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Background: Colon cancer is one of the most common cancer types, although it has
certain unique genetic features. This study aimed to develop a unique score for assessing
prognosis and immunotherapy efficacy using integrated multi-omics analysis.

Methods: Isobaric tagging for relative and absolute quantification (iTRAQ) based
proteomic analysis was used to screen differentially expressed proteins (DEP) between
tumor and normal samples. DEP mRNA obtained from TCGA were clustered into different
categories to show landscape-related prognosis and function. Following that, DEG was
extracted from DEP mRNA, and the DEP-related score (DEPRS) was constructed to
investigate the difference in immunotherapy prognosis and sensitivity. Finally, WCGNA,
random forest, and artificial neural networks were used to screen for key genes. The
prognostic value and protein level of these genes were validated.

Results: A total of 243 DEPs were identified through iTRAQ analysis, and the
corresponding DEP mRNA was clustered into three. Following a series of tests, 1,577
DEGs were identified from overlapped DEP mRNA clusters and were classified into three
gene clusters. The two types of clusters described above shared comparable
characteristics in terms of prognosis and function. Then, it was established that a high
DEPRS indicated a poor prognosis and DEPRS had significant associations with TMB,
MSI status, and immunotherapeutic response. Finally, the key genes HART3 and FBLN2
were identified and were found to be implicated in immunotherapy and prognosis.

Conclusion: The development of a DEPRS based on multi-omics analysis will aid in
improving our understanding of colon cancer and guiding a more effective immunotherapy
strategy. DEPRS and key genes are used as biomarkers in the clinical evaluation of
patients.
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INTRODUCTION

Colorectal cancer (CRC) is the third most common cancer in the
world, and it has a significant impact on both the global economy
and patients’ lives. Tumor metastasis is the cause of death in half
of all patients with CRC (Siegel et al., 2019). Globally, 1,400,000
new cases and 700,000 CRC-related deaths were reported in 2018
(Bray et al., 2018). Colon cancer (CC) accounts for approximately
70% of all CRC (Ahmed, 2020), and CC can be classified into two
distinct diseases: left-sided colon cancer (LCC) and right-sided
colon cancer (RCC). Due to their unique embryonic origins, LCC
and RCC exhibit a variety of clinical characteristics, including
drug sensitivity. Additionally, in our previous study, we
established the genetic distinction between LCC and RCC in
terms of immunotherapy and prognosis (Guo et al., 2021). Based
on difference in LCC and RCC, we want to develop a novel
prognosis system that isn’t effected by tumor site.

Tumorigenesis results from the interplay of multiple factors.
With a better understanding of the etiology and pathogenesis of
CC, as well as treatment strategies such as surgery and
chemoradiotherapy, the survival rate of CC has significantly
improved. Several limitations to single therapy and prognostic
evaluation of CC, however, have contributed to the high
mortality rate associated with advanced CC. At John Hopkins
University, Le et al. (2015) discovered that mCRC patients with
mismatch repair-deficient (dMMR) or microsatellite instability-high
(MSI-H) can benefit from immune checkpoint inhibitors (ICIs).
Thus, researchers have evaluated immunotherapy for CC (Le et al.,
2015). Numerous studies have established that immunotherapy can
benefit a significant number of dMMR/MSI-H patients.
Microsatellite stability (MSS) tumors, in theory, have less
immune cell infiltration and expression of immune-related genes
than MSI tumors. Then, as a result of increased immunocyte
infiltration, MSI tumors express neoantigen more easily, making
themmore sensitive to immunotherapy (Lin et al., 2020). Mismatch
repair (MMR), on the other hand, can recognize and fix mutation
errors, hence preventing themutant protein from leading to a tumor.
Defects inMMR-related genes result in impaired repair function and
the accumulation of numerous altered genes throughout the DNA
synthesis process. Tumor mutation burden (TMB) is enhanced by
DNA impairment, and genome stability is affected to some extent.
Previous research has shown that increased TMB may promote the
translation of mutant proteins and stimulate the generation of
neoantigens via major histocompatibility complex (MHC)
binding (Sha et al., 2020). Meanwhile, elevated TMB can improve
the immunogenicity of MSI tumors, resulting in a better
immunotherapy outcome than before. Previous research also
reports that 97% of MSI-H tumors have TMB ≥10 mutations/
Mb (Chalmers et al., 2017). Additionally, a portion of MSS tumors
contains a high concentration of TMB, which promotes the
enrichment of activated CD4 and CD8 T cells, hence enhancing
the tumor’s response to ICIs (Ghorani et al., 2020). Numerous
studies have demonstrated that TMB can be a reliable predictive
index of antitumor response to ICIs (Jiang et al., 2021).

