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Abstract: Cardiac metabolism represents a crucial and essential connecting bridge between the
healthy and diseased heart. The cardiac muscle, which may be considered an omnivore organ with
regard to the energy substrate utilization, under physiological conditions mainly draws energy
by fatty acids oxidation. Within cardiomyocytes and their mitochondria, through well-concerted
enzymatic reactions, substrates converge on the production of ATP, the basic chemical energy that
cardiac muscle converts into mechanical energy, i.e., contraction. When a perturbation of homeostasis
occurs, such as an ischemic event, the heart is forced to switch its fatty acid-based metabolism to
the carbohydrate utilization as a protective mechanism that allows the maintenance of its key role
within the whole organism. Consequently, the flexibility of the cardiac metabolic networks deeply
influences the ability of the heart to respond, by adapting to pathophysiological changes. The aim of
the present review is to summarize the main metabolic changes detectable in the heart under acute
and chronic cardiac pathologies, analyzing possible therapeutic targets to be used. On this basis,
cardiometabolism can be described as a crucial mechanism in keeping the physiological structure and
function of the heart; furthermore, it can be considered a promising goal for future pharmacological
agents able to appropriately modulate the rate-limiting steps of heart metabolic pathways.

Keywords: cardiometabolism; cardiac physiology; heart failure; ischemia; therapeutic targets

1. Introduction

For the first time in 1878, with his lecture entitled “On the nutrition of the frog
heart” [1], the physiologist Hugo Kronecker introduced to the scientific scenario the concept
of cardiac metabolism. During the last century, extensive evidence has contributed to
define metabolism as an important milestone of cardiac physiology correlating structure to
function. Indeed, the heart works as a chemo-mechanical transducer able to use oxygen
and metabolic substrates to sustain its own contractile activity. Unlike the anoxia- and
hypoxia-tolerant hearts, such as frog and turtle hearts, which have large glycogen stores,
many mammalian hearts, including the human heart, can rely only on a limited storage
of endogenous content of high-energy phosphate that would be sufficient to support
heart function only for a very short time. This highlights the importance of a finely
regulated metabolism for the maintenance of cardiac homeostasis [2]. Under physiological
conditions, the heart can be considered an omnivore organ due to the wide range of energy-
substrates it uses [3] (Figure 1). Generally, the used substrate choice depends on the plasma
levels, on the specific transporters localized on the cardiomyocyte membrane, and on
the activity of crucial enzymes/modulators that control the energetic pathways [1,4,5].
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However, regardless of the initial substrate, each molecule converges to acetyl-coenzyme
A and to the generation of NADH and FADH2 (reducing equivalents). This contributes
to the electron transport chain, creating the proton gradient necessary for the activity of
F0F1-ATP/synthase and for the production of adenosine triphosphate (ATP) [3]. Of note,
cardiac metabolism is also importantly regulated by the levels of intermediary metabolites
belonging to the pathways [3].

Figure 1. Metabolic substrate used by the healthy heart. BCAAs, branched-chain amino acids.

The myocardial metabolic activity takes place within the cardiomyocytes. Here, a
very large number of mitochondria carry out the oxidative phosphorylation of adenosine
diphosphate (ADP) to approximately generate the 95% of ATP used as cardiac energy
source [2]. This source is maximized through highly integrated enzyme pathways [6],
which allow a quick and well-organized response regulated at different levels [1]. ATP
in the heart can be produced from different energetic substrates, such as carbohydrates,
fatty acids, amino acids and ketone bodies (Figure 1) [3]. The choice of the used substrates
strictly depends on cardiac work: an acute rise in cardiac workload predominantly induces
the mobilization of carbohydrates, while under normal conditions, the heart mainly draws
from fats [7]. Moreover, cardiac metabolism also depends on complex regulatory pathways,
including allosteric, transcriptional and post-transcriptional modulations [2,8–10].

Presently, it is widely recognized that cardiac metabolism deeply influences heart
physiopathology, whose balance, under different stimuli, strictly depends on the flexi-
bility of the metabolic networks. Moreover, the cardiac muscle itself is able, particularly
in the presence of chronic diseases, to remodel its metabolism in order to preserve its
function. In this perspective, the present review aims to provide an overview regarding the
metabolic changes detectable in the heart under pathological conditions, focusing on the
main observed alterations and at the same time underlining possible therapeutic strategies.

