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Abstract

In this article, we study the applicability of Benford’s law and Zipf’s law to national COVID-19

case figures with the aim of establishing guidelines upon which methods of fraud detection

in epidemiology, based on formal statistical analysis, can be developed. Moreover, these

approaches may also be used in evaluating the performance of public health surveillance

systems. We provide theoretical arguments for why the empirical laws should hold in the

early stages of an epidemic, along with preliminary empirical evidence in support of these

claims. Based on data published by the World Health Organization and various national gov-

ernments, we find empirical evidence that suggests that both Benford’s law and Zipf’s law

largely hold across countries, and deviations can be readily explained. To the best of our

knowledge, this paper is among the first to present a practical application of Zipf’s law to

fraud detection.

Introduction

Confirmed cases of COVID-19, the disease caused by the SARS-CoV-2 virus, were first discov-

ered in the Chinese city of Wuhan in late December of 2019. Shortly thereafter cases began to

emerge throughout Asia, Europe, and the Americas, with only a handful of countries success-

ful in containing the disease. The unprecedented nature of the pandemic, the economic dam-

age of which is unrivaled in recent history, has lead to calls for an international inquiry into

the global response to the pandemic. Chief among concerns is the validity of case numbers

reported by governments, and in particular whether falsified data lead to a failure to take the

disease seriously. Operating under the Russian proverb “trust, but verify” there is a clear need

for rigorous statistical techniques to detect fraud, if any, in epidemiological data. Such tech-

niques will not only help detect fraudulent behavior, but also verify the authenticity of pub-

lished case figures and hence restore trust.

Fraud detection is often predicated on the assumption that naturally occurring data sets

obey certain empirical laws, and hence deviations from these laws are believed to be an indica-

tion of modified or falsified data. In the case of epidemiological data, which tracks the develop-

ment of an epidemic, there are two primary ways in which empirical laws might emerge. The

first is the development of the disease over time; the rate and the nature of growth in cases is of

particular interest. The second is the distribution of cases over space. Given a country that is

divided into sub-national regions, how should the number of cases be distributed across the
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country? For instance, cases that are disproportionately concentrated in a handful of regions

might indicate underreporting in other areas by local authorities.

In this paper, we consider two different sources of fraud within epidemiology. The first is

fraud at the national level, perpetrated by the central government, perhaps motivated by the

desire to avoid travel bans and a decline in tourism, among other reasons. We propose that this

might be detected using the well known Benford’s law which defines the distribution of leading

significant digits in a data set, and has been observed to occur in many naturally occurring pro-

cesses in the social and physical sciences. Benford’s law has long served as a litmus test in the

detection of financial fraud [1–3]. More recently, researchers have considered the application of

Benford’s law in identifying non-financial fraud as well, including electoral fraud [4, 5], fraudu-

lent scientific data [6], suspicious social media activity [7], falsified law enforcement statistics

[8], and fraud in international trade [9]. Therefore, Benford’s law is a natural starting point in

the development of fraud detection in epidemiology. Based upon the assumption that epidemio-

logical data obeys Benford’s law, significant deviations might then be flagged as suspicious for

further investigation. At the same time, Benford’s law has also been used as the basis for evaluat-

ing the quality of data provided by public health surveillance systems. Since a reliable epidemio-

logical surveillance system is crucial in forming appropriate policy responses during an ongoing

epidemic, monitoring the performance of such systems is also an important problem. Similar to

the case of detecting fraud, deviations from Benford’s law, or other empirical laws, may indicate

that the surveillance system is performing inadequately. Thus, while this paper focuses on the

detection of fraud in epidemiology, the theoretical and empirical results are also relevant to the

problem of evaluating the performance of public health surveillance systems.

A number of empirical works have been published in recent years applying Benford’s law to

epidemiology and public health surveillance. Idrovo et al. [10] applied Benford’s law to exam-

ine the performance of public health surveillance systems across countries throughout the

Americas during the influenza A(H1N1) pandemic in 2009. They proposed an algorithm that

used conformance to Benford’s law in conjunction with reported mortality ratios to evaluate

both the quality of reported data and the sensitivity of national health surveillance systems.

Their results suggested a wide range of data quality among the countries considered, and that

conformance to Benford’s law was partially related to a country’s economic development. Sim-

ilarly, Gómez-Camponovo et al. [11] used Benford’s law to study the dengue fever epidemio-

logical surveillance system of Paraguay between 2009 and 2011, examining both the first and

second leading digits. Interestingly, they found a much higher conformance to the second

digit Benford’s law than to the first digit, highlighting the need to go beyond the most familiar

version of Benford’s law. They further found that dengue fever epidemiological surveillance

was best in urban areas, consistent with the earlier finding by Idrovo et al. [10] that confor-

mance to Benford’s law was partially related to economic development. Manrique-Hernández

et al. [12] applied Benford’s law to study the performance of epidemiological surveillance of

Zika virus in the Americas in 2016, examining both suspected and confirmed case numbers.

By using Benford’s law as a diagnostic tool, they were able to identify high performing and

low performing surveillance systems, reinforcing the findings of the previous studies. More

recently, Idrovo and Manrique-Hernández [13] used the first digit Benford’s law to examine

China’s epidemiological surveillance system during the COVID-19 pandemic. They found

that within the context of being the epicenter of the pandemic, data reported by Chinese cities,

regions, and provinces indicated that China’s epidemiological surveillance system generally

provided good quality data.

This paper builds on the existing works in several important ways. First, we go beyond the

traditional base 10 Benford’s law by also considering smaller bases, as well as the second digit,

expanding the scope of the existing empirical literature as suggested by the results given by
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Gómez-Camponovo et al. [11]. Second, the aforementioned studies primarily focused on

countries in the Americas, whereas this paper will also examine countries in Europe and Asia

that are very different culturally and developmentally. Finally, we also offer a theoretical foun-

dation for using Benford’s law in epidemiology by arguing for its emergence using a variation

of the popular susceptible-infected-susceptible compartmental model.

The second source of fraud is at the sub-national level, with falsified data provided to the

central government by local authorities. We propose that Zipf’s law, another well known

empirical law, might be employed to detect fraud by both local and central governments. This

law emerges naturally from collections of stochastic growth processes with common mean and

variance, and hence is highly suited to investigating the spread of disease among collections of

similar regional populations; if we have homogeneity between regions in terms of culture,

development, and demographics, then they should follow similar growth trajectories depend-

ing on the infectiousness of the virus at hand. Under the assumption that Zipf’s law holds for

the geographic distribution of a disease, supported by empirical studies including this one, we

propose the use of Zipf’s law as a diagnostic tool for flagging anomalous case figures. At the

national level, a country with regional case figures that show significant deviations from Zipf’s

law might indicate fraud by the central government. At the sub-national level, a country that

largely obeys Zipf’s law with the exception of several regions may indicate fraud by the local

authorities of the regions in question. The latter interpretation may find particular use by cen-

tral governments in assessing the accuracy of data provided by local authorities; if the central

government does not release figures by region, then it would be difficult for local authorities

to falsify data since Zipf’s law concerns the relative sizes of multiple processes. Although the

application of Zipf’s law to fraud detection is not as widespread as Benford’s law, we believe

this is primarily due to the fact that it is often studied in fields where fraud is not a major con-

cern. This paper therefore is among the first to present a practical application of Zipf’s law to

fraud detection. Moreover, the theoretical argument that we present is based on collections of

stochastic growth processes that is readily carried over to finance and econometrics, enabling

the development of novel fraud detection methods in these fields as well. Finally, Zipf’s law

may also be useful in evaluating the performance of public health surveillance systems at the

sub-national level; namely, a few regions deviating significantly from Zipf’s law may indicate

inadequate epidemiological surveillance systems in these regions relative to the rest. The appli-

cation of Zipf’s law to public health surveillance is therefore a possible area of future research

that builds upon this paper.