Progress in genomic technology, which began with the
completion of the Human Genome Project in 2003, has been
accelerated by the advent of transcriptome analysis, biochips

(Kozal et al., 1996), and high-throughput sequencing (Reuter
et al., 2015). Transcriptome sequencing is currently one of the
most widely used high-throughput sequencing technologies, with
next-generation sequencing being the most popular (Mosele
et al., 2020). Following an integrated analysis of sequencing
results, numerous tumor pathological mechanisms have been
defined at the molecular level. These findings have aided the
development of tumor treatment strategies, with the ultimate goal
of translating laboratory findings to the clinic. Currently, the
implementation of single transcriptomic analysis has some
limitations. For example, there are numerous molecular stages
involved in the translation of mRNA to proteins. Certain
aberrations in this process may impair protein stability and
disrupt the relationship between mRNA and protein levels.
The combination of proteomics and transcriptome analysis can
accurately uncover the biological mechanisms and clinical
transformation of tumors. (Ross et al., 2004) established the
concept of quantitative proteomics, a critical component of
proteomics research. It is capable of identifying and quantifying
all proteins expressed from a single genome or a mixture (Graves
and Haystead, 2002). Isotope-based quantitative proteomics has
been widely used to analyze specific tumor biomarkers.
Numerous isotope-based quantitative proteomics technologies
have been developed, including isotope-coded affinity tags
(ICATs) (Gygi et al., 1999) and stable isotope labeling of amino
acids in cell culture (Ong et al., 2002). Compared with these
technologies, isobaric tags for relative and absolute quantification
(iTRAQ), developed in 2004 by AB SCIEX, offer significant
advantages, including better sensitivity and efficiency (Ross et al.,
2004). iTRAQ technology allows for simultaneous labeling of up to
eight samples, which may then be analyzed quantitatively using
liquid chromatography tandem-mass spectrometry (LC-MS/MS).
iTRAQ has been applied to different types of samples, and has
yielded significant results, most notably in cancer research. iTRAQ-
based studies have identified biomarkers in CRC (Bai et al., 2020),
breast cancer (Jézéquel et al., 2019), bladder cancer (Zhang et al.,
2017), and other cancers, establishing a solid foundation for further
research and analysis of tumor pathogenesis using this technology.

In this study, we first used iTRAQ to analyze six paired samples
between the CC and matched samples. After identifying the protein
that differed significantly between tumor and normal samples, we
obtained mRNA expression data from the TCGA and Gene
Expression Omnibus (GEO) databases. To the best of our
knowledge, there was rare research that apply differentially
expressed protein-related RNA (DEP mRNA) to analyze CC.
Surprisingly, there was a significant variation in prognosis and
immunocytes infiltration between different DEP mRNA types.
The DEP mRNA may then play a unique role in the
immunologic microenvironment, influencing whether or not CC
patients benefit from immunotherapy. To assess the characteristics of
DEP mRNA, we extracted intersecting differentially expressed genes
(DEG) from a public database and divided them into three gene
clusters. Following that, the DEGs were used to develop a specific
system referred to as theDEP-related score (DEPRS), whichwas used
to grade them and compare the high- and low- score groups in terms
of prognosis, TMB, MSI status, and immunotherapy sensitivity. This
analysis presents a novel and effective strategy for predicting the
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prognosis of CC and evaluating the therapeutic effects of
immunotherapy, without affect by LCC and RCC. Simultaneously,
we identified important genes based on DEPRS using weighted gene
co-expression network analysis (WGCNA), random forest, and
artificial neural networks to better direct clinical work.

MATERIALS AND METHODS

The workflow of this whole study was offered in the Figure 1.

Collection of Clinical Samples
All human tumor samples and matched adjacent normal samples
were collected from patients diagnosed with CC at the Harbin
Medical University Cancer Hospital in October 2020. Patients
were diagnosed with adenocarcinoma by endoscopy and had not
undergone any preoperative chemotherapy or radiotherapy.
Tissue samples were immediately stored in liquid nitrogen
after resection. This study was approved by the Ethical
Committees of Harbin Medical University Cancer Hospital,
and patients signed an informed consent form.

Colon Cancer Transcriptome Data
Download and Preprocessing
In this study, we downloaded 629CCRNA-sequencing data from two
high-throughput sequencing platforms; 473 cases from TCGA and
156 cases from GEO (GSE103479) (http://www.ncbi.nlm.nih.gov/
geo/). The above data included information about each patient’s
somatic mutation, primary tumor site, clinical stage, and survival
status. The tumorwas characterized as RCCwhen it was located in the
cecum, ascending colon, and hepatic flexure of the colon. The primary

location of the tumor was the splenic flexure of the colon, descending
colon, sigmoid and recto-sigmoid junction and were defined as LCC.
After excluding patients with incomplete survival data, 444 samples
were included in the study; TCGA 322 and GEO 122. We obtained
the normalized matrix files from GEO for the microarray data. For
data from TCGA, we downloaded the RNA-sequencing data (FPKM
value) of gene expression, which was then converted into transcripts
per kilobase million (TPM) values for combined analysis. To adjust
the batch effect caused by non-biotechnology deviation, the “Combat”
function of the R package “SVA” was used.

Unsupervised Clustering Based on
Differentially Expressed Protein-Related
mRNA
iTRAQwas used to examine six pairs of left- and right- colon cancer
and matched normal samples, and 243 DEPs (|log2foldchange| >
0.5, p-adj < 0.05) were identified (Detail iTRAQmethod and protein
information in Supplementary Data). Then, DEPs related mRNA
expression levels were extracted from the integrated data set. The
DEP mRNA was used to distinguish between tumor types. The
hierarchical agglomerative cluster was used to cluster all tumor
samples in the R package “ConsensusClusterPlus” (Wilkerson and
Hayes, 2010). Cluster count and membership were identified
through unsupervised analysis using stability evidence. To ensure
the cluster’s stability, the analysis was repeated 1,000 times.