To better deepen the topic, a brief description of the most important cardiac metabolic
pathways is mandatory.

2. The Metabolism of the Healthy Heart
2.1. Cardio Metabolism of Glucose

The first step of carbohydrate metabolism consists of glucose uptake by cardiomy-
ocytes via the action of transporters (Glucose Transporters family, GLUTs). These proteins
generally respond to the Michaelis–Menten kinetics [11] and represent a rate limiting
step for the substrate utilization in the myocardium [12]. The heart expresses mostly
the insulin-independent glucose transporter isoform (GLUT-1), and the insulin-sensitive
isoform GLUT-4 [13].

Within the cardiac cells, glucose is then converted by hexokinase, a rate limiting
enzyme for glycolysis [14], into glucose-6-phosphate that can undergo one of the following
pathways [1] (Figure 2).
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Figure 2. Cardiometabolism of glucose. GLUT 1/4: Glucose Transporter; HBP: Hexosamine biosynthetic
pathway; UDP-GlcNAc: uridine diphosphate-N-acetylglucosamine; PPP: Pentose phosphate pathway.

Synthesis of glycogen represents the main cell deposit form for glucose. The real
metabolic role of glycogen within the cardiac muscle is still debated. It has been demon-
strated that glycogen, together with glycogen phosphorylase, associates with the sarcoplas-
mic reticulum [15] and with the contractile function [16]. Of note, the fetal heart is extremely
rich in glycogen, presumably to provide energy during the hypoxic phase of birth [17].
Glycogen synthesis is regulated by both covalent modification and allosteric regulators [1].

Glycolytic pathway represents the way in which glucose provides a small amount
of ATP in the heart. The rate-limiting step of the cycle is the enzyme phospho-fructokinase-1
(PFK-1), characterized by an intricate allosteric regulation [18–20]. Fructose 1,6-bisphosphate,
adenosine monophosphate (AMP), and fructose 2,6-bisphosphate are positive modulators,
while protons, citrate, and ATP are negative allosteric modulators [18,19,21]. If PFK is
highly activated, as in the case of increased cardiac work or ischemia [22,23], glycolysis is
also regulated at the level of triose-phosphate dehydrogenase [1].

Pentose phosphate pathway (PPP)—In this case glucose is conveyed to the synthesis
of purine and of reducing equivalents. In particular, glucose 6-phosphate (G6P) can
undergo two different pathways, i.e., oxidative and irreversible, or non-oxidative and
reversible [24]. The non-oxidative branch plays an important role in the synthesis of sugar
phosphates by interconverting glycolytic intermediates though transaldolase [24]. On the
other hand, the oxidative mechanism gives rise to the production of ribulose 5-phosphate
and NAPDH. The conversion of G6P to 6-phosphogluconolactone by glucose 6-phosphate
dehydrogenase (G6PDH) represents the rate-limiting step [1]. G6PDH is inhibited by
increased levels of NADPH and de-inhibited by increased levels of NADP+ or oxidized
glutathione [25,26].

Hexosamine biosynthetic pathway (HBP)—Glucose acts as a precursor for the conver-
sion of fructose 6-phosphate to uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc),
which is then used for protein modifications [27]. The HBP rate-limiting step is represented
by fructose 6-phosphate amidotransferase (GFAT). GFAT, using the amino group provided
by glutamine, produces glucosamine by the transamination of fructose 6-phosphate [27,28].
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GFAT regulation may depend on phosphorylation by PKA, or on transcriptional mecha-
nisms [29], or on UDP-GlcNAc negative feedback [27].

At this point, another crucial glycolytic actor is pyruvate, which can be transformed
into lactate, alanine, oxaloacetate, malate, or more importantly, acetyl-CoA [1,30–32]. Phys-
iologically, pyruvate is transferred by a specific transporter into the mitochondrion, where
it is carboxylated to oxaloacetate or decarboxylated to acetyl-CoA [32,33]. The last reaction
is strictly regulated by the pyruvate dehydrogenase complex (PDC) [34], which can be, in
turn, modulated by phosphorylation (inactivation) and dephosphorylation (activation) [35].
In general, ATP, acetyl-CoA, lactate and NADH are kinase activators, while ADP, CoA SH,
pyruvate and NAD+ inhibit these enzymes [1]. An increase in acetyl-CoA is also able to
mediate PDC inhibition due to the oxidation of fatty acids or ketone bodies [36]. On the
contrary, when cardiac work increases, a reduction of acetyl-CoA, ATP and NADH can be
observed, leading to PDC activation [37].