This paper is organized as follows. First, we present a theoretical argument for the emer-

gence of Benford’s law in epidemiological data, followed by an empirical study examining the

goodness of fit of COVID-19 case figures to the theoretical distribution of leading digits pre-

dicted by Benford’s law using a chi-squared test. We further provide a detailed explanation of

how the observed deviations from Benford’s law are readily explained by government inter-

vention and testing constraints. Next, we present a theoretical argument for the emergence of

Zipf’s law in the geographic distribution of cases, and examine the goodness of fit to Zipf’s law

using the common ordinary least squares (OLS) and log-log plot approaches, as well as the

power law test proposed by Clauset et al. [14]. We discuss the limitations of fraud detection

methods in epidemiology using Benford’s law and Zipf’s law, and finally summarize our find-

ings and outline promising theoretical and empirical avenues for further research.

Benford’s law

Benford’s law, also known as the Newcomb-Benford law, states that the leading digits of many

naturally occurring processes tend to be small [15]. The law is easy to understand intuitively
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by considering the special case of a deterministic process that grows exponentially. If the rate

of growth is constant, say some fixed percentage in each time period, then the process takes

longer to surpass smaller leading digits, and does so for each order of magnitude, so that

smaller leading digits are observed more frequently. Indeed, Benford’s law goes further than

merely stating that the leading digits tend to be small, it also specifies the frequency distribu-

tion of leading digits, and has also been generalized to consider the nth leading digit.

As investigations tend to be very costly, automated methods of flagging anomalous data for

investigation enables authorities to prioritize more suspicious activity. Operating under the

assumption that natural or authentic data obeys Benford’s law, data is flagged as suspicious if

the observed leading digit frequencies deviate significantly from those predicted by Benford’s

law. Specifically, for numbers in base b� 2, Benford’s law predicts the distribution of the first

leading digits d 2 {1, 2, . . ., b − 1} to be

PbðdÞ ¼ logb 1þ
1

d

� �

ð1Þ

so that it is then straightforward to test the authenticity of the data using a standard goodness

of fit chi-squared test by comparing the observed leading digit frequencies with those predicted

by Benford’s law [16]. Moreover, if there is reason to suspect the data has been intentionally

falsified to obey (1), then second or third leading digits can be tested instead. Note that the dis-

tribution of the nth leading digit approaches a uniform distribution exponentially fast as n!
1, and hence the empirical analysis is typically limited to the first few leading digits [17]. The

key assumption underlying this approach to fraud detection is that authentic data should obey

(1). Absent empirical studies demonstrating this, or strong theoretical arguments in lieu of

such studies, there is little evidence to support the efficacy of such an approach.

Benford’s law and the spread of disease

An intuitive justification for the emergence of Benford’s law during the early stages of an epi-

demic is readily available. Let I(t) denote the number of infected individuals at time t, with I(0)

= 1, and let S(t) denote the number of susceptible individuals. Suppose we consider only the

early stages of an epidemic, when the upper constraint of population size is negligible. Operat-

ing under the assumption of a fixed infectiousness θ> 0, along with a fixed recovery rate δ> 0

such that δ< θ, we can describe the evolution of I(t) by

Iðt þ 1Þ ¼ IðtÞ þ ðyþ εItþ1
ÞIðtÞ � ðdþ εRtþ1

ÞIðtÞ ð2Þ

while the evolution of S(t) is analogously defined as

Sðt þ 1Þ ¼ SðtÞ � ðyþ εItþ1
ÞIðtÞ þ ðdþ εRtþ1

ÞIðtÞ

for t = 1, . . ., T − 1, so that infected individuals go on to infect, on average, θ healthy individu-

als in each time period, while infected individuals recover at a rate δ. The model (2) makes no

assumption about whether the population is homogeneous or heterogeneous; if the population

is heterogeneous, then the parameters θ and δ are simply aggregates of the infection and recov-

ery dynamics, respectively, of the heterogeneous population. The terms εIt are appropriately

defined independent and identically distributed (i.i.d.) random noise terms, as are εRt . Note

that the model (2) is simply the stochastic and discrete-time analogue of the popular suscepti-

ble-infected-susceptible compartmental model under the simplifying assumption that popula-

tion size M satisfies M� I(t), i.e.,
M� IðtÞ

M � 1, being in the initial stages of an epidemic (see [18]

or [19] for the deterministic continuous-time version). The assumption of i.i.d. random noise
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is common in branching processes that are used to approximate the dynamics of the initial

stages of an epidemic [18]. Writing out (2) recursively, we see that the evolution of I(t) may be

expressed as

Iðt þ 1Þ ¼ Atþ1 � At � � � � � A1 ð3Þ

where

At ≜ 1þ y � dþ εIt � ε
R
t

are i.i.d. random variables. As explained by Boyle [20], Benford’s law emerges naturally from

“central limit-like” theorems for the mantissas of random variables under multiplicative opera-

tions and modular arithmetic. Indeed, Berger and Hill [21] show that if an i.i.d. sequence of

random variables fAtg
1

t¼1
are not purely atomic, then

QT
t¼1

At converges in distribution to Ben-

ford’s law as T!1. The form (3) then suggests Benford’s law should emerge naturally during

the early stages of an epidemic.

The above explanation assumes a static infectiousness θ. In reality, decentralized and cen-

tralized preventative measures are likely to be implemented once the outbreak becomes severe,

and hence the dynamics of disease transmission are likely to change. Moreover, even if the dis-

ease is allowed to spread uncontrollably, it will inevitably burn itself out due to the finite popu-

lation size. We therefore reiterate that Benford’s law is only expected to hold in the initial

stages of an epidemic, and so the time period considered must not be too large in order to

ensure that
M� IðtÞ
IðtÞ � 1, for t = 0, 1, . . ., T, and that major government intervention has not yet

been implemented. In addition, it should be noted that asymptomatic cases might exist which

tend to have a different basic reproductive number than symptomatic cases. However, the

parameter θ is then simply a probability weighted average of the infectiousness of different

groups categorized by manifested symptoms. Indeed, the main problem introduced by

asymptomatic cases is the difficulty in observing them; absent a comprehensive and ongoing

community testing scheme, the observed number of cases is likely to be biased in favor of

symptomatic cases. Therefore, the prevalence of asymptomatic cases must be taken into con-

sideration when making inferences.