Gene Set Variation Analysis
To compare the biological processes of DEPmRNA in distinct tumor
types, we utilized the R package “GSVA” to perform enrichment
difference analysis. GSVA uses a nonparametric and unsupervised
method to estimate the variation pathway and enrichment of

FIGURE 1 | Workflow of whole analysis.
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biological processes across several expression datasets. Following that,
we downloadGeneOntology (GO) andKyoto Encyclopedia ofGenes
and Genomes (KEGG)-related databases from the MSigDB database
(http://softwar.broadinstiture.org/gsea/msigdb/) to finish the GSVA
analysis. The heat map displays the significantly distinct pathway in
the analysis results (p-adj < 0.05).

Evaluation and Difference of Immune
Infiltration in Different Types of DEP mRNA
To estimate immunocyte infiltration of samples, the R package
“GSVA” was used to analyze single-sample gene-set enrichment
analysis (ssGSEA). We acquired information on immune cell
marker gene expression from Charoentong’s Charoentong et al.,
2017 research and calculated the enrichment coefficients, which
showed the relative abundance of immune cells in samples.
Finally, we compared immune infiltration patterns across
various DEP mRNA clusters.

Identification of Differentially Expressed
Genes Between Differentially Expressed
Proteins mRNA Clusters
R package “Limma” was used to identify DEGs (p-adj < 0.01) in
different DEP mRNA clusters (Ritchie et al., 2015). Following
that, numerous sets of DEGs were obtained, and the intersection
was used to extract their expression in all samples for
subsequence processing. The intersecting DEGs were analyzed
using the R package “clusterProfiler” (Yu et al., 2012), which
included GO and KEGG functional annotations analysis.

Construction of Differentially Expressed
Proteins Related Scores
We developed an algorithm and defined it as DEPRS, for
quantification of DEP mRNA-related types in LCC and RCC.
The entire process was as follows: Firstly, the intersecting DEGs

FIGURE 2 | (A) Correlation among DEP mRNA in CC. The circle size represents the effect of each regulator on the prognosis. The range of values calculated by
Log-rank test was p < 0.001, p < 0.01, p < 0.05, and p < 0.1, respectively. The green dots in the circle represent favorable prognostic factors; Purple dots in the circle
represent prognostic risk factors. The lines linking regulators indicate interactions, and their thickness shows correlation strength between genes. Negative correlation is
marked in blue and positive correlation in red. (B)Consensusmatrixes of all CC samples for appropriate k value (k = 3), displaying the clustering stability using 1,000
iterations of hierarchical clustering. All samples were clustered into three subtypes. (C) Survival analyses for the three DEP mRNA cluster based on 1,051 patients with
CC from GEO cohorts including 96 cases in cluster-A, 98 cases in cluster-B, and 55 cases in cluster-C. Kaplan-Meier curves with Log-rank p-value = 0.031 showing
significant survival difference among the three DEP mRNA patterns. The DEP mRNA cluster A had significantly better overall survival than the other two clusters. (D) A
heat map showing the unsupervised clustering of DEP mRNA in all CC samples. Columns represent samples. A heatmap visualizing the clinical parameters. Red
represents activation and blue represents inhibition. CC cohorts were used as sample annotations. (E–G) Results of GSVA enrichment analysis showing different tumor
types in the three DEPmRNA patterns. Red represents activation and blue represents inhibition. (E)DEPmRNA cluster A vs DEPmRNA cluster B; (F)DEPmRNA cluster
A vs DEP mRNA cluster C; (G) DEP mRNA cluster B vs DEP mRNA cluster C.
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were subjected to univariate Cox proportional hazard regression
analysis (COX) using the R package “glmnet” (Friedman et al.,
2010). The gene that had a significant effect on prognosis was
standardized. Based on these DEP mRNA-associated DEGs, the
unsupervised clustering method was used to cluster all patients
for further analysis. Meanwhile, we performed principal
component analysis (PCA) to identify the key components of
these genes to construct a DEP mRNA-related gene signature.
Principal component 1 and principal component 2 were chosen
as the signature scores. Finally, we used an approach comparable
to the gene expression level index to calculate each patients’
DEPRS: DEPRS= ∑PCA1i+∑PCA2i (i is the expression of DEP
mRNA-related DEGs). The best cut-off value for dividing high
and low DEPRS groups for prognosis was obtained using the R
package “maxstat” (Laska et al., 2012).

Prediction of Immunotherapy Sensitivities
Immunotherapy sensitivities were estimated in the high and low
DEPRS groups from two perspectives: immune checkpoint-related
genes immunophenoscores (IPS) and open-label immunotherapy
cohort. Various immune-related genes, including effector cells,
immune suppressor cells, MHC molecules, and
immunoregulatory cytokines were used to determine
immunogenicity. Machine-learning algorithms can accurately
estimate and quantify immunogenicity. The IPS of CC in TCGA
was downloaded from the TCIA database (https://tcia.at/). Then, we
compared the immunophenoscore differences between high and low
DEPRS groups in immunotherapy, to predict immunotherapy
sensitivities. Simultaneously, a thorough search for gene
expression profiles in publicly available immunotherapy cohort of
metastatic urothelial tumors (IMvigor210: http://research-pub.gene.

