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Detailed knowledge of the BOLD hemodynamic response function (HRF) is crucial for accurate analyses and interpretation of functional
MRI data. Considerable efforts have been made to characterize the HRF in gray matter (GM), but much less attention has been paid to
BOLD effects in white matter (WM). However, several recent reports have demonstrated reliable detection and analyses of WM BOLD
signals both after stimulation and in a resting state. WM and GM differ in composition, energy requirements, and blood flow, so their
neurovascular couplings also may well be different. We aimed to derive a comprehensive characterization of the HRF in WM across a
population, including accurate measurements of its shape and its variation along and between WM pathways, using resting-state fMRI
acquisitions. Our results show that the HRF is significantly different between WM and GM. Features of the HRF, such as a prominent
initial dip, show strong relationships with features of the tissue microstructure derived from diffusion imaging, and these relationships
differ between WM and GM, consistent with BOLD signal fluctuations reflecting different energy demands and neurovascular couplings
in tissues of different composition and function. We also show that the HRF varies in shape significantly along WM pathways and is
different between different WM pathways, suggesting the temporal evolution of BOLD signals after an event vary in different parts of
the WM. These features of the HRF in WM are especially relevant for interpretation of the biophysical basis of BOLD effects in WM.
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Introduction
Functional Magnetic Resonance Imaging (fMRI) based on blood
oxygenation level-dependent (BOLD) contrast is well-established
as a technique to map cortical activity in the brain. BOLD signals
indirectly report neural activity and are characterized by a hemo-
dynamic response function (HRF) which describes the effects
of transient changes in blood flow, volume, and/or oxygenation
(Boynton et al. 1996; Logothetis 2010). The HRF has been shown
to vary in amplitude, timing, and shape across brain regions,
cognitive states, with aging, and pathology (Handwerker et al.
2012; Badillo et al. 2013; West et al. 2019), yet accurate estimates of
the HRF in any location are crucial for analyses and interpretation
of fMRI data.

To date, most efforts to characterize the HRF have focused on
measuring the transient, task-evoked BOLD responses to known
events or stimuli (i.e. event-related fMRI), where timing informa-
tion is accurately known. However, recent reports have shown how
identification of the peaks of relatively large-amplitude BOLD sig-
nal fluctuations in resting-state data may also be used to reliably
estimate HRFs without a stimulus (Tagliazucchi et al. 2012; Wu
et al. 2013). This insight has led to the derivation and character-
ization of the HRF along the entire cortex in resting-state data
(Wu et al. 2021), and the potential use of the HRF as a biomarker
to study the effects of development, aging, or pathology (Wu and
Marinazzo 2015; Rangaprakash et al. 2018; Yan et al. 2018).

Most measurements of the HRF have focused on gray matter
(GM), as BOLD effects in white matter (WM) have been reported
relatively rarely (Gawryluk et al. 2014; Gore et al. 2019) and often
are regressed out as nuisance covariates (Grajauskas et al. 2019).
Blood flow and volume in WM are only about 25% as large in
GM (Rostrup et al. 2000; Helenius et al. 2003) and the energy
requirements for WM functions are usually considered low com-
pared with the cortex (Harris and Attwell 2012), so large BOLD
effects are not expected. However, there have been several recent
reports of successful detection and analyses of WM BOLD signals
in both a resting state and after a task (Fraser et al. 2012; Li et al.
2019) (for a review see Gawryluk et al. 2014 and more recently
Gore et al. 2019). These have led to increased awareness of the
relationships between GM activity and WM BOLD signals and of
the significant correlations between BOLD signals from different
WM and GM regions in a resting state (Gao et al. 2021; Wang et al.
2021). Given the different composition, vasculature, and functions
of GM and WM, their energy use and neurovascular coupling
may be different. Characterizing the HRF in WM accurately is
relevant for detection, quantification, and interpretation of BOLD
effects.