2.2. Myocardial Fatty Acid Metabolism

Long-chain fatty acids are the main energy source for heart respiration, their β-oxidation
being the first cardiometabolic cascade to be identified [38]. This pathway is regulated by
changes in acyl-CoA, FAD+ and NAD+ concentrations, reflecting the effective workload or
oxygenation of the myocardium [39]. Saturated fatty acid palmitate and monounsaturated
long chain fatty acid oleate are the most abundant fatty acids detectable in the human blood
stream [1]. In particular, long chain fatty acids derive from triglycerides and are lastly
addressed to the Krebs cycle as acetyl-CoA. Fatty acids enter the cardiac cells due to protein
carriers known as heart-specific fatty acid-binding protein (h-FABP) [40]. Here they are
converted into fatty-acyl coenzyme A and then transported into the mitochondria where
β-oxidation takes place [41]. This translocation represents the main rate-limiting step of
the entire metabolic pathway, and starts with the shift of an acyl group from acyl CoA to
carnitine through carnitine palmitoyl transferase I (CPT-I) [1]. This enzyme is inhibited
by a product of acetyl-CoA carboxylation, namely, malonyl-CoA, produced by the action
of acetyl-CoA carboxylase (AAC) and decarboxylated by malonyl-CoA decarboxylase
(MCD) [42–45]. In the heart, AMP kinase phosphorylates and inhibits ACC, lowering
malonyl-CoA and increasing oxidation of fatty acids [46]; conversely, when fatty acids
increase, peroxisome proliferator-activated receptor α (PPARα) induces the expression
of MCD [45]. Moreover, several experimental evidences demonstrated that both ACC
and MCD play a crucial role in cardiac physiological metabolism [2,44,47]. Once in the
mitochondria, carnitine acyl-CoA transferase II (CPT-II) moves the carnitine-acyl unit to
CoA SH; then, acyl-CoA is conveyed to β-oxidation (Figure 3).

Cardiac fatty acid utilization is augmented when plasma fatty acid levels increase,
causing a general raise in the expression of related proteins, such as UPC3 [48–50]. This
mechanism is mediated by the nuclear receptor PPARα; one of its most important cofactors
is represented by PPAR-γ coactivator 1α (PGC-1α) that, in turn, is importantly involved in
the biogenesis of mitochondria [51–53].

2.3. Cardio Metabolism of Ketone Bodies/Amino Acids

Even if to a lesser extent, amino acids and ketone bodies participate to the energy
metabolism of the heart [54]. Amino acids are interested by the action of cardiac transami-
nases and provide important substrates for the Krebs cycle [55]. In addition, some amino
acids also contribute to the mitochondrial electron transport chain, needed for the oxida-
tion of cytosolic NADH [56]. On the other hand, ketone bodies are relevant especially
under exercise, fasting, and during heart failure (HF), when their plasma levels increase
significantly promoting their entry in the Krebs cycle [1] (Figure 3). Since both the amino
acid and ketone body availability is very low under physiological conditions, they are
considered to give a small contribution to the total oxidative metabolism of the heart [57].
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Figure 3. Cardiometabolism of fatty acids and ketones. CD36/FAT: Fatty Acid Transport proteins;
MCT 1/2: Monocarboxylate Transporter; β-HB: β-hydroxybutyrate.

3. Cardiac Metabolic Impairment in Acute and Chronic Cardiac Diseases

Several findings indicate that selective cardiac metabolic changes can occur in both
acute and chronic cardiovascular perturbations. The metabolic impairment underlying
the pathophysiology of coronary artery disease (CAD), HF and cardiovascular diseases
(CVDs) are under continued investigation since the identification of specific metabolic
targets could contribute to the development of potential therapeutic approaches.

