illumination and opaque organisms of the same size 
are slightly more problematic to track since this illumination type hides texture differences of the organisms. To 
reproduce these results follow the instructions in the supplementary materials.

The Idtracker6 occlusion handling algorithm is based on extracting feature maps that code the texture and 
act as characteristic fingerprints of each animal. This algorithm has been tested with several datasets of different 
animals, reporting a CSR of 99%. This approach, however, requires the access to past and future frames and can-
not be applied for scenarios where online tracking is required19. Furthermore, Idtracker requires a huge number 
of samples for each individual to work (3,000 samples are recommended). Also, this method has been criticized 
for being limited to small animal groups and for requiring long video sequences to acquire enough reference 
frames18.

Rectangles14 uses a chain of rectangles model to represent fish-like bodies. They obtained a mean CFR of 90% 
using two video datasets of 2,000 frames with 10 and 20 fish. These sequences are too short to measure the algo-
rithm behaviour over time and do not consider error propagation.

HeadEnd11 uses the head position and orientation of fish-like animals to predict their future positions. This 
method is tested using two short video datasets of 2,000 frames with 20 and 40 fishes. An average IER of 0.31 is 
achieved. They compared these results with: Prediction-Matching10, with a IER of 0.55; Nearest-Neighbor20, with 
a IER of 2.27; and Idtracker6, with a IER of 0.23. We conclude that the dataset used in this comparison was too 
small and no error propagation was considered. Therefore, these results have a limited validity and are difficult to 
compare to more thorough tests.

Figure 2.  Algorithm comparison. (a) Identity Error Rate (IER) for the Nearest-Neighbor20, Prediction-
Matching11, Idtracker6, HeadEnd10, CNN18 and ToxId algorithms. (b) Correct Sample Rate (CSR) and Correct 
Fragment Rate (CFR) for the Idtracker6, Rectangles14, MAT4 and ToxId algorithms.

Dataset Total Samples Trajectory Fragments CSR CFR IER

Ant56 68,850 149 94.5% 89.26% 0.28

Cockroach3 16,865 68 96.6% 87.30% 0.10

Guppy2 3,790 17 100.0% 100.00% 0.00

Mice326 24,907 164 95.3% 92.55% 0.48

Waterlouse5 96,408 89 100.0% 100.00% 0.00

WingedAnts7* 30,095 38 91.1% 61.29% 0.81

Zebrafish56 67,570 420 98.9% 95.66% 0.10

Zebrafish1118 31,662 227 99.6% 98.24% 0.00

Total 340,147 1,172 97.4% 94% 0.22

Table 2.  Results of the analysis. (*) dataset provided by the department of evolutionary biology and 
environmental studies from the University of Zurich. The original video can be downloaded at http://www.
roborealm.com/tutorial/Blob_Tracking/index.php.

http://www.roborealm.com/tutorial/Blob_Tracking/index.php
http://www.roborealm.com/tutorial/Blob_Tracking/index.php
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CNN18 uses fish head detection algorithm and a Convolutional Neural Network to match the fish heads with 
the animals. Five video datasets (from 2,000 to 15,000 frames) with 5 to 25 fishes were used to test this algorithm 
and they reached an IER of 1.58. This algorithm is rather slow and cannot be applied for real-time processing, 
though it is reportedly able to process more individuals than Idtracker6. However, it has the disadvantages of 
being one of the less accurate algorithms, only applicable to fish, and very inefficient, since it relies on the use of 
neural networks, which require a training stage and are generally slow. Additionally, they did not consider error 
propagation in their reported results.

Finally, the MAT4 technique is an extension of the Kalman filter21 to predict the future position of multiple 
animals. They validated their algorithm by analysing two worms crossings, reporting a CFR of 77%. However, 
they did not consider error propagation in the reported results.

When considering proposed online algorithms that can handle occlusions4,10,11,14, we find that they usually 
can only be applied to a specific kind of animal10,11,14 or have significant accuracy problems when solving occlu-
sions4,20. In contrast, offline techniques6,18 can in theory achieve a significantly higher accuracy than online tech-
niques by accessing future frames of the sequence. ToxId however, achieves a CSR (97%) similar to the best 
technique, Idtracker6 (99%), without accessing future or past frames. Furthermore, Idtracker also requires the use 
of complex texture maps with a heavy memory and computational cost. For example, to extract the texture maps 
of a sample of n pixels, Idtracker computational complexity22 is O(n2)(has order of n2 complexity), and the mem-
ory required is O(n). ToxId computational complexity is only O(n), and its required memory is O(1). This means 
that the Idtracker computational cost grows with a quadratic rate according to the pixel-number of the animal and 
its memory requirements grow linearly. ToxId computational cost grows only linearly with the pixel-number of 
the animal and its memory requirements do not grow.

Conclusion
Quantitative analysis of animal behaviour is important in many fields1. These studies often generate a vast amount 
of data and many individuals need to be tracked simultaneously. Therefore, automatic techniques that can detect 
and track multiple organisms with accuracy, and at the same time are able preserve the identity of each individual, 
need to be developed. However, keeping the identity of the animals in a reliable way has proven problematic.

Current strategies to solve the identity problem use either an expensive strategy of texture analysis which 
requires access to past and future frames6, rely on features only valid for a particular kind of animal11,14, or com-
bine both strategies18. Our new algorithm (ToxId) overcomes these limitations. ToxId requires no information of 
the shape of the animal, does not access to past or future frames and has low memory and computational costs.