The biophysical origins of BOLD signals in WM have not been
identified, but 2 potential explanations include (i) they reflect
venous drainage of deoxygenated blood from adjacent active GM
or (ii) they correspond to increases in metabolic demand within
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WM that result from neural activity within GM and thus are
similar to vascular effects in GM evoked by a stimulus. While neu-
ral signaling processes demand substantial energy consumption
in GM (Rostrup et al. 2000; Helenius et al. 2003), the metabolic
support of other processes is believed to dominate the energy
budget in WM, in contrast to GM (Harris and Attwell 2012). These
nonsignaling metabolic requirements include the maintenance
of resting potentials on the membranes of cells such as oligo-
dendrocytes, and the support of general housekeeping including
the maintenance of myelin, and are a feature of energy-use in
nonneuronal glial cells. Thus, BOLD signal fluctuations in WM
may be driven by different energy demands and cell/tissue types
than in GM, and the HRF may reflect the differences in neurovas-
cular coupling. Recent reports have confirmed that WM HRFs in
task-based fMRI are similar to but different from those in GM
(Fraser et al. 2012; Li et al. 2019), with WM responses generally
being lower in magnitude, delayed in time, and possibly featuring
a more prominent initial dip. The initial dip could reflect the
early arrival of venous drainage from GM or the initial decrease in
tissue oxygenation that may occur prior to the increased inflow
of arterial blood. We would predict that the former effect should
be greatest in the WM immediately adjacent to GM, whereas
the latter might be larger in deeper WM that is further from
major arteries. Differences between GM and WM may reflect
the different energy demands of the different cell types within
GM and WM, their different vascular characteristics, and other
variations in tissue microstructure such as cell densities within
and between WM or GM regions.

We aimed to provide a comprehensive characterization of the
HRF in WM across a population, including accurate measure-
ments of its shape and its variation along and between WM path-
ways, using resting-state fMRI acquisitions. We also for the first
time relate features of the HRF to microstructural and physiolog-
ical properties of tissue derived from diffusion MRI. The relation-
ships of HRFs between tissue types, and the measured differences
in the HRF along and between WM pathways, suggest that there
are different energy requirements and hemodynamic responses
along different WM pathways which are consistent with the
hypothesis that BOLD signals in WM reflect the metabolic
needs of different tissue components than those seen in
GM.

Materials and methods
Data
The data and HRF estimates closely followed the approach of Li
et al. (2021). One hundred and ninety nine subjects were randomly
selected from the HCP S1200 release (87 M/112 F; age 22–35). The
images included resting-state fMRI, T1-weighted MRI, and diffu-
sion MRI. The imaging protocols have been described in detail in
previous reports (Van Essen et al. 2012). Briefly, data were acquired
using a 3 T Siemens Skyra scanner (Siemens AG, Erlanger, Ger-
many). The resting-state data were acquired using multiband
gradient-echo echo-planar imaging (EPI). Each session consisted
of 2 runs (with left-to-right and right-to-left phase encoding) of
14 min and 33 s each (TR = 720 ms, TE = 33.1 ms, voxel size = 2 mm
isotropic, number of volumes = 1,200). Physiological data, includ-
ing cardiac and respiratory signals, were recorded during fMRI
acquisitions. The diffusion MRI were acquired using a multiband
spin-echo EPI sequence, again with right-to-left and left-to-right
phase encoding polarities (TR = 5520 ms, TE = 89.5 s, voxel size
= 1.25-mm isotropic, 3 shells of b = 1,000, 2,000, and 3,000 s/mm2).

Fig. 1. The HRF and its features: time to peak, height, FWHM, peak
integral, time to dip, dip height, and dip integral.

T1-weighted images were acquired using a 3D magnetization-
prepared rapid acquisition with gradient echo (MPRAGE) sequence
(TR = 2400 ms, TE = 2.14 s, voxels size = 0.7-mm isotropic).