Since we do not observe the spread of the disease directly, reported case figures will be esti-

mates based on diagnostic tests with two primary sources of error. First, only suspected cases

are tested, while the remaining cases go unobserved. Second, tests may provide false-positives

and false-negatives. Logistical constraints on testing can also cause deviations from Benford’s

law which are not necessarily indicative of falsified figures. If a government is constrained by a

fixed number of tests per day, while the true case number increases by a rate much larger than

this limit, then the cumulative confirmed cases will grow linearly, not exponentially. Berger

and Hill [21] show that sums of random variables do not converge to Benford’s law, and hence

constrained testing may cause erroneous conclusions. We therefore reiterate that while Ben-

ford’s law may help flag anomalous or suspicious case figures, further rigorous scientific inves-

tigation must be conducted in order to ascertain the exact cause. In particular, attention

should be paid to whether deviations from Benford’s law are instead due to the public health

surveillance system performing poorly, as this would likely lead to some of the aforementioned

problems relating to asymptomatic cases and testing constraints.

Methodology

In order for Benford’s law to emerge it is necessary for the process considered to cross multiple

orders of magnitude. For this reason, using the traditional base 10 Benford’s law is less
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appropriate, since the number of magnitude changes might be insufficient over shorter time

periods. Furthermore, if we employ the traditional chi-squared test, then base 10 might not

provide large enough expected cell counts. Instead, it is more appropriate to focus on Ben-

ford’s law in smaller bases, such as 3, 4, and 5, though we include base 10 nonetheless. We test

whether a country’s cumulative confirmed case process, in a specified base b, obeys (1) using

the standard chi-squared approach. Specifically, letting Xi
bðtÞ be country i’s confirmed case

number at time t in base b, for t = 1, 2, . . ., T, we compare the leading digit frequencies

observed up to time T to the expected leading digit frequencies under the assumption that Ben-

ford’s law holds. This is one of the tests used by Deleanu [8] who studies the applicability of

using Benford’s law to detect false criminal enforcement statistics, and is noted in [22] as being

the most common goodness of fit test used to assess the validity of Benford’s law.

Care must be taken when defining the start of the epidemic within each individual country.

The start should be defined so as to best correspond to the start date of sustained community

transmission. Indeed, several countries see no increase for weeks following the initial con-

firmed clusters, suggesting the initial outbreaks were successfully contained. Naively taking the

first confirmed case as the start of the epidemic is likely to lead to erroneous results. Therefore,

rather than considering the date at which the first case is confirmed, we define the start of the

process Xi
bðtÞ as the earliest date following which we observe three consecutive days of con-

firmed cases within the country in question. For example, although 4 confirmed cases existed

in Germany as of January 28th, 2020, it is not until January 31st that we observe three consecu-

tive days of confirmed cases. Thus, the beginning of the epidemic in Germany is defined as

January 31st rather than January 28th. Likewise, although 41 confirmed cases existed in China

as of January 11th, 2020, it is not until January 17th that we set the beginning of the epidemic

based on the definition above.

We then consider a range of different periods T in order to ascertain whether conformance

to Benford’s law is stable over time. Indeed, it should be noted that a weakness of the model is

the ambiguity in selecting an appropriate value for T; the time period should simultaneously

be large enough to cross several orders of magnitude, and small enough so that exponential

growth has not yet been restrained due to government intervention. Therefore, we opt to con-

sider a range of different time periods to ensure stability over time, as opposed to a single time

period based on knowledge of the epidemic’s timeline. We consider T = 30, 40, 50, 60 since

many countries included in our analysis have case numbers that are too small, i.e., did not

cross many orders of magnitude, for periods shorter than T = 30. On the other hand, going

beyond T = 60 is likely to lead to erroneous conclusions due to the effect of government inter-

vention on the rate of transmission. For periods of time smaller than T = 30, one alternative

approach would be to use the test recently developed by Moreno-Montoya [23] to test confor-

mance to Benford’s law on small-samples, which we intend to explore in a future work that

develops more formal procedures and algorithms for detecting fraud. Additionally, the devel-

opment of nonparametric or semiparametric tests that utilize moving windows of various

lengths to detect deviations from Benford’s law over time would be a promising area of future

research.

Finally, we also consider the 2nd leading digit in our analysis; we refer the reader to [24] for

the joint distribution of the first n leading digits, from which the 2nd digit distribution is read-

ily derived. The data used in the following empirical analysis was published by the World

Health Organization, and subsequently compiled by Humanitarian Data Exchange [25]. The

accuracy of the data was confirmed by cross referencing case numbers with those published by

the European Centre for Disease Prevention and Control. It contains confirmed case numbers

for COVID-19 from the beginning of January, 2020, up until 20 May, 2020.
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Results

The results in Tables 1–4 present chi-squared 1st digit Benford’s law p-values for different

combinations of b and T. In addition, Table 5 presents p-values for conformance to the 2nd

digit Benford’s law in base 3. For the 1st digit Benford’s law analysis, it is interesting to note

that as we decrease the base b, the number of countries that significantly deviate from Ben-

ford’s law decreases. For base 10, a total of 15 out of 60 country-time combinations are

significant at the 5% level. This decreases to 13 for base 5, to 8 for base 4, and to 3 for base 3.

Adherence to Benford’s law appears to depend on the base chosen, which we suspect has sev-

eral causes. On the one hand, it is necessary for several orders of magnitude to be crossed to

Table 1. Chi-squared p-values under base 10 case numbers.

Base 10 p-values

Country T = 30 T = 40 T = 50 T = 60

Brazil 0.108 0.396 0.149 0.503

Canada p< 0.001 p< 0.001 p< 0.001 p< 0.001

China 0.740 p< 0.001 p< 0.001 p< 0.001

France 0.924 0.802 0.806 0.369

Germany p< 0.001 p< 0.001 p< 0.001 0.015

India 0.928 0.870 0.880 0.995

Iran 0.904 0.776 0.378 0.085

Italy 0.914 0.950 0.946 0.227

Mexico 0.862 0.974 0.751 0.932

Romania 0.862 0.849 0.682 0.733

Russia 0.829 0.675 0.863 0.825

Spain 0.624 0.954 0.312 0.048

Sweden 0.295 0.790 0.567 0.121

United Kingdom 0.311 0.486 0.477 0.682

United States 0.010 0.033 p< 0.001 p< 0.001

https://doi.org/10.1371/journal.pone.0243123.t001

Table 2. Chi-squared p-values under base 5 case numbers.