We validated ToxId using 8 datasets with multiple animals of different species and in different experimental 
conditions by implementing ToxId in the latest version of the free tracking software, ToxTrac. The results show 
that, in most cases, ToxId achieves the same accuracy as the best state-of-the-art algorithm but with a significantly 
faster computational speed. We believe that ToxId represent a significant contribution in the study of multiple 
interacting organisms, as it overcomes some fundamental problems of current techniques.

Methods
Trajectory fragment creation.  Animals are detected as dark moving objects in a constant bright back-
ground using a threshold intensity value defined by the user, who also introduces the number of animals in the 
experiment. The obtained objects or blobs are filtered by size to remove false-positives. During the detection, a 
number of image features representing each object are saved. Numerically, for a body B formed by a set of pixels 
{p}, we define the detection dB as follows:
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where CMB is the center of mass of B23; SB is the number of pixels of B and represents its size; and HB kn,  is the his-
togram of B, calculated by normalizing from 0 to 255 the rectangular area enclosing B, we denote this as ROI; HuB 
represent the Hu’s Seven Moments Invariants24 of B; and tB represents the time of detection. Hu’s moment invar-
iants are used to characterize patterns in images and they consists of six absolute orthogonal invariants and one 
skew orthogonal invariant that are calculated using weighted averages of the image intensity. The seven values 
characterize the image intensity distribution regardless of its location, scale and rotation. Therefore, it is very 
efficient for identifying rigid and moving objects regardless their orientation in the image.

To assign new detections di to existing trajectory fragments formed by sets of previous detections 
= ...f d d{ , , }J J Jn0 , we use the Kalman21 algorithm. Thus, to every pair fragment–detection, we estimate the 
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Detections are assigned to fragments minimizing globally the costs with an Hungarian optimization algo-
rithm25. To prevent assigning detection to a fragment incorrectly, the fragment is marked as inactive if the cor-
responding cost or change in size is higher than a certain limit, or if the fragment has not been assigned to any 
detection for a certain number of frames. We also mark fragments as inactive when two fragments are too close 
to the same detection.

Fragment similarity.  The goal of the algorithm is to connect the trajectory fragments that belong to the 
same individual; for simplicity, we note two fragments of the same individual with the equal sign. The first step is 
to construct a square matrix IdMatrix of size NxN, where N is the number of fragments and where the element 
IdR C,  in the row R and column C, is a value representing the likelihood of =f fR C. We initialize IdMatrix as an 
identity matrix and then set the values that are incompatible with each other (for example the fragments that 
coexist at a certain moment time) to 0. For the remaining values we will estimate a value P f f( , )R C , this is expressed 
as follows:
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where P f f( , )R C  is the correlation of the similarity values Sim of fR and fJ with all the fragments in the matrix. The 
idea behind this is that if two fragments belong to the same individual, not only their Sim value will be high, but 
also their Sim values will be similar regarding the remaining fragments. This can be expressed as follows:

P f f R Sim f f Sim f f J N( , ) ({ ( , )}, { ( , )}): 1, , , (9)R C R J C J= = ...

where R is the Pearson correlation coefficient, and the similarity function between two fragments is defined as 
follows:
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The first factor A represents a similarity amplitude equal to the correlation maximum of the histograms of the 
two fragments. It is expressed as,
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The second factor of the similarity function, ∑w rL L, represents a normalized distribution of the histogram 
correlation. This distribution uses Ln levels and is weighted by a Gaussian function. This is expressed as,
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where μ and σ are the mean and the standard deviation of the Gaussian curve, with default values of 1 and 0.05 
respectively, and Rn × Cn is the total number of correlations. Thus, rL is the rate of histogram correlations defined 
by L, and wL is a weight assigned to this rate. In practice, we do not calculate the correlation of all samples, but 
only of those with a difference in shape and size below a certain value. We estimate the difference in shape of two 
samples as follows:
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Fragment assignment.  To assign the different tracks to each other, the first step is to divide the fragments 
into long and short fragments according to a limit selected by the user (50 samples by default) and then choos-
ing the groups of long fragments where all individuals are observed. Since this is an assignment problem with 
an optimal solution we use the classic Hungarian optimization algorithm25. To assign the remaining tracks, we 
iteratively select the best correlation value in the idMatrix, first with the long and then with the short tracks, till 
we reach a minimum correlation value selected by the user. With every assignment, we update the idMatrix and 
propagate the knowledge we obtain in each iteration, thus reducing the uncertainty for the remaining fragments. 
The fragment assignment algorithm workflow is shown in Fig. 3.

Data availability.  The ToxId algorithm has been implemented in the free tracking software ToxTrac5, availa-
ble at https://toxtrac.sourceforge.io v.2.70. The datasets analysed during the current study are available for public 

https://toxtrac.sourceforge.io
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download at https://toxtrac.sourceforge.io and to reproduce the results in this work follow the steps provided in 
the Reproducing the results section in the supplementary materials. If you have problems accessing the files please 
contact the corresponding author.

Statement.  All experiments and methods were performed in accordance with relevant guidelines and 
regulations. All procedures and experimental protocols were conducted as stated and permitted by the Ethical 
Committee on Animal Experiments in Umeå (license no A41-12) and comply with current Swedish law.
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