Preprocessing
Images were preprocessed through the minimal preprocessing
(MPP) pipelines (Glasser et al. 2013) of the HCP. T1-weighted images
were nonlinearly registered to MNI space using FNIRT (Jenkinson
et al. 2012) and subsequently Freesurfer produced surface and
volume parcellations as well as morphometric measurements
(Dale et al. 1999). For fMRI, the analysis pipeline included motion
correction, distortion correction using reversed-phase encoding
directions, and nonlinear registration to MNI space. We performed
additional processing including regression of nuisance variables,
including head movement parameters (using one of the outputs
of motion correction in the MPP pipeline), and cardiac and respi-
ratory noise modeled by the RETROICOR approach (Glover et al.
2000), and followed by a correction for linear trends and temporal
filtering with a band-pass filter (0.01–0.08 Hz). A group-wise WM
mask was reconstructed by averaging the WM parcellations that
were derived from Freesurfer across all subjects and thresholded
at 0.9. A GM mask was reconstructed in a similar manner but
using a lower threshold (0.6) due to higher individual variabilities
in GM. For diffusion images, the MPP pipeline included a zero-
gradient intensity normalization, EPI distortion correction using
reversed-phase encoding directions, and, again, nonlinear regis-
tration to MNI space.

HRF estimation
HRFs were estimated from resting-state time courses in each
subject using a blind deconvolution approach (Wu et al. 2013; Wu
and Marinazzo 2015) implemented using the rsHRF toolbox (Wu
et al. 2021). The method requires no prior hypothesis about the
HRF and is based on the notion that relatively large amplitude
BOLD signal peaks represent the occurrence of separable, major,
spontaneous events. In our study, such events were detected
as peaks beyond a specified threshold (here, greater than 1.5
standard deviations over the mean). For each event, a general
linear model was fitted using a linear combination of 2 double
gamma functions together with a temporal derivative to fit the
derived waveforms. The double gamma functions together with
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Fig. 2. Population maps of HRF features show qualitative differences between GM and WM. (Top) shown are the MNI T1, WM, and GM masks for
anatomical reference. (Bottom) population-averaged features of the HRF are shown for FWHM, height, PSC, time to peak, time to dip, and dip height.

temporal derivative are capable of modeling an initial dip, a time
delay, and a later undershoot in the response (Friston et al. 1995,
1998).

HRF features
After the HRF had been estimated for each voxel in MNI space,
features of the HRF were extracted and visualized as separate
parametric maps as shown in Fig. 1. These included (i) the full
width at half maximum (FWHM), a measure of BOLD response
duration in seconds; (ii) the peak height (Height), a measure of
maximum normalized signal response; (iii) the Time to Peak, a
measure of response latency in seconds; (iv) the Time to Dip
(where evident), the time to reduce from baseline to the most
negative early response; (v) the Dip Height (where evident), cor-
responding to the maximum normalized signal decrease from
baseline (recorded as a negative value); (vi) the Peak Integral, the
area under the curve of the positive BOLD response; and (vii) the
Dip Integral, the area under the curve of the early negative BOLD
response.

Microstructure features
Diffusion MRI scans were used to derive approximate measures
of average tissue microstructure, using Diffusion Tensor Imaging
(DTI) and the Neurite Orientation Dispersion and Density Imaging
(NODDI) technique (Zhang et al. 2012).

DTI characterizes the magnitude, degree of anisotropy, and
orientation of directional diffusion. From this, measures of frac-
tional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD),

and radial diffusivity were derived. The measures are sensitive
to a variety of microstructural features. For example, FA may
reflect the coherence of membranes and restrictions, whereas
RD is sensitive to myelination and axonal number and packing
density (Song et al. 2005; Wheeler-Kingshott and Cercignani 2009).
The NODDI model represents the signal in each voxel as the sum
of 3 tissue compartments—intraneurite (sometimes called intra-
cellular), extraneurite, and cerebral spinal fluid. The intraneurite
compartment is composed of neurites (modeled as zero-radius
sticks) with a distribution of directions that includes both an
average direction and a spread of orientations around that direc-
tion. Thus, application of NODDI produced a set of parametric
maps, averaged across the population, of (i) an isotropic volume
fraction (ISOVF), (ii) the intraneurite volume fraction (or neurite
density index; NDI), and (iii) an orientation dispersion index where
a higher value represents a larger spread of axon orientations.
NODDI fitting on each voxel and subject was performed using
the accelerated microstructure imaging via complex optimization
(AMICO) method (Daducci, Canales-Rodriguez, et al. 2015).

Of particular importance, the quantity (1-NDI) represents the
relaxation weighted volume fraction of all nonneurite compo-
nents, which includes anything that does not display stick-like dif-
fusion signal properties such as glial cells and some extracellular
spaces.