Base 5 p-values

Country T = 30 T = 40 T = 50 T = 60

Brazil 0.075 0.115 0.408 0.270

Canada 0.027 0.169 0.466 0.499

China 0.621 p< 0.001 0.002 0.004

France 0.753 0.617 0.782 0.171

Germany p< 0.001 p< 0.001 p< 0.001 p< 0.001

India 0.867 0.766 0.900 0.666

Iran 0.749 0.968 0.610 0.027

Italy 0.906 0.636 0.413 0.817

Mexico 0.709 0.666 0.901 0.932

Romania 0.845 0.802 0.288 0.164

Russia 0.680 0.684 0.849 0.467

Spain 0.926 0.585 0.424 0.049

Sweden 0.532 0.777 0.426 0.570

United Kingdom 0.906 0.976 0.918 0.530

United States 0.001 0.007 0.002 0.038

https://doi.org/10.1371/journal.pone.0243123.t002
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see the emergence of Benford’s law, and so base 10 might not satisfy this requirement given

the limited number of days considered. Additionally, the expected cell count assumption for

the chi-squared test is unlikely to be satisfied for higher digits. The effect of errors on case

numbers, including errors due to testing constraints, may also be more significant for higher

bases. As we increase the number of bins, in this case digits, the likelihood that errors in mea-

surement will change the leading digit increases.

We find that Canada rejects Benford’s law in base 10 across the board, as well as base 5 for

T = 30, at the 5% level. The cumulative case process for Canada, which shows the number of

cases starting from the date defined by the 3 consecutive day rule, is given in Fig 1. From this

Table 4. Chi-squared p-values under base 3 case numbers.

Base 3 p-values

Country T = 30 T = 40 T = 50 T = 60

Brazil 0.978 0.938 0.472 0.760

Canada 0.062 0.464 0.299 0.445

China 0.978 0.218 0.029 0.003

France 0.466 0.686 0.472 0.819

Germany 0.123 0.059 0.192 0.268

India 0.978 0.938 0.650 0.566

Iran 0.466 0.803 0.456 0.760

Italy 0.999 0.664 0.987 0.293

Mexico 0.685 0.938 0.873 0.760

Romania 0.123 0.563 0.110 0.014

Russia 0.978 0.938 0.651 0.566

Spain 0.685 0.365 0.299 0.969

Sweden 0.978 0.686 0.472 0.620

United Kingdom 0.685 0.938 0.670 0.620

United States 0.123 0.564 0.894 0.819

https://doi.org/10.1371/journal.pone.0243123.t004

Table 3. Chi-squared p-values under base 4 case numbers.

Base 4 p-values

Country T = 30 T = 40 T = 50 T = 60

Brazil 0.456 0.513 0.849 0.659

Canada 0.320 0.437 0.700 0.471

China 0.884 0.431 0.038 0.001

France 0.884 0.743 0.290 0.029

Germany 0.069 0.099 0.203 0.275

India 0.814 0.840 0.849 0.866

Iran 0.766 0.877 0.384 0.742

Italy 0.921 0.424 0.656 0.418

Mexico 0.884 0.795 0.809 0.709

Romania 0.750 0.432 0.697 0.612

Russia 0.476 0.643 0.697 0.640

Spain 0.239 0.413 0.061 0.027

Sweden 0.456 0.351 0.527 0.079

United Kingdom 0.549 0.569 0.460 0.430

United States p< 0.001 p< 0.001 p< 0.001 p< 0.001

https://doi.org/10.1371/journal.pone.0243123.t003
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we see that the rule of thumb we propose clearly sets the start date too early for Canada;

indeed, we find that Canada has 7 cases from days 13 to 22, and 8 cases from days 23 to 27. It is

not until day 36 that cases begin to rise significantly. The construction that we use to explain

the emergence of Benford’s law clearly breaks down if we have large numbers of days with no

new cases. Note that if we shift Canada’s start date to day 36 and consider a period of T = 30,

we obtain a p-value of 0.39 for base 10. A poorly defined start date also explains why Germany

rejects Benford’s law in base 10, base 5, as well as the 2nd digit Benford’s law in base 3. The

cumulative case process for Germany is also presented in Fig 1, in which the same problem is

evident. For instance, Germany has 16 cases from days 12 to 25 without change. If we again

shift the start date to day 36 and consider a period of T = 30, we obtain p-values of 0.60 and

0.73 for bases 10 and 5, respectively, and 0.47 for the 2nd digit Benford’s law in base 3.

For the United States, we find that Benford’s law is rejected at the 5% level for times T = 30,

40, 50 and bases b = 4, 5, 10. This deviation can be explained by the failure of the Centers for

Disease Control and Prevention (CDC) to adequately ramp up testing in the early days of the

outbreak. Fewer than 4, 000 tests were conducted in the United States by February 28th, exac-

erbated by the discovery that 160, 000 tests produced throughout February were defective [26].

Moreover, the CDC relaxed testing restrictions on March 5th, after which testing increased

dramatically [27]. We see in Fig 1 that following this relaxation on testing guidelines, the con-

firmed cases grows rapidly. The rejection of Benford’s law can therefore be explained by con-

straints on testing.

China’s rejection of Benford’s law in all bases can be explained by a combination of being

the epicenter of the outbreak, which naturally causes a backlog of undiscovered cases, difficul-

ties in developing the initial tests, and finally strong government intervention. China’s cumula-

tive case process, given in Fig 2, shows that between days 30 and 40 the exponential growth in

cases was almost entirely halted. It is possible that the rapid growth between days 20 and 30

was the result of detecting the backlog of previously undiscovered cases; once this backlog was

exhausted, strong intervention by the central government quickly flattened the growth process.

According to the three day rule, China’s start date was January 17th, 2020, and just 6 days later

the central government introduced lockdowns to badly affected cities in Hubei province [28].

Table 5. Chi-squared p-values for the 2nd digit Benford’s law under base 3 case numbers.

2nd Digit, base 3 p-values

Country T = 30 T = 40 T = 50 T = 60

Brazil 0.475 0.601 0.438 0.280

Canada 0.112 0.396 0.966 0.453

China 0.475 0.014 0.091 0.045

France 0.663 0.580 0.810 0.920

Germany 0.003 0.013 0.027 0.041

India 0.760 0.706 0.757 0.735

Iran 0.663 0.580 0.626 0.201

Italy 0.914 0.926 0.994 0.545

Mexico 0.994 0.914 0.948 0.988

Romania 0.934 0.717 0.963 0.545

Russia 0.794 0.395 0.581 0.717

Spain 0.501 0.418 0.208 0.983

Sweden 0.643 0.604 0.486 0.551

United Kingdom 0.845 0.924 0.693 0.780

United States 0.297 0.371 0.208 0.390

https://doi.org/10.1371/journal.pone.0243123.t005
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Thus, although China’s case data displays deviations from Benford’s law in all bases consid-

ered, including both the 1st and 2nd digits, it is important to note that there are plausible

explanations that do not involve fraudulent activity.

Both France and Spain only reject Benford’s law for T� 60, and this is readily explained

by government social distancing measures. The start date for France was March 2nd; subse-

quently on March 17th the French government initiated a lockdown [29]. This gives 45 days

for the effect of the lockdown to reduce the rate of transmission by T = 60. Similarly, the start

date for Spain was February 26th, while on March 14th a lockdown was introduced, leaving 43

days for it to affect the rate of transmission [30]. Given that Benford’s law is accepted on time

periods shorter than T = 60, combined with the cumulative case process plots in Fig 2 which

demonstrate the slowed exponential growth by this time, government intervention seems to be

the most likely cause.