3.1. Metabolic Changes Occurring during Acute Ischemia

According to the World Health Organization (WHO) Global Health Estimates, CAD is
responsible for 16% of the world’s total deaths. In particular, myocardial infarction (MI)
represents a leading cause of death in its acute phase even if its long-term consequences are
also clinically relevant. The resulting tissue injury depends not only by ischemia per se and
its duration, but also by oxygen restoration (reperfusion) through the use of thrombolytic
therapy, primary percutaneous coronary intervention (PCI) or revascularization by coro-
nary artery bypass graft surgery (CABG) [58,59]. Reperfusion can paradoxically induce
progressive tissue damage, extending the necrosis and exacerbating the final harmful
effects to the myocardium and coronary microcirculation. Therefore, both ischemia and
reperfusion contribute to the final infarct size in an event known as “lethal reperfusion
injury”, an irreversible injury characterized by apoptotic or necrotic tissue.

Metabolically, the acute cardiac ischemia is characterized by early modifications of
substrates and energy metabolism variations derived from pH changes and reduced oxy-
gen availability. The consequent mitochondrial metabolic dysfunction leads to a dramatic
decrease in ATP formation by oxidative phosphorylation and to increased levels of intra-
cellular inorganic phosphate [3,60,61]. During this condition, the ATP demand rapidly
increases, while its relative production is not satisfactory, reflecting the augmented con-
centration of intracellular ADP; as adaptive response, the adenylate cyclase transforms
ADP to ATP and AMP, a limited form of energy [3,60,61]. The elevation in AMP concen-
trations in turn activates the pro-survival AMP-activated protein kinase AMPK, which
facilitates the glucose transport and glycolysis and fatty acid oxidation, representing a
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primary mechanism for conferring cardioprotection against reperfusion [62]. Indeed,
this metabolic crossroads is crucial during the reperfusion process and could represent a
potential metabolic therapeutic target.

During ischemia, the oxygen decline inevitably suppresses the metabolism of several
macromolecules, including carbohydrates, fatty acids, amino acids and ketones. Therefore,
the heart undergoes selective energetic changes to reduce the oxygen demand and maxi-
mize the substrate use. Initially there is a transfer of phosphate from phosphocreatine to
ATP (via creatine kinase) for maximizing ATP preservation. However, this process becomes
insufficient in the case of extensive ischemic hearts [63]. On the other hand, the heart
tries to save further oxygen consumption by preferentially using glucose, a substrate that
produces high-energy products with higher efficiency compared to fatty acid oxidation.

Therefore, the main energetic-metabolic modulation occurring during ischemia con-
sists of shifting from aerobic to anaerobic energy production, activating the anaerobic
glycolysis, stimulating the glucose myocardial uptake and inducing glycogen breakdown.
The activation of the anaerobic metabolism by the heart is to be considered as an ischemia-
response mechanism, whose aim is to ensure the ATP production necessary for cell survival
and to preserve cell membrane integrity [63,64]. It is important to note that the glycolysis-
dependent ATP can induce beneficial effect in a moderate ischemic heart due to its ability
to control the ionic balance through the activities of the Na+/K+-ATPase pump in the
sarcolemma and Ca2+ ATPase pump in the sarcoplasmic reticulum. However, in the severe
ischemic heart, the persistent glycolysis can result in an intracellular pH decrease due to
the increased proton (H+) production and lactate production that depress the myocardial
contractile function, evincible after a few seconds or minutes of the ischemic event [65].
The excessive accumulation of H+ and lactate induces in turn the inhibition of glycolysis;
therefore, fatty acid oxidation continues to be the predominant metabolic way also in the
ischemic heart. As reported by several studies, the fatty acid oxidation is responsible
for deleterious effects to the heart due to its inhibition of glucose oxidation, induction
of further H+ and lactate production and alterations in the ion homeostasis, resulting in
cardiac mechanical dysfunction [3,63,64]. Other studies have also demonstrated that acute
ischemia can result in a hyper-efflux of potassium (K+), evinced by the typical changes in
electrocardiographic repolarization that, together with alteration of Ca2+ concentration,
can be responsible for arrhythmia and eventual cardiac arrest with a fatal outcome [66].