Along-tract quantification
To investigate HRF features of specific WM pathways, we analyzed
a set of expertly delineated bundles in MNI space (Yeh et al. 2018).
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For this work, we focused on 15 major association, projection, and
commissural pathways of the brain: the arcuate fasciculus (AF,
left and right), corticospinal tract (CST, left and right), inferior
longitudinal fasciculus (ILF, left and right), superior longitudinal
fasciculus (SLF, left and right), optic radiation (OR, left and right),
frontal aslant tract (FAT, left and. right), uncinate fasciculus (UF,
left and right), and the corpus callosum.

HRF features were quantified along each major WM pathway
using the along-fiber quantification technique on the population
averaged WM tracts defined by Yeatman et al. (2012). Each path-
way was segmented into n = 20 points. Along-pathway mean and
standard deviations of each HRF feature were derived for each
position along the pathway.

Statistical analysis
Linear mixed-effects modeling was used to ask whether HRF
features change along pathways: the regression equation used for
each feature, y, was

y=β0+β1∗position+β2∗position2+β3∗position3+β4
(
1|subject

)
,

where subject was considered as a random effect (i.e. allowing
for a subject-specific intercept), and we tested the null hypothesis
that all fixed-effect coefficients equal zero (β1 = β2 = β3 = 0) using
an F-test. A rejection of the null hypothesis suggests that a feature,
y, changes along a pathway (note this tests whether there is signif-
icant change along a pathway but does not query which individual
locations are different). We additionally performed a one-way
analysis of variance (ANOVA) to test whether there were signifi-
cant differences between pathways. We also evaluated whether
the variation of each feature is different along each pathway,
where the variation is defined as the ratio of the minimum to the
maximum value of the feature along the pathway. All statistical
tests were corrected for multiple comparisons (15 pathways × 7
features).

Finally, to assess relationships between different HRF features
or between HRF and microstructural metrics, we performed 3
analyses (i) for each pair of features, we plotted one feature
against the other for all WM and all GM voxels in MNI space, (ii)
calculated the slope of line of best fit using total least squares
regression (which minimized fitting error in both dependent and
independent variables), and (iii) calculated the correlation coef-
ficient between each pair of variables, again using all voxels in
MNI space. Our primary purpose was to establish whether these
relationships differ between GM and WM.

Results
The results provide information in response to several questions
we sought to address.

What is the average HRF across a population?
Figure 2 shows WM and GM masks, and parametric maps of each
of the 7 features of the HRF averaged across the population. WM
and GM HRFs are qualitatively different, and all features show
significant contrast between the tissues.

Figure 3 quantifies differences in each of the features of the
HRFs between WM and GM, and the distributions of values within
each tissue. The GM HRF shows a typical canonical response, with
a barely evident initial dip, whereas the WM shows a consistent
and larger initial Dip Height, a smaller Peak Height, and smaller
negative undershoot. In general, WM HRFs have a shorter FWHM,

Fig. 3. WM and GM have different HRFs and derived features. The
population-averaged HRF is shown for WM and GM, displayed as mean
and standard deviation across subjects. The distributions of HRF
features in WM and GM are displayed as bar plots.

lower Peak Height, longer Time to Peak, and larger negative Dip
Area, in agreement with previous literature (Wu et al. 2021). In
summary, there are significant differences between the HRF in
WM and GM.

What are the relationships between HRF
features?
Figure 4 plots the relationships between each pair of HRF features
for all voxels in the population-averaged data, with WM voxels
plotted as purple and GM as dark-orange. Calculated slopes and
correlation coefficients of linear fits between each pair of HRF
features are given in Table 1. Nearly, all features show strong cor-
relations with others, and GM and WM exhibit similar trends but
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Fig. 4. Features of the HRF show strong relationships with each other in both WM and GM. Here, each HRF features is plotted against all other HRF
features for all voxels, with WM voxels shown as purple and GM as dark orange.

with some notable differences. Examples include strong positive
relationships between time to peak and time to dip, dip height
and dip integral, but with different slopes for GM and WM. In GM,
a lower Dip Integral corresponds to a larger, faster positive BOLD
increase (larger Height, FWHM, shorter Time to Peak) suggesting
areas with a faster flow response to each event. Conversely, WM
clearly exhibits larger Dip Integrals overall and the subsequent
positive response shows little variation in Height or Time to Peak.
In WM, there is little covariation of Peak Integral with FWHM,
Peak Height, or Time to Peak, whereas in GM, the Peak Integral
has strong positive correlation with the FWHM and Height and
negative relationship with Time to Peak.