FIGURE 3 | (A) PCA for the transcriptome profiles of three DEP mRNA clusters showing significant differences in transcriptome between different clusters. (B) The
abundance of each TME infiltrating cell in the three DEP mRNA clusters. The upper and lower ends of the boxes represent interquartile range of values. The lines in the
boxes represent the median value, and the colored dots represent outliers. The asterisks represent the statistical p-value (*p < 0.05; **p < 0.01; ***p < 0.001). (C) The
venn diagram showing the overlapping genes between the three clusters. (D) GO enrichment analysis of the overlapping gene signatures. (E) KEGG enrichment
analysis of the overlapping gene signatures.
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com/IMvigor210CoreBiologies) Mariathasan et al., 2018 was
performed. Data were pretreated using the R package
“IMvigor210CireBiologies.” The RNA-SEQ data was filtered and
normalized using the R package “edgeR,” and transformed using
voom in the R package “limma.” In addition, we downloaded and
organized prognostic status and therapeutic effect data. Based on the
above computation, the DEPRS for each sample in this cohort was
calculated and divided into high and low score groups to
compare the difference in therapeutic response between the two
groups.

Identification of Key Genes
To screen and identify DEP-related prognostic key genes in LCC
and RCC, two methods were used: weighted gene co-expression
network analysis (WGCNA), random forest, and artificial neural
network. First, we used the combination of DEP mRNA and
DEPRS to run the WGCNA. To transform the adjacency matrix
(AM) to a topological overlap matrix with DEGs, the appropriate
power index was selected. The higher the value of the mean
connectivity, the more the network conforms to the scale-free

characteristics. According to the relationship between soft
threshold (power) and mean connectivity, the minimum index
when the R2 of scale-free network reaches 0.8 was taken as the
appropriate index. Then, a correlation between gene consensus
modules and DEPRS was established, and gene significance (GS)
was defined as the mediated p-value of each gene (GS = lgP) in a
linear regression between gene expression and the scores.
Subsequently, GS >0.6 genes in the module with the highest
positive correlation coefficient with DEPRS were screened.
Following that, the random Forest software package was used
to classify all DEP mRNA. The parameter mtry (Optimal variable
number of binary trees in the nodes) was set to 6, and the optimal
number of trees included in the random forest was 49. After
constructing the random forest module, the dimensional
importance value (IV) was determined using the module’s
decreasing accuracy method (Gini coefficient method). Genes
with a length of more than two were treated as special genes to
construct subsequent modules. Unsupervised hierarchical cluster
analysis was performed on these specific genes and a heat map
was generated to demonstrate their classification effect. Following

FIGURE 4 | (A) Consensus matrixes of TCGA-COAD cohorts for appropriate k value (k = 3), displaying the clustering stability using 1,000 iterations of hierarchical
clustering. TCGA samples were clustered into three subtypes based on the DEGs among three DEP mRNA clusters. (B) Kaplan–Meier curves showing the overall
survival across the gene clusters. The log rank test showed an overall p = 0.040. (C) A heat map showing the expression of DEGs in different gene clusters. Heat map
colors indicate relative DEGs expression levels. (D) Kaplan–Meier curves showing the overall survival in high-DEPRS and low-DEPRS groups. The log rank test
showed an overall p < 0.001. (E) The Sankey diagram displaying the distribution of patients with primary tumor sites, DEP mRNA clusters, gene clusters, and DEPRS.
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that, we classified these genes into high and low expression
groups based on their median expression and categorized
them as gene scores (low expression as 0, high expression as
1). On significant variables, the R package “Neuralnet” was used
to construct an artificial neural network model. The model’s
hidden layer parameter was set to 5, and the outcomes of weight
score multiplied by gene score were used to construct a
classification model for HDEPRSG and LDEPRSG. The R
package “pROC” was used to create the receiver operating
characteristic curve (ROC), as well as calculate the area under
the curve to confirm classification performance. Finally, the
specific gene was obtained from an intersection of the
particular gene and the screened gene. To repeatedly validate
the important gene at the protein level, we downloaded the
proteomics cohort in the TCGA COAD sample (including 29
normal samples and 64 tumor samples) from The Clinical
Proteomic Tumor Analysis Consortium (CPTAC) (https://
proteomics.cancer.gov/programs/cptac). Additionally, we
investigated the prognostic significance and expression of
key genes.

Statistical Analyses
All the statistical analyses were performed using R-version 4.0.5.
The Wilcoxon test and Kruskal-Wallis test were used to compare
two groups, and more than two groups respectively. The
prognosis curve was constructed using the Kaplan-Meier
plotter, and the log-rank test was used to determine whether
there was a statistically significant difference in prognosis.
Spearman correlation coefficient was used to measure the
relationship between variables. The mutation gene status in
different groups was demonstrated using the R package
“maftool” (Mayakonda et al., 2018). p < 0.05 was considered
statistically significant.

RESULTS

Differentially Expressed Proteins mRNA
Landscape in Colon Cancer
The CC samples and matched normal samples were subjected to
iTRAQ analysis. Then, 243 DEPs (|log2foldchange| > 0.5, p-adj <

FIGURE 5 | (A) Differences in DEPSR among the three DEP mRNA clusters in TCGA cohort. Statistical comparisons were made using Kruskal-Wallis test (p <
0.001). (B) Differences in DEPSR among three gene clusters in TCGA cohort. Statistical comparisons were made using Kruskal-Wallis test (p < 0.001). (C) The
scatterplots show positive correlation between DEPRS and TMB. The Spearman correlation between DEPRS and TMBwas 0.18 (p = 0.0025). (D) Kaplan–Meier curves
showing the overall survival based on TMB and DEPRS. Log rank test, p < 0.001. (E) Correlations between DEPRS and the universal landscape of immune cell
interaction in TME as determined using Spearman analysis. Negative correlation is shown in blue and positive correlation is shown in red.
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0.05) were identified and the corresponding mRNA data were
extracted from the integrated dataset. The network was used to
depict the comprehensive DEP mRNA landscape. Univariate
COX analysis was used to investigate all of the DEP mRNAs,
and the interaction between themwas demonstrated (Figure 2A).
As shown in the figure, there was an explicit negative association
between the favorable factor and risk factor. Next, Following that,
all CC samples were clustered using the R package
“ConsensusClusterPlus” based on 243 DEP mRNA, and 3
clusters were identified (Figure 2B).