Finally, we find that Romania rejects Benford’s law for base 3 at T = 60. Referring to Roma-

nia’s cumulative case process plot in Fig 2, we find that there is no flattening of the curve as in

the prior examples to indicate government intervention is the cause. Instead, the cumulative

case process transitions from exponential to linear growth at around T = 20. As previously

mentioned, constraints on testing would result in linear growth, and hence logistical con-

straints causing inadequate testing might explain this. However, we have been unable to find

reputable sources that substantiate this explanation, and so the possibility of fraudulent activity

cannot be ruled out.

In summary, we find a substantial amount of agreement between COVID-19 case figures

and the leading digit frequency distribution predicted by Benford’s law. For all countries that

Fig 1. Cumulative case processes for Canada, Germany, and the United States. Cumulative case process plots for

Canada (green), Germany (yellow), and the United States (blue). Days 30, 40, 50, and 60 are marked in red, while 5

March, 2020, is marked in black.

https://doi.org/10.1371/journal.pone.0243123.g001
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reject Benford’s law at various bases or time periods, we find there are plausible reasons to

explain the deviation, including government intervention, constrained testing, and poorly

defined start dates. In fact, that Benford’s law only breaks down for some countries following

government social distancing measures supports the efficacy of these measures in slowing

down transmission of the disease. The results also substantiate the theoretical argument that

we have presented to explain why the early stages of an epidemic should give rise to Benford’s

law, and hence lay an empirical foundation for developing formal statistical fraud detection

techniques in epidemiology.

Zipf’s law

Zipf’s law is an empirical law that has been observed in many naturally occurring data sets

of the social and physical sciences. Given a data set Z1 > Z2 > � � �> ZN, in which data points

are labeled by their rank (r), Zipf’s law is said to hold if the log-log plot of ln(Zr) and ln(r) is

approximately linear. Specifically, the law asserts that

lnðrÞ ¼ a � b lnðZrÞ þ εr ð4Þ

for r = 1, 2, . . ., N, where α, β> 0, and εr is an error term. This linear relationship is also

referred to as the rank-size rule; some authors, such as Gabaix [31], use Zipf’s law to refer spe-

cifically to phenomena which follow power law distributions, of which the so-called rank-size

rule is a direct consequence. The law is named after the linguist George Kingsley Zipf who

noticed that the frequency of a given word in a corpus of natural language is inversely propor-

tional to its rank in the corresponding frequency table [32, 33].

Fig 2. Cumulative case processes for China, France, Spain, and Romania. Cumulative case process plots for China

(yellow), France (green), Spain (blue), and Romania (black) with days 30, 40, 50, and 60 marked in red.

https://doi.org/10.1371/journal.pone.0243123.g002
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Zipf’s law has been observed in many fields in the social and physical sciences, including

the ranking of city sizes by population [31]. In fact, that city rankings have been demonstrated

to obey, approximately, Zipf’s law is particularly surprising given the uncontrolled nature of

city growth. This relationship holds in the United States throughout the 20th century [34, 35],

and for most countries [36]. Indeed, a study by Moura and Ribeiro [37] found Brazilian cities

also obey the law over a period of at least 50 years. The emergence of Zipf’s law in epidemiolog-

ical data is of significance as it provides a practical means of flagging data for further analysis.

Investigations are costly in both time and money, meaning they should only be initiated if

there is good reason to suspect data of being fraudulent. Central governments compile data

from hundreds or thousands of different sources, whether they be from local governments or

directly from healthcare facilities, and so clearly there is a need to automate and streamline

fraud detection procedures. Moreover, this applies not only for epidemiological data, but

clearly for economic and financial data as well. The theoretical discussion in the next section is

based on collections of stochastic growth processes with common mean and variance, much of

which is readily carried over to commonly studied processes in finance and economics. Fur-

thermore, this new approach to fraud detection is strengthened by the central government’s

monopoly on information; if the government does not publish the regional breakdown of the

data in question, it would be difficult for local authorities to falsify data in accordance with

Zipf’s law. By monitoring the data over time, and not publishing it in detail, the central govern-

ment can ascertain the expected Zipfian pattern in the data, upon which an automated fraud

detection system can be developed.

Zipf’s law and the geographic spread of disease

Since Zipf’s seminal work, multiple explanations have been proposed to explain the frequent

emergence of Zipf’s law in the social sciences. We begin by presenting a brief summary of

the explanation given by Gabaix [31] in the context of city population rankings, as it provides

an intuitive understanding for why Zipf’s law might be expected to emerge naturally in

epidemiology.

Let Sit denote the normalized size of city i at time t among a collection of cities, the total

number of which is fixed and finite. Here, the normalized city size is simply the city population

divided by the entire urban population, and the initial distribution of cities is arbitrary. It is

assumed that the normalized city sizes, at least over a certain range, evolve stochastically over

time. Specifically, suppose that in the upper tail the evolution of city sizes is of the form

Sitþ1
¼ gitþ1

Sit ð5Þ

where gitþ1
> 0 are i.i.d. random variables with density f(γ). Define GtðxÞ ≜ PðSit > xÞ and

note that

Gtþ1ðxÞ ¼ Pðgitþ1
Sit > xÞ ¼ PðSit > x=gitþ1

Þ ¼ E½Gtðx=g
i
tþ1
Þ�

where the third equality follows by an application of the law of total expectation. Hence the

steady state process G = Gt, if it exists, must satisfy

GðxÞ ¼
Z 1

0

Gðx=gÞf ðgÞdg:

For a more detailed description of the above construction and its technicalities, we refer the

reader to [31]. Gabaix [38] notes that possible ways of ensuring the existence of a steady state

process is to add a small constant to Eq (5) to prevent cities from getting too small, or a lower

bound for sizes enforced by a reflective barrier. Importantly, according to Gabaix [38] these
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adjustments typically do not affect the power law in the upper tail, for which only the growth

rate matters. One then finds that a solution in the upper tail is given by G(x)/ x−β, with β> 0,

provided that we also have E½ðgitþ1
Þ
b
� ¼ 1. Gabaix [31] notes that if the city sizes are normal-

ized, then the average normalized city size is constant, and this requires E½git� ¼ 1. Thus, it fol-

lows that Zipf’s law holds in the upper tail with β = 1, which is the proposed explanation for

the emergence of Zipf’s law for city sizes. Gabaix [38] also points out, however, that if small cit-

ies grow much faster than larger ones, then we have β> 1.

The only assumption the above construction imposes on the growth dynamics is that, for a

certain range of city sizes in the upper tail, the growth processes share a common mean (i.e.

the average rate of population growth) and common variance. This assumption is often

referred to as Gibrat’s law, and implies that the proportional rate of growth is independent of

the current absolute size. The construction by Gabaix [31] shows that the steady state distribu-

tion of normalized city sizes is then

PðSi > xÞ / x� b ð6Þ

provided x is sufficiently large, and β> 0. The rank-size relationship (4) is then a consequence

of this power law distribution [31]. It is easy to see that if (4) holds for normalized Zr, then it

clearly holds for unnormalized Zr by absorbing the normalizing constant into α.