What are the relationships between HRF and
microstructure?
Figure 5 plots the relationships between HRF features and
diffusion-derived microstructural features for all voxels in the
population-averaged maps. Again, WM and GM are shown as
purple and dark orange, respectively. As expected, parameters
describing tissue microstructure are different in WM and GM,
and WM shows a higher FA, higher NDI, and lower RD. More
interesting, WM and GM show very different relationships
between the HRF and microstructure. For example, in WM, the
Dip Integral (area under negative dip) has a smaller negative
value with increasing NDI (r = +0.13) and with increasing FA
(r = +0.11). However, this dip integral shows the opposite trend
in GM, becoming more pronounced (larger negative values)

with increasing NDI (r = −0.19) and increasing FA (r = −0.17).
Likewise, the FWHM covaries with NDI and RD but with
opposite relationships between WM (r = +0.11 for NDI, r = −0.07
for RD) and GM (r = −0.15 for NDI, r = +0.07 for RD). The
slopes and correlation coefficients for relationships between
all HRF feature and all microstructure features are given as
Supplementary Information.

How does the HRF vary along WM pathways?
The HRFs for 15 WM pathways are shown in Fig. 6. Here, stream-
lines are color coded from blue to red, with corresponding color-
matched HRFs shown averaged across the population. While the
overall shape is similar within and across pathways, larger varia-
tions are observed near the WM/GM boundary at the ends of the
pathway, with smooth trends along pathways. Visually, the peak
heights decrease in the core of each WM pathway, whereas the
dip height increases. Pathways such as the ILF, SLF, and OR show
visually higher variation across the population.

Figure 7 shows two exemplar pathways (the arcuate fasciculus
and optic radiations) and the corresponding changes in HRF fea-
tures along each pathway. Trends are apparent along pathways,
including a decreased height, decreased FWHM, increased time
to peak and time to dip, and larger negative dip in the middle core
of the pathway. Statistical analysis confirms that all features, of
all pathways, significantly change along the pathway from start
to end. All P-values for the F-tests are given as Supplementary
Information.

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgac035#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgac035#supplementary-data
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Table 1. Relationship between HRF features—Slope and correlation coefficient in both WM and GM. Slope in units of y-axis
units/x-axis units.

WM GM WM GM WM GM WM GM WM GM WM GM

Fig. 5. Features of the HRF show distinct relationships with tissue microstructure in WM and GM. Here, HRF features are plotted against
microstructure features for all voxels, with WM voxels shown as purple and GM as dark orange.

How does the HRF vary between WM pathways?
We aimed to extract a measure of changes in each HRF feature
along pathways by taking the ratio of the range of that feature over
the maximum value, calling this “% Variation.” The % Variations
of each feature, for all features along every pathway, are shown in
Fig. 8. We find that several pathways show more variation in HRF
features than others, including the optic radiations, and arcuate
fasciculi, and that the observed variations are significantly differ-
ent across all pathways.

Discussion
We have quantified variations of the HRF of resting state fMRI
within and across WM pathways and cortical GM by creating
population-averaged parametric maps of HRFs and their derived

features. We find that, following transient fluctuations in resting-
state signal, WM BOLD responses have smaller peaks and
are slower to change, than GM responses, and also feature a
prominent negative initial dip. Second, we find strong links
between different features of the HRF, with similar patterns
observed in both WM and GM, suggesting similar factors affect
the dynamics and evolution of the response function. However,
the tissue microstructural environment differs significantly
between these tissue types, and the dynamics of the HRF show
different dependencies on the underlying structure. Next, we
find that features of the HRF change significantly along WM
pathways and are much different in the deep WM than at
the superficial WM. The variation observed along pathways
also differs between pathways. Altogether, this suggests that,
much like in GM, changes in flow and/or oxygenation related
to variations in baseline conditions are different for different
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Fig. 6. The HRFs are qualitatively different across and along pathways. Visualization of the HRFs along 15 WM pathways, color-coded from beginning
(blue) to end (red) of pathways. Plots show the means and standard deviations across the population.

parts of the WM. These differences in HRF features may be
relevant for understanding the biophysical basis of BOLD effects
in WM.