A Kaplan-Meier (K-M) curve was used to compare the prognosis
of various DEP mRNA clusters. We found that DEP mRNA cluster
B had a significantly worse prognosis than the other two clusters (p =
0.031) (Figure 2C). Then, DEP mRNA expression in the three
clusters was shown using a heat map, and the expression of the 3
clusters was significantly different (Figure 2D). The KEGG-related
GSVA was used to investigate the biological function of these DEP
mRNA clusters. When cluster A was compared to cluster B, we
observed that DEP mRNA cluster B was significantly more
abundant in carcinogenic activation pathways, such as small cell
lung cancer, renal cell carcinoma, adherens junction, and TGF-β
pathway (Figure 2E). Then, GSVA analysis between clusters A and
C revealed that cluster A enriched for a variety of pathways not

previously associated with it, including ECM receptor interaction,
chemokine pathway, and calcium signaling pathway (Figure 2F). In
comparison to clustering C, DEP mRNA cluster B enriched for a
variety of carcinogenic activation pathways including the MAPK
signaling pathway, focal adhesion, etc. (Figure 2G). As a result of the
aforementioned finding, DEP mRNA cluster B was found to have
theworst prognosis among three clusters and an enrichment analysis
with numerous carcinogenic pathways.

Differentially Expressed Genes Selected
from Differentially Expressed Proteins
mRNA Clusters
The PAC clustering method was used to confirm the DEP mRNA
clustering result previously obtained. As a result of the PCA
grouping, three distinct DEP mRNA groups were identified,
indicating the consistency and accuracy of the test (Figure 3A).
The DEP mRNA cluster B showed a poor prognosis and was
associated with the cancer signaling pathway. The ssGSEA was
used to evaluate each sample to determine the link between the three
clusters and immune infiltration. Surprisingly, an investigation of
immunological infiltration revealed that DEP mRNA cluster B was
significantly abundant in immune cells such as MDSC, activated

FIGURE 6 | (A) The profile of DEPSR among different MSI status. The Kruskal-Wallis test was adopted to make statistical comparisons between different MSI
status (p < 0.001). (B) Proportion of patients with different MSI status in high DEPES and low DEPRS groups. The proportion of MSS and MSI-L patients in the low
DEPRS group was significantly lower than that in the high DEPRS (p < 0.05). The groups were compared using the Kruskal-Wallis test. (C,D) Awaterfall diagram showing
the top 20 driver genes with the highest mutation frequency in low DEPRS (C) and high DEPRS (D) groups.
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B cell, activated CD4 T cell, and natural killer cell (Figure 3B).
However, when compared to clusters A and C, cluster B showed no
advantage in terms of survival time. To further investigate the
differences in the immunological microenvironment of DEP
mRNA, the R package “Limma” was used to identify DEG
between different DEP mRNA clusters. There were 1,577
overlapping DEGs (Figure 3C). Additionally, using the R
package “clusterProfiler” the DEGs were subjected to GO and
KEGG analysis. In GO enrichment, the overlapped DEGs were
enriched in immune response (Figure 3D), while in KEGG they
were enriched in inflammation-related pathways and carcinogenic
pathways (Figure 3E).

Construction of Differentially Expressed
Proteins Related Score
To conduct in-depth research on the various expression types of
DEP that contribute to the differences in the immune
microenvironment, the TCGA-COAD sample was re-divided
into three gene clusters based on overlapping DEGs
(Figure 4A). To determine the survival difference between the
three gene clusters, a prognostic analysis was performed.
Although the results presented on the survival curve weren’t
perfect, but the novel gene clusters were shown the significant
difference of prognosis among different clusters (p = 0.04)
(Figure 4B). Following that, the DEGs expression in distinct
gene clusters and DEP mRNA clusters was visualized using the
heat map (Figure 4C). Taking into account the complexity and
variability of individual differential protein expression patterns
and the subsequent identification of important genes, we
developed a novel algorithm called DEPRS to quantify the
DEP mRNA expression in individual patients. The optimal
cut-off value was determined using the R package “maxstat,”

and patients were divided into high DEPRS and low DEPRS
groups (HDEPRSG and LDEPRSG). As shown in the prognostic
analysis, LDEPRSG had a better prognosis than HDEPRSG (p <
0.001) (Figure 4D). Following that, a Sankey diagram illustrating
the distribution of patients with tumor sites, DEP mRNA cluster,
gene clusters, and DEPRS was displayed (Figure 4E). As
indicated in Figure 4E, CC was divided into LCC and RCC,
which were further divided into three DEP mRNA clusters.
Following that, the DEP mRNA clusters were stratified into
three gene clusters. Surprisingly, samples in the DEP mRNA
cluster B and gene cluster B were classified as having a high
DEPRS score, indicating a poor prognosis. A portion of DEP
mRNA cluster B occupied a section of gene cluster B, but partial
samples in DEP mRNA cluster A were retained in gene cluster A
distributed in low DEPRS, which was associated with a better
prognosis. It was indirectly demonstrated that multiple clustering
modes produced consistent results. Following the above result,
the difference between LCC and RCC wasn’t distinct that means
the DEPRS model own the special advantage to ignore tumor site.