Few empirical phenomena obey power law distributions for all values of x; instead, power

laws typically only hold for values greater than some minimum value xmin, which must be esti-

mated. This can be seen in the size rankings of naturally occurring cities [39], gross domestic

product [40], world cities [40], and English text frequencies [41].

Returning to the topic of this paper, consider a country comprised of a collection of regions

such as states or provinces. Suppose that a common disease is simultaneously imported to

each region and begins to spread locally, and Ii(t) is the normalized number of infected in

region i. That is, Ii(t) is the number of infected individuals in region i divided by the total num-

ber of infected nationally. Considering that the disease is identical across each region, with a

given level of infectiousness, and assuming that there is homogeneity between regions in terms

of culture, population density, and development, it stands to reason that each region shares a

common level of infectiousness θ> 0 and common recovery rate δ> 0. In this case, we again

consider the form of model proposed earlier, with

Iiðt þ 1Þ ¼ IiðtÞ þ ðyþ εItþ1;iÞIiðtÞ � ðdþ ε
R
tþ1;iÞIiðtÞ ð7Þ

for each region i, where εItþ1;i and εRtþ1;i are again appropriately defined i.i.d. random noise

terms. But clearly this can be rewritten as

Iiðt þ 1Þ ¼ gitþ1
IiðtÞ ð8Þ

where gitþ1
> 0 are i.i.d. random variables. It follows by the reasoning of Gabaix [31] that if we

have

E½ð1þ y � dþ εItþ1;i � ε
R
tþ1;iÞ

b
� ¼ 1

then the steady state distribution of infected within each region is given by (6). Moreover,

since Ii(t) are assumed to be normalized, we must have

E½y � dþ εItþ1;i � ε
R
tþ1;i� ¼ 0 ð9Þ

which suggests the emergence of Zipf’s law with β = 1. It is important to note that condition

(9) does not mean that the number of infected isn’t increasing; since we are considering the
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normalized number of infected, this condition refers to the number of infected in region i rela-

tive to the rest of the country.

There are three obvious reasons why the above construction might break down, and which

therefore must be considered when determining the cause of anomalous data. The first is that

since all regions share common infectiousness and recovery parameters there is an implicit

assumption of homogeneity between regions. If the regions are very different from one

another in terms of culture, population density, demographics, or development, then clearly

this assumption is questionable and is likely to lead to deviations from Zipf’s law. On the other

hand, the model still allows for regional populations to be heterogeneous provided homogene-

ity between regional populations still holds. Thus, if we find that a handful of regions deviate

significantly from the nationally predicted rank-size relationship, the first course of action is to

check whether these regions differ meaningfully from the rest of the country. This includes

whether the policy response of the local authorities differed from that of the central govern-

ment, or if the response followed a very different timeline. Secondly, we have made the

assumption that Gibrat’s law holds in the sense that the average rate of disease spread, along

with the variance, is independent of the number of infected. However, centralized and decen-

tralized preventative measures are likely to have an effect on the dynamics of disease spread,

and the likelihood of such measures being implemented clearly increases with disease preva-

lence. Finally, we have assumed that the disease is imported to all regions simultaneously. In

practice, it would be reasonable to expect the disease to emerge in larger transport hubs long

before rural regions. The timeline of infections should therefore be examined to check whether

cases in anomalous regions emerged much earlier or later than the rest of the country.

It is worth noting that one approach to falsifying data to avoid detection based on Zipf’s law

is to suppress figures below the minimal value xmin. After all, if Zipf’s law is observed to only

hold above this value, then regions with case numbers below this value should not be flagged

as suspicious for deviations from the empirical law. However, this approach has several prob-

lems. First, the value xmin is not known and must be estimated using data only available to the

central authorities. Second, suppressing figures below xmin may in itself raise suspicion if xmin

is sufficiently small that the region’s figures are not seen as realistic. Finally, this approach is

less relevant in finance and econometrics, since fraud more often than not involves inflating

figures, not understating them.

Methodology

Clauset et al. [14] note that while the most common methods of estimating xmin are visual, i.e.,

constructing log-log plots and picking the point beyond which linearity appears to break

down, these methods are subjective and also sensitive to noise in the tail of the distribution.

As an alternative, they suggest a more objective approach which minimizes the Kolmogorov-

Smirnov (KS) distance between the empirical and theoretical power law distributions, defined

as

K ≜ max
x�xmin

�
�
�F̂ðxÞ � FðxÞ

�
�
�; ð10Þ

where F̂ðxÞ is the empirical distribution of the data above xmin, and F(x) is the power law dis-

tribution of best fit for data above xmin [42]. The proposed estimate x̂min is then the value

which minimizes K. We employ this method to obtain estimates of xmin using the R package

poweRlaw.

Clauset et al. [14] also propose a test for whether data is drawn from a power law distribu-

tion above some minimal threshold xmin, which is again implemented using the package
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poweRlaw. The test statistic used is the KS distance (10), while a semiparametric approach is

used to construct a distribution for the test statistic. Having obtained point estimates b̂ and

x̂min, the idea is to generate synthetic data sets that obey the power law with scaling parameter

b̂ above x̂min, but which resemble the empirical data below x̂min, so that the model fitting pro-

cess can be replicated in its entirety. In an ordered sample of size n, let ntail denote the number

of observations above x̂min. Then the synthetic data sets are generated by drawing a random

variable from the power law distribution of best fit, which in this case uses the maximum likeli-

hood estimator of β, with probability ntail/n, or uniformly from the data below x̂min with proba-

bility 1 − ntail/n. For each such data set, the KS distance (10) is then calculated based on the

power law distribution of best fit, and hence a distribution of test statistics is obtained. For an

in-depth analysis and discussion of this test we refer the reader to [14]. A small p-value then

suggests that there is no threshold xmin above which the data is drawn from a power law

distribution.

Having obtained an estimate x̂min, the two most common approaches to estimating the

parameter β in (4) are OLS and Hill’s estimator. Gabaix and Ioannides [43] note that while

OLS is the most common method employed in the empirical literature, it tends to under esti-

mate the power exponent. The alternative estimator was proposed by Hill [44], known as Hill’s

estimator, and is defined as

b̂Hills ¼
ntail � 1

Pntail � 1

i¼1
ðlnðZiÞ � lnðZntail

ÞÞ
:

We consider in our empirical analysis the regional COVID-19 case figures as of the 11th May,

2020, for multiple countries, broken down according to region. Specifically, we consider Bra-

zilian states [45], Canadian provinces [46], Chinese provinces [47], German states [48], Indian

states and union territories [49], regions of Italy [50], states and federal territories of Malaysia

[51], Mexican states [52], Romanian counties [53], Russian federal subjects [54], autonomous

communities of Spain [55], Swedish counties [56], regions of the United Kingdom [57], and

states and territories of the United States [58]. The data was retrieved from Statistica, which

has compiled official government figures throughout the COVID-19 pandemic. We consider

China with and without Hubei, since including the epicenter is likely to affect the results to

some degree. Moreover, we exclude Hong Kong, Macau, and Taiwan from our analysis of

China owing to the restrictions on cross-border travel and their distinct political systems.