3.2. Cardiometabolism in Chronic Ischemic Heart Disease

When ischemia is able to induce myocardial necrosis with consequent loss of functional
myocardium, there is no recovery of contractile function due to the progressive remodeling
and fibrosis in the surrounding tissue. Conversely, if ischemia is not severe enough to
induce necrosis, other responses (myocardial stunning, hibernation, preconditioning), that
also depend by various factors particularly related to the duration and intensity of ischemia,
as well as reperfusion and compensatory mechanisms (i.e., collateral circulation [67,68]),
can be generated following a chronic ischemic event [69].

In the case of an intense and durable ischemia unable however to induce cell death,
restoration of the blood flow generates a viable, but stunned myocardium presenting post-
ischemic contractile dysfunction reversible after a period of days or weeks [70]. This can
act as a physiological adaptive and protective response in order to minimize cellular and
biochemical abnormalities induced by ischemia [71]. Accordingly, the post-ischemic tran-
sient reversible myocardial contractile dysfunction occurring in the stunned myocardium
does not induce metabolic impairment.

The other possible outcome of myocardial ischemia derives from a chronic low blood
flow that induces a metabolic heart adaptation for the maintaining of live cells. However,
in this condition cells do not contract at rest and appear in a dedifferentiated state [70].
After the revascularization procedure, the “hibernating” cardiomyocytes can recover their
function, even if the restoration time of the regional contractile function can be variable
(occurring within days, months or up to a year), depending on the duration and intensity
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of the flow reduction and on the injury extension in the affected myocardial area. Indeed,
in the involved myocardium it is possible to observe a partial or total recovery of cardiac
function through the improvement of the coronary blood flow or the reduction of the
myocardial oxygen demand [71].

The molecular mechanisms that are activated following both myocardial stunning
and hibernation result in the induction of complex cytoprotective molecular processes and
reorganization of gene and protein expression programs aiming to protect the chronically
ischemic heart [71]. The metabolic adaptation of the hibernating myocardium is dictated by
the coronary flow reduction; the relative response firstly consists in an auto-regulative coro-
nary vasodilation for counteracting the pressure decline and in a decrease of contractility
and energy demand to meet the imbalance between energy request of the hypo-perfused
myocardium and supply, generating a myocardial state of “perfusion-contraction match-
ing” [72]. The functional and metabolic down-regulation of hibernating myocardium
also depends on the typical cytostructural alterations, where a reduction in phosphates
and a shift from oxidative to anaerobic metabolism occurs. In particular, a persistent
stunning inducing myocardial hibernation shifts the utilization of substrate from fatty
acids to glucose, increasing the glycogen depots through a decreased activity of GSK-3β,
responsible for the glycogen synthase inactivation [73,74]. The GSK-3β downregulation
represents a well-known key element for inducing the metabolic adaptation of hibernating
myocardium and for preserving its left ventricular function during subsequent episodes
of acute ischemia [73]. The other possible myocardial response to ischemia is represented
by ischemic preconditioning (IPC), a phenomenon based on a brief and repetitive cycles
of sub-lethal ischemia and reperfusion, subsequent to an imbalance between myocardial
metabolic request and myocardial oxygen supply, which cannot be satisfactory due to
the presence of CAD and limited coronary reserve. Complex adaptive processes, mostly
converging on the modulation of the mitochondrial PTP (permeability transition pore),
can be activated as a self-protective response of the myocardium against further ischemia
events [59].

3.3. Metabolic Changes Occurring during Reperfusion

As mentioned above, blood flow by reopening the occluded coronary artery repre-
sents the most effective therapeutic intervention for the ischemic myocardium. Indeed,
without reperfusion, the dramatic decrease of ATP availability and the high Ca2+ levels
induce myocyte atrophy and cell death [59]. However, this phenomenon can reduce the
beneficial effects of myocardial reperfusion per se since it is associated with a complex
array of intracellular damaging events culminating in cardiomyocyte death by necrosis or
apoptosis [59]. It is known that oxidative/nitrosative stress generated by reperfusion is a
major cause for myocardial damage consequent to the harmful action exerted by reactive
oxygen species (ROS) and peroxynitrite (ONOO–) on myocardial fibers [69,75].