Differentially Expressed Proteins Related
Score and Correlation Analysis of Somatic
Mutation
To further illustrate the relationship between DEPRS and the
preceding two cluster modes, we examined the correlation
between the obtained clusters and DEPRS. There was a
significant difference in DEPRS between various DEP mRNA
clusters (Figure 5A). The DEP mRNA cluster B had had a much
higher median DEPRES value than the other two clusters. Then,
when compared to other clusters, gene cluster C had significantly
increased DEPRS (Figure 5B). Because the DEG was shown to be
enriched in immune-related pathways, we examined the correlation

FIGURE 7 | (A–F) Comparison of immunosuppressive checkpoints expression between high DEPRS expression and low DEPRS expression groups. The
expression of PD-1 (A), PDCD1LG2 (B), CD274 (C), CTLA4 (D), HAVCR2 (E) and LAG3 (F) was higher in high DEPRS than in the low DEPRS expression group (all p <
0.05). Statistical comparisons were done using the Wilcoxon test. (G) Proportion of patients with different treatment outcomes in high DEPRS and low DEPRS. The
proportion of CR/PR patients in high DEPRS was lower than that in low DEPRS (21 vs 33%). (H) Comparison of DEPRS between different treatment outcome
groups (p = 0.071). (I) The relationship between IPS and DEPRS groups in patients (p = 0.0044).
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between TMB and DEPES. There was a significant correlation
between TMB and DEPRS using association analysis (Coefficient:
R = 0.018, p = 0.0025) (Figure 5C). With an increase in DEPRS, the
distribution of gene clusters followed a significant rule. TMB showed
an increasing tendency as DEPRS increased, indicating that patients
with high TMB have a poor prognosis. According to the preceding
data, gene cluster A had a low DEPRS and a low TMB, indicating a
better prognosis. Additionally, we examined the effect of TMB and
DEPRS integration on prognosis. All samples were stratified into
high- and low- TMB subgroups. K-M curves were used to analyze
the combined effect of TMB and DEPRS on prognosis. Within the
same DEPRS status, the group with a high TMB had a worse
outcome than the group with a low TMB. Nonetheless, TMB status
did not affect the DEPRS predictive ability of prognosis, such that
patients with high DEPRS invariably had a poor prognosis
(Figure 5D). We also created a correlation map to visualize the
DEPRS and immune cell interaction in TME, owing to the
relationship between TMB and DEPRS. It is demonstrated
unequivocally that the characteristics of DEPRS were highly
correlated with high levels of immunocyte infiltration
(Figure 5E). We aimed to determine the association between

MSI status and DEPRS because it was critical for
immunotherapy sensitivity. MSI-H differed significantly from
MSS and MSI-L in this study, indicating that MSI-H was
associated with a high DEPRS (Figure 6A). Consistent with this
finding, 23% ofMSI-H patients had high DEPRS compared with 6%
with low DEPRS (Figure 6B). In addition, we compared the
differences in somatic variation driver genes between individuals
with high and low DEPRS. The top 20 driver genes exhibiting the
highest mutation frequency were selected (Figures 6C,D). The
mutation rate of the majority of driver genes was higher in the
HDEPRSG than in the LDEPRSG.

Assessment of Differentially Expressed
Proteins Related Score in Predicting
Immunotherapy Efficacy
The purpose of this study was to compare immunotherapy
sensitivity parameters in two DEPRS groups. For immune
checkpoints, PD-1, PDCD1LG2, CD274, CTLA4, HAVCR2, and
LAG3 were significantly expressed in HDEPRSG than LDEPRSG
(p < 0.05) (Figures 7A–F). Therefore, the parameters indicated that

FIGURE 8 | (A) Relationship between the error rate and number of classification trees. (B)Gini coefficient method used to screen specific genes (IV >2). There were
HTRA3, S100A8, NNMT, FBLN2. (C) Results of neural network visualization. (D) A heat map showing differences among the four genes between high DEPRS and low
DEPES. Red color indicates positive expression and blue indicates negative expression. (E) The predictive value of the artificial neural network model based on four key
genes in immunotherapy efficacy (AUC, 0.886, 95% CI: 0.854–0.914).
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different groups responded differently to immunotherapy.
Additionally, we demonstrated the stability of DEPRS as a
predictor of immunotherapeutic efficacy in a public
immunotherapy cohort. The relationship between DEPRS and
treatment outcome was shown in Figure 7G. The results showed
that the stable disease (SD)/progression disease (PD) proportion was
significantly higher in the highDEPRS than in the lowDEPRS group
(79 vs 67%) and that SD/PD patients had a higher DEPRS than the
complete response (CR)/partial response (PR) group (p =0.071)
(Figure 7H). On the other hand, the relationship between IPS and
DEPRS was used to estimate the predictive potential of DEPRS. The
IPS, which measures immunogenicity, was a significant difference
between DEPRS groups, with the IPS in the high DEPRS group
being lower than the IPS in the low DEPRS (p = 0.0044) (Figure 7I).
Based on these findings, we hypothesized that DEPRS may possess
the ability to predict prognosis and immunotherapy efficacy.