Results

The results of each country are summarized in Table 6, which includes the number of regions

considered in the analysis after estimating xmin. First of all, we find that the R2 of the model (4)

is at least 0.9 for all countries except China (both with and without Hubei) and Russia; this

seems to support the applicability of Zipf’s law for the regional distribution of COVID-19

cases within a nation. The low R2 also initially appears to flag case data from China and Russia

as potentially unreliable, however it turns out that the low R2 for China (excluding Hubei) and

Russia can be explained by a change in the power law exponent, as shown in the log-log plots

of Fig 3. It seems that the procedure for estimating xmin outlined in [14] leads to taking x̂min as

the point at which the second power law ends, rather than the point at which the power law

exponent first changes, leading to erroneous results. Such change points might be explained if

they separate regions into two homogeneous subgroups, e.g., urban and rural regions, that fol-

low similar within group growth trajectories.

For Russia, the first power law applies to the regions of Moscow, Moscow Oblast, Saint

Petersburg, Novgorod Oblast, Dagestan, and Murmansk Oblast. With the exception of

PLOS ONE On the authenticity of COVID-19 case figures

PLOS ONE | https://doi.org/10.1371/journal.pone.0243123 December 8, 2020 15 / 22

https://doi.org/10.1371/journal.pone.0243123


Dagestan and Murmansk Oblast, these correspond to developed areas in the European part of

Russia, which would seem to support the conclusion that the change point relates to level of

development. However, Dagestan sits in the North Caucasus and Murmansk Oblast in the far

north bordering Finland and Sweden, and so it is difficult to explain how they relate to the

Table 6. Regional COVID-19 cases by country.

Country âLS b̂LS
R2

b̂Hills
x̂min Number of Regions p-value

Brazil 1.2957 0.8249 0.9713 0.8104 1290 22 0.75

Canada 1.7279 0.3471 0.9563 0.3448 120 9 0.92

China (Incl. Hubei) 2.7035 0.6164 0.8601 0.6997 127 27 0.03

China (Excl. Hubei) 3.4781 0.9371 0.8325 0.8098 127 26 0.01

Germany 3.5990 0.7332 0.9365 0.8463 2556 13 0.79

India 3.2996 0.7313 0.9405 0.7176 696 15 0.10

Italy 3.8109 0.7695 0.9846 0.8233 2572 15 0.99

Malaysia 2.6887 0.7676 0.9364 0.7533 89 14 0.61

Mexico 3.6844 0.9223 0.9764 1.1451 582 15 0.91

Romania 4.6407 1.3611 0.9015 1.8568 379 16 0.42

Russia 4.3869 0.9645 0.8460 1.4677 772 54 0.03

Spain 4.4858 0.9137 0.9236 1.2207 9291 8 0.73

Sweden 3.8042 0.9781 0.9209 1.4245 805 11 0.65

United Kingdom 9.9979 2.2431 0.9592 2.6948 11468 8 0.99

United States 4.8835 0.8665 0.9688 0.8212 6150 36 0.83

https://doi.org/10.1371/journal.pone.0243123.t006

Fig 3. Log-log plots of confirmed COVID-19 cases in China and Russia. Log-log plots of confirmed COVID-19

cases for Russia (black), China with Hubei (green), China without Hubei (blue). Note the change in power law

indicated by the change in slope.

https://doi.org/10.1371/journal.pone.0243123.g003
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highly developed regions surrounding Moscow and Saint Petersburg. It is possible that the

first cases in Russia were seeded in larger transport hubs such as Moscow and, by pure chance,

also happened to be imported to Dagestan and Murmansk Oblast around the same time, so

that they followed similar growth trajectories compared to regions which did not experience

their first cases until much later.

Meanwhile for China (excluding Hubei) the first power law applies to Heilongjiang, Shang-

hai, Jilin, Inner Mongolia, Beijing, Shaanxi, Guangdong, Shangdong, Tianjin, Fujian, Shanxi,

Liaoning, and Hebei. Note that these mostly comprise of coastal provinces with the exceptions

of Inner Mongolia, Shaanxi, and Shanxi. Given that coastal provinces are much more highly

developed, and also tend to have a higher population density, it makes sense that a change

point would differentiate coastal and inland provinces. When we include Hubei into the analy-

sis of China, the low R2 cannot be explained by a change point; the number of cases in Hubei

is disproportionately large relative to the remaining provinces. However, if we assume that

sustained community transmission had only just begun in the remaining provinces when

COVID-19 was first discovered, the discrepancy might be explained by the significantly differ-

ent growth trajectories following government intervention. The virus was allowed to spread

uncontrollably in Hubei before its detection, but not in the bordering provinces, resulting in

vastly different growth trajectories.

Using the hypothesis test proposed in [14], we find that the power law hypothesis is rejected

at the 5% level only for Russia and China (both with and without Hubei). That Russia and

China rejects the power law hypothesis is essentially addressed by the previous discussion. In

addition to the formal test outlined in [14], the applicability of Zipf’s law is often assessed visu-

ally using log-log plots. Figs 4 and 5 present log-log plots of regional COVID-19 cases for each

Fig 4. Log-log plots of confirmed COVID-19 cases in each country. Log-log plots of confirmed COVID-19 cases for

the United States (black), Canada (red), Brazil (blue), Germany (grey), India (green), and Italy (yellow).

https://doi.org/10.1371/journal.pone.0243123.g004
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country considered. We see that for most countries a roughly linear line is obtained, with the

exceptions of China and Russia. We find that most estimates of β cluster around 1, supporting

the theoretical argument based on the construction by Gabaix [31] which predicts a power law

exponent of β = 1. It is interesting to note, however, that these estimates can vary quite signifi-

cantly for some countries; Canada has an OLS estimate of just 0.34 while the United Kingdom

has an OLS estimate of 2.24. This difference is caused by the fact that the Canadian cases are

highly concentrated in the provinces of Quebec and Ontario, which together account for 84%

of COVID-19 cases in Canada. Meanwhile, for the United Kingdom, the two largest regions

account for only 30% of cases. Recalling that Gabaix [38] notes β> 1 occurs when “smaller cit-

ies grow faster,” the power law exponent estimate reflects the concentration of cases in a coun-

try. If β> 1, then smaller disease clusters will catch up with larger clusters, and the overall

distribution of disease prevalence will tend to even out.

In summary, these results provide strong empirical evidence that disease outbreaks across a

country obey Zipf’s law, albeit with a power law exponent that is not necessarily close to 1 for

all countries. This provides a basis for which fraud detection in epidemiology might be based,

along with a potential approach for evaluating the performance of public health surveillance

systems at the sub-national level. On the sub-national level, the central government can per-

form statistical analysis to detect which regional governments report case numbers that deviate

significantly from the observed power law. Regions that deviate significantly can then be

flagged for further investigation by the relevant central authorities. On the national level, inter-

national organizations can track regional case figures of countries and flag nations which dis-

play little or no adherence to power law dynamics above any minimal threshold.