In addition, the excessive calcium influx dependent by the activation of the Na+/Ca2+

exchanger, deriving from a sequence of specific ionic pump alterations, ultimately induces
cellular and mitochondrial calcium overload, and myofibril hypercontracture (as evinced
by diastolic ventricular pressure increase) [76]. The loss of ionic homeostasis alters the
permeability of the inner mitochondrial membrane and the intracellular Ca2+ overload,
associated with ROS generation occurring during early reperfusion. This leads to the
opening of the mitochondrial PTP that uncouples oxidative phosphorylation resulting in
cell death [77].

The tissue damage dependent on an ischemic event is exacerbated by an hyperinflam-
matory response; this is generated by cytokines and cell-adhesion molecules expressed by
parenchymal and endothelial cells that induce the recruitment of circulating neutrophils
to the re-perfused zone, and by cytosolic components released by necrotic cells [59,78].
Neutrophils in turn induce vascular plugging and degradative enzymes and further ROS
release [59,78].
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Among the several events that mediate the reperfusion-dependent myocardial dys-
function, the metabolic modulation represents a fundamental element that participates in
the pathogenesis of the acutely ischemic heart.

Particularly, following a brief period of ischemia, several metabolic impairments
characterize the heart at the onset of reperfusion even if these alterations are, almost
always, unable to culminate in cell death. This condition, as part of the myocardial
stunning, is associated with reversible modifications in terms of ATP depletion, cellular
and mitochondrial swelling, alteration of microvascular permeability and endothelial
dysfunction [79]. However, in the case of prolonged ischemia, irreversible damage occurs
during reperfusion; the levels of lactate, ions and creatine phosphate become dramatically
increased, the Ca2+ concentrations augment and severe mitochondrial damage can be
observed. The irreversible impairment of the cardiomyocyte membrane leads to cell
necrosis and apoptosis.

If the ischemic heart is exposed to a prompt reperfusion, oxygen delivery to the heart
can recover the mitochondrial oxidative phosphorylation, glucose and fatty acid oxidation
tend to normalize, although at a different rate. In fact, in the initial phase of the reperfusion
anaerobic glycolysis rates remain elevated and the high circulating levels of fatty acids,
and the consequent alteration of their oxidation occurring during ischemia, allow a quicker
recovery of fatty acid oxidation [60,64]. Therefore, the competition between the fatty
acids and glucose oxidation is in favor of fatty acid, whose circulating levels diminish the
recovery of glucose oxidation through the glucose fatty-acid cycle or ‘Randle cycle’ [64,80].
In this regard, diverse studies demonstrated that the high circulating levels of fatty acids,
detected during myocardial ischemia due the activation of the peripheral sympathetic
nervous system, can significantly participate to the extension of cardiac injury [81].

ATP recovery secondary to blood flow restoration facilitates lactic acid export, with a
trend of the intracellular pH toward normalization. However, the uncoupling of glycolysis
and glucose oxidation leads to the production of both protons and lactate in the reperfusion
phase. It should also be noted that the continuous elevation of intracellular Ca2+ concentra-
tion secondary due to a damaged sarcolemmal membrane, as well as the increased Ca2+

entry into the mitochondria dictated by the restoration of the mitochondrial membrane
potential, can also activate the mitochondrial PTP [82]. Accordingly, if during ischemia,
mitochondria are able to control the abnormal intracellular Ca2+ levels preserving their
capacity to transport it, reperfusion leads to mitochondrial structural alterations. Therefore,
Ca2+ transport becomes excessive and great amounts of energy are consumed [83]. Thus,
cardiomyocytes undergo apoptosis, even if this cell death type is less frequent than necrosis
in I/R damage; both events induce release of cytokines, chemokines and other proinflam-
matory factors, recruiting neutrophils that infiltrate the ischemic tissue, exacerbating the
final damage [84].

3.4. Cardiometabolic Profile in Inherited Cardiomyopathies

Among the complexity of heart failure (HF) phenotype, inherited factors can also be
causative. Inherited cardiomyopathies show selective myocardial metabolic changes that
correlate with HF progression and severity. The most inherited cardiomyopathies caused by
autosomal dominant transmission of single-gene disorders include hypertrophic cardiomy-
opathy, dilated cardiomyopathy and arrhythmogenic cardiomyopathy [85] (Table 1).
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Table 1. Cardiometabolic changes in inherited cardiomyopathies.