Identification of Key Genes in Differentially
Expressed Proteins Related Score
The random forest module was constructed to identify key genes
based on DEPRS, and Figure 8A depicts the relationship between

reference model error and the number of decision trees (Figure 8A).
A total of 49 decision trees were selected since the error rate was the
lowest and the most relatively stable. The IV > 2 genes (HTRA3,
S100A8, NNMT, and FBLN2) were chosen for further analysis using
the Gini coefficient method (Figure 8B). Unsupervised hierarchical
cluster analysis was used to study these specific genes, and the
resulting heat map was sued to illustrate the relationship between
their expression and DEPRS status (Figure 8C). The expression of
these four genes was significantly increased in the high DEPRS
group. Next, these four genes were used to construct a neural
network prediction model as illustrated in Figure 8D. The ROC
curve was used to determine the sensitivity of the module, and the
AUC value was 0.886 (Figure 8E). The results suggested that the
neural network prediction model based on four specific key genes
produced satisfactory results and that HDEPRSG was more
accurately classified than LDEPRSG. On the other hand, a gene
co-expression network based on DEPRS was constructed to identify
the key DEP mRNA. By selecting number 5 as the appropriate soft
threshold (Figure 9A), a scale-free co-expression network was
constructed (Figure 9B), yielding six modules. The brown
module had the highest correlation with DEPRA (coefficient =
0.83, p < 0.001) (Figure 9C). After interacting with the four

FIGURE 9 | (A) To achieve a scale-free co-expression network, the power index = 5 was chosen as the appropriate soft threshold. (B) The branches of the
dendrogram correspond to six different gene modules. (C) The correlation between gene modules and DEPRS. Each cell contains corresponding correlation coefficient
and p-value. (D) Significant positive correlation betweenmodule membership and gene significance (Correlation coefficient = 0.86, p < 0.001). (E,F)Kaplan-Meier curves
showing the overall survival of the two key genes FBLN2 (p = 0.032) (E) and HTRA3 (p = 0.032) (F). Red represents high expression, and blue represents low
expression. (G) The difference in OS between high and low FBLN2 expression groups (p < 0.001). (H) The difference in FBLN2 expression between cancer tissues and
normal tissues at protein level.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org April 2022 | Volume 10 | Article 86261911

Xia et al. Novel Quantification System for Immunotherapy

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


special genes identified by the neural network, two key genesHTRA3
and FBLN2 were obtained. The K-M curves were used to
demonstrate that the high expression of two genes was associated
with a poor prognosis (Figures 9E,F). At the protein level, high
FBLN2 expression was associated with a poor prognosis (p < 0.001)
(Figure 9G), and FBLN2 expression was significantly higher in
tumor samples than in normal samples (p < 0.001) (Figure 9H).

DISCUSSION

Numerous studies have analyzed single transcriptome, resulting in a
lack of stability for estimating prognosis and immunotherapy. In
comparison, multi-omics integration research has several distinct
advantages in the field of tumor research. To the best of our
knowledge, integration of proteomics and transcriptomics
research is rare in CC. In this study, iTRAQ analysis was used to
identify DEPs, and then extract DEP mRNA expression from a
publicly available database. The construction of the DEP mRNA
clusters and gene clusters confirmed that various clusters had
significant differences. Then, DEPRS were further established to
confirm the stability of prognosis prediction and immunotherapy
sensitivity for DEP mRNA-related DEGs and its evaluation ability
didn’t be affected by LCC and RCC. Finally, key genes that may offer
potential clinical value for immunotherapy were identified.

Currently, immunotherapy is considered a novel treatment for
cancer. Excepted PD-1, more and more immunotherapy markers
were discovered and TMB is an emerging one. TMB refers to the total
number of somaticmutations in the tumor genome that it can be used
to show the ability of nonsynonymous mutation. It also indirectly
reflect the function of tumor producing neoantigen. High levels of
neoantigen can easily be recognized by the autoimmune system, and
lead to stimulation of CD8+ T cells to trigger immune response
(Schumacher and Schreiber, 2015). Studies have shown that tumors
with high TMB have high number of natural killer (NK) cells and
T cells in their tumor microenvironment which indirectly show
patients may receive good efficacy of immunotherapy. However,
using TMB alone to evaluate the curative effect of immunotherapy
is not highly effective. Therefore, researchers have attempted to find
other indicators that can be integratedwithTMB for the assessment of
immunotherapy efficacy. In clear cell renal cell carcinoma, TNFSF14
was highly expressed in the high-TMB group, and the copy number of
TNFSF14 was significantly correlated with classical immunocyte
infiltration (Xu et al., 2020). A previous study showed that the
mutation of ZFHX3 was significantly associated with high TMB
and neoantigen load. In addition, the mutation of ZFHX3 showed a
strong relationship with high-level T cell infiltration and immune-
related genes (Zhang et al., 2021). In cutaneousmelanoma, high TMB
reflects good prognosis and low grade pathology, increased
macrophage M1 and M2, and decreased ratio of Treg cell to
memory B cells (Kang et al., 2020). In head and neck squamous
cell carcinoma, low TMB level indicates better prognosis than high
TMB level, and high immunocyte infiltration (Zhang et al., 2020). In a
clinical trial in which patients with advanced melanoma received
ipilimumab or tremilimumab treatment, patients in high TMB group
(>100 nonsynonymous codingmutations) had longer overall survival
(OS) (Snyder et al., 2014). A similar finding was obtained in a Chinese