Biophysical basis of BOLD signal in WM
The origins of BOLD effects in WM are not well understood though
they share many features with BOLD effects in GM and thus a
common explanation of their biophysical basis is plausible. The
HRF features include an initial negative dip, indicating an increase
in the concentration of deoxyhemoglobin within tissue, followed
by a positive peak that extends for several seconds, indicating an
increase in blood flow and volume, a net decrease or washout of
deoxyhemoglobin, and then a return to equilibrium. The times for
flow to increase and subsequently return to baseline are likely
determined by the overall density and dimensions (diameters
and spacings) of the vasculature involved (Bandettini et al. 1992;
Buckner 1998; Logothetis et al. 2001). There is converging evidence
that BOLD effects in WM are coupled with changes in neural
activity within GM (Gore et al. 2019; Li et al. 2020; Guo et al. 2022),
but it is not proven whether this reflects an intrinsic metabolic
demand in WM or potentially flow effects from adjacent GM. The
latter seems less likely given the nature of the vasculature within
WM and the extent of the BOLD effects detected, though some
features of the variations of HRF along tracts are consistent with
a model in which blood draining from an activated region moves
along a tract.

As pointed out by several previous reports (Harris and Attwell
2012; Yu et al. 2018), the metabolic demands of neural processes
in WM and GM are different and only a relatively small frac-
tion of the energy budget is WM that is believed to be required
for signal transmission along axons. Thus, whereas in GM, the
increase in oxygen consumption is directly related to intrinsic
neural activity, in WM, the BOLD responses to activity within the
cortex are likely triggered by a different requirement. Potential
sources of increased metabolic demand include the glial and
other non-neuronal cells that constitute a large fraction of WM
(Stevens 2003). The 2 macroglia oligodendrocytes and astrocytes
are the most abundant cell types. In addition to their roles in
maintaining microstructure and production of essential lipids,
glial cells are involved in a host of processes associated with
brain function including the regulation of ionic balances, pH,
neurotransmitter actions, and other requirements. If BOLD signals
in WM are related to the metabolic requirements of the glial cells,

we predict that there should be correlations between glial content
and features of the HRF.

To investigate this potential connection, we produced atlases
of microstructure features derived from diffusion MRI. From the
diffusion models, it is possible to derive voxel-wise maps of
parameters including FA and NDI. FA is highly sensitive to the
fractional composition of tissue that is myelinated neurons.
Complementing the neuronal fractional volume, the extracellular
volume fraction (ECVF = 1 − NDI) is a measure of the volume
fraction within a voxel that is not neuronal and thus is a surrogate
metric of the glial cell volume fraction. Figure 5 shows the
correlation between NDI and the negative dip of the HRF for
WM and GM. If the area under the negative dip of the BOLD
HRF indicates a larger metabolic demand within the tissue that
causes tissue pO2 to decrease transiently, in WM, bigger negative
dips (i.e. more negative dip integral) are related to lower NDI
and hence greater glial cell composition. On the other hand, we
find the inverse relationship between negative dip and ECVF in
GM, consistent with the negative dip being smaller for cortex
containing a smaller neuronal volume fraction.

Variation along and between pathways
The use of diffusion tractography and along-fiber quantification
(Yeatman et al. 2012) has proven useful in identifying location in
the WM, and determining what changes occur, and where they
occur, in developmental disorders, and disease. With the intro-
duction of the rsHRF toolbox used here, Wu and colleagues noted
differences in WM and GM HRF’s (Wu et al. 2021) and found areas
in the WM that showed HRF alterations in schizophrenia and
attention-deficit hyperactivity disorder. Here, we show that along-
tract profiling is possible with nondiffusion-based measures and
offers the ability to add specificity to identify which pathways
may be affected and where along that pathway experiences alter-
ations.