Genetic Metabolic
Cardiomyopathies

Cardiac
Manifestations

Cardiometabolic
Changes References

Fatty acid oxidation
disorders

Carnitine deficiency Dilated cardiomyopathy,
cardiac arrest

Defective carnitine biosynthesis
↓ Fatty acid oxidation
Lipid accumulation

[86–95]

Carnitine
palmitoyltransferase II

deficiency

Pansystolic murmur,
septal hypertrophy,
cardiac arrhythmias

Impaired mitochondrial
acyl–CoA transport and fatty

acid oxidation
Cardiac lipidosis

[86–88,96–98]

Very-long-chain acyl-CoA
dehydrogenase deficiency Cardiac hypertrophy ↓ Fatty acid oxidation

Cardiac lipidosis [86,87,99–101]

Long-chain 3-hydroxyacyl-CoA
dehydrogenase

deficiency

Cardiac hypertrophy,
cardiac arrhythmias

↓ Fatty acid oxidation
Cardiac lipidosis [86,87,102–106]

Mitochondrial trifunctional
protein deficiency

Cardiac arrhythmias,
conduction disorder,

cardiorespiratory arrest

↓ Fatty acid oxidation
Cardiac lipidosis [86,87,107]

Glycogen storage
diseases

Glycogen storage diseases
types II, III, IV and VI

Restrictive or dilated
cardiomyopathies,

conduction disorder

Glycogen accumulation
Impaired autophagy and

expression of mitochondrial
genes

[86,107,108]

Lysosomal storage
disorders

Anderson–Fabry disease

Ventricular hypertrophy,
valvular abnormalities,

conduction disorder,
cardiac arrhythmias

Globotriaosylceramide
accumulation

↓ Activity of respiratory chain
enzymes

↑ Oxidative stress
↑ Release of proinflammatory

cytokines

[86,87,107,109–111]

Gaucher disease Heart valve diseases

Glucosylceramide accumulation
↓ Activity of respiratory chain

enzymes
↑ Oxidative stress

↑ Release of proinflammatory
cytokines

[87,107,112,113]

Niemann–Pick disease Endocardial fibroelastosis

Sphingomyelin accumulation
↓ Activity of respiratory chain

enzymes
↑ Oxidative stress

↑ Release of proinflammatory
cytokines

[87,107,114,115]

GM1 gangliosidosis Heart failure

GM1-ganglioside accumulation
↓ Activity of respiratory chain

enzymes
↑ Oxidative stress

↑ Release of proinflammatory
cytokines

[87,107,109,110,112,114,116–118]

Mitochondrial disorders

Friedreich ataxia Cardiac hypertrophy,
heart failure

↑ Oxidative stress
Impaired mitochondrial

respiratory function and iron
metabolism

[86,107]

Barth syndrome Dilated cardiomyopathy
↓ Electron transport chain activity

↓ Oxygen consumption
↑ Oxidative stress

[86,107]
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3.4.1. Fatty Acid Oxidation Disorders (FAODs)

In the context of hereditary cardiomyopathies, fatty acid oxidation disorders (FAODs)
are categorized as metabolic abnormalities involving both β-oxidation and fatty acid
transport into the mitochondria, through the carnitine system [119]. Several studies indicate
that mutations in SLC22A5, SLC25A20, CAC genes can cause primary carnitine deficiencies
(PCD) [86,120,121]. In this regard, defects in carnitine transporter (CTD, 5q mutation),
carnitine-palmitoyl transferase 1 and 2 deficiencies (CPT-1 and CPT-2), the lack of carnitine
acylcarnitine translocate (CACT, 3p21 mutation), have been linked to cardio-metabolic
disorders that usually determine the onset of cardiomyopathy, arrhythmia, conduction
disease and HF [107,122].

On the other hand, mutations in enzyme-coding genes involved in β-oxidation pro-
cess, and particularly very-long-chain acyl-CoA dehydrogenase (VLCAD) and long-chain
3-hydroxy-acyl-CoA dehydrogenase (LCHAD), have also been associated with impaired
fat metabolism, cardiac lipidosis and reduced ketone body production [86,107,123].