clinical trial on advanced gastric cancer. They found that TMB-H
patients showed strong response to toripalimab, and patients who
showed double positive TMB-H and PD-had better immune response
and improved survival rate (Wang et al., 2019). The integration of
TMB and a single gene may be an effective strategy for evaluating
immune response to immunotherapy. In our study, we integrated
integration proteome and transcriptome data to develop DERPS
which can combined with TMB to facilitate evaluation of the
prognosis of patients. When patients kept the same level of
DEPRS, the high TMB level may remind patients own a bad
outcome (Figure 5D).

As shown, immunotherapy effectively controlled MSI-H tumors,
and TMB served as an important indicator of immunotherapy
efficacy in MSI-H patients. The best cut-off point range of TMB
was 37–41 mutations/Mb in MSI-H CRC patients (Schrock et al.,
2019). TMB not only can be used as an auxiliary reference index for
MSI tumor response to immunotherapy, but also as an indicator of
MSI status. Study indicates that tumors lacking the mismatch repair
protein duo MLH1/PMS2 always have a lower TMB than those
tumor lacking a different protein heterodimer, MLH2/MSH6. Then,
even tumor loss the same mismatch repair protein, the different
origin of tumor may affect the TMB level (Salem et al., 2020). In our
study, MSI-H tumors showed high DEPRS expression (Figures
6A,B), and expression of PD-1, CD174, CTLA4 and other parameter
also shown high level in high DEPRS (Figures 7A–F), but tumors
with high DEPRS expression had poor response to immunotherapy
(Figure 7G). Borrowing this novel score system, we innovatively
combined the two parameters to estimate response to
immunotherapy. Previous studies mainly emphasize the
heterogeneity between LCC and RCC, but the score system own
its stability to assess prognosis and efficacy of immunotherapy which
didn’t affected by tumor site (Figure 4E). On one hand, further
studies are needed to explore the detailed mechanism of TMB and
MSI status in CC. On the other hand, our next step try to look for
similar gene characters in significant different LCC and RCC, in
order to offer accurate evaluation for patients.

To identify the key genes influencing the prognosis and response
to immunotherapy,multiple algorithmswere applied to screen genes
based on DEPRS and DEP mRNA. Two key genes, Fibulin 2
(FBLN2) and HtrA serine peptidase 3 (HTRA3) were identified.
HTRA3 was found to be a trimeric protein belonging to the homo-
oligomeric serine proteases family. Functionally, HTRA3 was found
to play an important role in mitochondrial homeostasis, cell death,
and signal transduction (Clausen et al., 2002). A previous study
reported that HTRA3 is a pro-apoptotic protein which also
suppresses tumor formation. For example, in non-small cell lung
cancer, over-expression of HTRA3 inhibited TGF-β1 to suppress
tumor metastasis (Zhao et al., 2019). However, persistent expression
ofHTRA3 results in poor prognosis of CRC. Indeed, high expression
of HTRA3 in CRC tumor stroma was associated with adverse
outcomes such as high tumor budding (Forse et al., 2017).
Evidence from studies has shown that high expression of HTRA3
was correlated with poor prognosis in oral squamous cell carcinoma
(Moriya et al., 2015). In this study, we identified another key gene,
FBLN2. This gene encodes fibulins which is a protein belonging to
the extracellular matrix (ECM) glycoprotein family. All FBLN family
protein contain epidermal growth factor (EGF)-like domains and a
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C-terminal structure. Bases on this protein structure, they interact
with other proteins to execute their functions (Gallagher et al., 2005).
Many studies have shown that FBLN2 can bind tomany ligands and
function as a scaffold protein in the ECM (Yi et al., 2007). Given that
FBLN2 functions in the ECM, downregulation of FBLN2 can
promote the migration and invasion of tumor cells thereby
causing damage to the basement membrane (Klingen et al.,
2021). Furthermore, being a secretory metalloproteinase,
ADAMTS-12 participates in tissue remodeling and cell migration.
It interacts with FBLN2 to suppress the invasiveness of breast cancer
cells. Interestingly, ADAMTS-12 was found to promote tumor
development in breast cancer cells lacking FBLN2 by regulating
metalloproteinase (Fontanil et al., 2014). In contrast, another study
found that FBLN2 promoted tumor growth by interacting with
activated β integrin receptor in CRC (Vaes et al., 2021). Consistent
with the above finding, high expression level of these two genes
(FBLN2 andHTRA3) was linked to worse prognosis in colon cancer
(Figures 9E,F), and FBLN2 was found to be significantly
differentially expressed in CC (Figure 9H). Further research is
needed to clarify their roles during the development of CC.

In summary, this study integrated omics tools ranging from
proteomics to transcriptomics to estimate the prognosis and
response to immunotherapy. HART3 and FBLN2 were found
to be the key genes that can offer predictive role for
immunotherapy in CC. Our study provides a reliable method
for establishing a quantitative model that can be adopted to
explore the pathogenesis of CC. This model may offer its own
value to help clinical practice and not affected by tumor site.
Then, the application of the model in clinical practice requires
further investigation.
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