Fig 5. Log-log plots of confirmed COVID-19 cases in each country. Log-log plots of confirmed COVID-19 cases for

Malaysia (black), Mexico (red), Romania (blue), Spain (grey), Sweden (green), and the United Kingdom (yellow).

https://doi.org/10.1371/journal.pone.0243123.g005
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Limitations of Benford’s law and Zipf’s law in epidemiology

There are several limitations to the approaches outlined in this paper that should be acknowl-

edged. First, both approaches rely on a testing regime that accurately tracks the number of

cases over time. If a significant number of cases are asymptomatic, then any practical testing

regime is likely to be inadequate given that asymptomatic cases will generally only be detected

through contact tracing and comprehensive community testing. The observed cases will there-

fore be biased towards symptomatic individuals, which might lead to erroneous conclusions.

Hence, the approaches outlined in this paper are less appropriate for epidemics where the pro-

portion of asymptomatic cases is large. Second, the Zipf’s law approach assumes homogeneity

between regions and is therefore not suitable for countries where this assumption is violated.

For instance, developing countries with large urban and rural disparities are less likely to sat-

isfy this assumption given the impact that population density, lifestyle, and development has

on the rate of transmission. Third, the models underlying each approach both assume no gov-

ernment intervention and a small number of cases relative to the population size. As a result, if

the epidemic becomes particularly severe, applying these approaches beyond the early stages of

the epidemic is likely to lead to erroneous conclusions. Finally, there are clearly some ambigui-

ties in how the timeline of the epidemic should be defined when conducting statistical analysis

based on either approach. On the one hand, the beginning of the epidemic should be set to

when sustained community transmission first occurs, as opposed to simply when the first

cases emerge, which might be difficult to determine with confidence. On the other hand, the

end point of the analysis is also somewhat ambiguous; while we are restricted to the early

stages of the epidemic, we also hope to maximize the sample size utilized. However, we note

that these ambiguities could be addressed by developing nonparametric or semiparametric

tests based on moving windows of varying lengths.

Conclusion

This paper serves as a preliminary study of fraud detection in epidemiology using Benford’s

law and Zipf’s law. We have presented theoretical arguments for why these empirical laws

might be expected to emerge within the early stages of an epidemic, upon which statistical

techniques for fraud detection may be developed. Although the theoretical constructions that

we have proposed to explain the emergence of both laws rely on the same basic model, specifi-

cally a stochastic discrete-time compartmental model, each approach examines a different

aspect of the data. The Benford’s law approach investigates whether the evolution of the num-

ber of cases displays anomalous behavior over time, while the Zipf’s law approach investigates

whether there are any irregularities in the observed spatial distribution of cases.

The empirical results that we have presented suggest a promising degree of agreement with

both Benford’s law and Zipf’s law. During the early days of an epidemic, for which the number

of infected individuals is small relative to the population, the cumulative confirmed case pro-

cess appears to obey Benford’s law to a large degree. Moreover, this agreement appears to hold

across a variety of bases, and also to the 2nd digit. This provides a practical means of automati-

cally flagging abnormal case numbers reported by both central and local government agencies;

case figures which develop abnormally over time can then be investigated further by the rele-

vant authorities. In addition, we find that the geographic distribution of cases across a country,

above a minimal threshold, appears to obey Zipf’s law. This provides a particularly convenient

method of fraud detection to central governments due to the asymmetric information pos-

sessed between central and local government authorities. Without comprehensive case num-

bers for other regions, local authorities would be hard pressed to falsify data that consistently

obeys Zipf’s law over time.
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One of the significant contributions of this paper is that we have presented a practical appli-

cation of Zipf’s law to fraud detection, which has been largely neglected by the fraud detection

literature. The argument that we propose to explain the emergence of Zipf’s law in epidemiol-

ogy is based on collections of stochastic growth processes and so is readily carried over to com-

monly encountered processes in econometrics and finance, for which there is an increasing

need of rigorous statistical methods of fraud detection. Unlike Benford’s law, falsifying data to

adhere to Zipf’s law is difficult in the presence of asymmetric information, as the empirical law

involves multiple growth processes. For fraud in epidemiology, one approach to falsifying data

would be to suppress figures below the minimum value xmin above which the power law holds,

however this might itself raise suspicion if case figures are seen as unrealistically low. In the

case of finance or econometrics, fraud normally involves inflated figures, and so this approach

is not a concern to investigators. This paper therefore presents a foundation upon which fur-

ther methods of fraud detection may be developed based on the construction by Gabaix [31].

Further empirical research should study the applicability of Zipf’s law to processes in finance

and econometrics for which fraud is a serious and ongoing concern.

We identify several important areas of further research that build upon this paper. First,

more empirical studies should be conducted on past and future epidemics which were not met

with widespread travel and social distancing measures. The actions taken by governments

throughout the COVID-19 pandemic are unprecedented in scale and are likely to have an

effect on the results. If the unmitigated spread of disease, based on data from prior outbreaks,

shows a high degree of agreement with the empirical laws, it will help validate the theoretical

arguments that we have presented. Second, operating under the assumption that the empirical

laws hold, future research should develop more standardized and formal testing procedures

with the aim of building a robust framework for the detection of fraudulent epidemiological

data, including case studies to examine whether such methods would have detected previous

cases of fraud in epidemiology. Future research could also focus on specific types of fraud,

with tests tailor-made to identify that particular type of fraud. Finally, similar to the existing

works based on Benford’s law, future works could explore the application of Zipf’s law to the

evaluation of public health surveillance systems at the sub-national level.
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4. Klimek P, Jiménez R, Hidalgo M, Hinteregger A, Thurner S. Forensic analysis of Turkish elections in

2017-2018. PLOS ONE. 2018; 13(10). https://doi.org/10.1371/journal.pone.0204975 PMID: 30289899

5. Deckert J, Myagkov M, Ordeshook PC. Benford’s law and the detection of election fraud. Political Analy-

sis. 2011; 19(3):245–268. https://doi.org/10.1093/pan/mpr014

6. Diekmann A. Not the first digit! Using Benford’s law to detect fraudulent scientific data. Journal of

Applied Statistics. 2007; 34(3):321–329. https://doi.org/10.1080/02664760601004940

7. Golbeck J. Benford’s law applies to online social networks. PLOS ONE. 2015; 10(8). https://doi.org/10.

1371/journal.pone.0135169 PMID: 26308716

8. Deleanu IS. Do countries consistently engage in misinforming the international community about their

efforts to combat money laundering? Evidence using Benford’s law. PLOS ONE. 2017; 12(1). https://

doi.org/10.1371/journal.pone.0169632 PMID: 28122058

9. Cerioli A, Barabesi L, Cerasa A, Menegatti M, Perrotta D. Newcomb-Benford law and the detection of

frauds in international trade. Proceedings of the National Academy of Sciences. 2018; 116(1):106–115.

https://doi.org/10.1073/pnas.1806617115 PMID: 30530688
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