If the negative dip in WM reflects the passage of deoxygenated
blood draining from activated cortex, and if the vasculature runs
parallel to a tract, we would expect the times to dip and to peak
to be progressively delayed along a tract, as found here. On the
other hand, it is not clear on this model why the area under the
dip should increase along a tract from both directions, and peak
in the center.

In addition to showing feasibility of along-tract profiling of
HRF features, our results also suggest that BOLD responses are
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Fig. 7. HRFs change along pathways. Exemplar pathways of the arcuate fasciculus and optic radiations are shown, with the 8 HRF features and their
changes along the pathway. Color-coded to match the visualizations from beginning (blue) to end (red) of pathway. All features statistically
significantly change along pathways.

different across different pathways in a resting state. This paral-
lels the existence of resting-state networks in the cortex. Just as
various networks may be characterized for aspects of attention,
memory, motor, sensory systems, the WM fibers are structures
often associated with unique functional roles, so it is unsurprising
that they may require different energy processes on different
time-scales. In fact, recent work (Wang et al. 2021) shows that by
using appropriate analysis, the WM may be robustly parcellated
into correlated networks. The use of a priori WM pathways, as
opposed to these data-driven approaches, allows us to associate

changes in blood flow and oxygenation to specific WM pathways
with well-defined functional roles (Catani and Thiebaut de Schot-
ten 2012).

There are several directions to pursue to extend this research.
First, the use of the HRF as a potential biomarker would be
strengthened if WM HRFs were shown to be changed in altered
states/disorders as shown in GM (D’Esposito et al. 2003; Elbau
et al. 2018; Yan et al. 2021), and if results are congruent with
those suggesting deterioration of specific structural systems
as studied with diffusion tractography (Yamada et al. 2009;
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Fig. 8. The variation along pathways (for each feature) is quantified by taking the range (max–Min) divided by the maximum value to indicate the “%
variation” along pathways. This variation is shown for all pathways and is statistically significantly different between pathways.

Jbabdi and Johansen-Berg 2011). Studies like this would facilitate
comprehensive evaluation and integration of structure and
function. Second, HRFs can be quantified in task-based fMRI
experiments. Experiments could be designed to elicit responses
to study specific structure–function relationships, or for brain-
wide activation (Taylor et al. 2018) that may facilitate normative
pathway-specific responses during the signaling process. Sim-
ilarly, relatively large amplitude BOLD signal peaks should be
thoroughly characterized in WM, investigating frequency and
clustering properties (Tagliazucchi et al. 2012; Petridou et al.
2013), relationship with low-frequency signal (Allan et al. 2015;
Krishnan et al. 2018), and effects of fMRI preprocessing decisions
(on both WM and GM) including smoothing, bandpass filtering,
and motion correction. Finally, because pathways are known to
spatially overlap in the brain, creating “crossing-fiber” (Jeurissen
et al. 2013; Schilling et al. 2017) and “bottleneck” (Maier-Hein
et al. 2017; Schilling et al. 2021) problems in the tractography
process, it may be possible to disentangle multiple responses
within the same voxel through a deconvolution process, or

by using microstructure-informed or tractography-informed
filtering (Daducci, Canales-Rodriguez, et al. 2015; Daducci, Dal
Palu, et al. 2015; Girard et al. 2017; Barakovic et al. 2021), in order
to extract multiple HRFs within the same WM voxel that could be
analyzed on a fiber-element basis (Dhollander et al. 2021).

Conclusion

We have characterized the HRF of resting state fMRI within and
across WM pathways by creating population-averaged maps of
the HRF and features of the HRF, and show that the HRF shows
significant differences between WM and GM tissue types, features
of the HRF show strong relationships with both other HRF features
and with microstructural features, and that these relationships
differ between tissue types. In particular, the dependences of
some features of the HRF on neural content are reversed between
GM and WM, suggesting that the BOLD response in WM may be
related to different cellular types than in GM. We further find
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that the HRF varies significantly along pathways and is different
between different WM pathways. Altogether, this suggests that,
much like in GM, changes in flow and/or oxygenation related
to variations in baseline conditions are different for different
parts of the WM. These differences in HRF features may be rel-
evant for understanding the biophysical basis of BOLD effects in
WM.
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Supplementary material is available at Cerebral Cortex Communica-
tions online.
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