3.4.2. Glycogen Storage Diseases (GSDs)

Glycogen storage diseases (GSDs) are known to be caused by inherited defects of key
enzymes involved in synthesis, breakdown or accumulation of glycogen [124]. To date,
approximately 14 types of glycogen storage disorders have been characterized; among
these, GSD types II, III, IV and VI are recognized to target the cardiac metabolism causing
restrictive or dilated cardiomyopathies, left ventricular hypertrophy and conduction dis-
ease. Few cases have been reported in literature in which phosphorylase kinase deficiency
(GSD IX) and the lack of glycogen synthase enzyme (a clinical condition usually known as
GSD 0) have caused hypertrophic cardiomyopathy and sudden cardiac arrest [107,108,125].
Several pieces of evidence have demonstrated that mutations in the GAA gene localized
on chromosome 17 (Pompe disease, GSD II), coding for acid α-glucosidase as well as
defects in the LAMP2 gene (Danon disease, GSD IIb), are dramatically involved in the
alterations of cardiac metabolism; this in turn induces glycogen accumulation, altered
autophagy and abnormalities in the expression of mitochondrial genes, with consequent
alteration of mitochondrial respiration [126–130]. Likewise, mutations in AGL gene (Cori
disease, GSD III) provoke amylo-1,6-glucosidase deficiency and abnormalities in glycogen
metabolism [107].

PRKAG2 cardiac syndrome belongs to GSDs and it is characterized by mutations
determining abnormal activity of AMPK, glycogen deposits and activation of mechanis-
tic target of rapamycin (mTOR) pathway, showing clinical features of hypertrophy and
conduction disease [131–135].

3.4.3. Lysosomal Storage Disorders (LSDs)

Lysosomal storage disorders (LSDs) represent a particular class of metabolic abnor-
malities characterized by deficit in the enzymes present in the lysosomal compartment,
that determine the accumulation of partially degraded macromolecules. Hereditary patho-
logical conditions, such as sphingolipidosis, mucopolysaccharidosis, mucolipidosis, belong
to this class of abnormalities [107].

Studies indicate that mutations in selective genes, such as GLA (Xq22 region, encoding
for α-galactosidase A), GBA1 (1q21 region, coding for glucocerebrosidase), SMPD1 (11p15
region, coding for acid sphingomyelinase), GLB1 (3p22 region, encoding for β-galactosidase)
as well as mutations of 11 genes (IDUA, IDS, SGSH, NAGLU, HGSNAT, GNS, GALNS,
GLB1, ARSB, GUSB, HYAL1) encoding for enzymes involved in the degradation of gly-
cosaminoglycans (GAGs), may negatively affect the substrate catabolism. Consequently,
it appears that the accumulation of glycosphingolipids such as globotriaosylceramide,
glucosylceramide, sphingomyelin, GM1 ganglioside and GAGs that can lead to decreased
activity of respiratory chain enzymes, release of proinflammatory cytokines, growth factors
and oxidative stress. Taken together, these events can worsen heart function, leading to
hypertrophy and conduction abnormalities [87,107,109,110,112,114,116,117].
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3.4.4. Mitochondrial Disorders

Mitochondrial disorders may derive by mutations transferred by matrilineal inheri-
tance or through sporadic mutations affecting mitochondrial or nuclear DNA with remark-
able cardiac involvement. Several studies highlighted that mutations in protein-encoding
genes participating to the oxidative phosphorylation and/or coded for respiratory chain
complexes (ACAD9, NDUFAF1, SDHA, SDHD, MTCYB, COX6B1, MT-CO1/2/3, COA5,
COX10, SCO1/2, SURF1, ATP6, ATP8, TMEM70, CQQ2, CQQ4, CQQ9) have been asso-
ciated with alterations of electron transport chain and reduced energy production into
mitochondria. Similarly, genetic changes in FXN (causing GAA triplet expansion disease,
also known as Friedreich’s ataxia) and TAZ gene mutations have been associated with
oxidative stress, mitochondrial dysfunction and impaired iron metabolism correlating with
cardiac hypertrophy or dilated cardiomyopathies [86,107] and references therein.

4. Cardiometabolic Adaptations in Heart Failure and Chronic Cardiac Diseases

It is extensively reported that several events, including ischemic insult, MI, hypertro-
phy and pressure overload, might be responsible for the cardiac pathological remodeling
in terms of both contractile and metabolic functions [3,136]. Table 2 recapitulates the main
cardiometabolic alterations occurring in both acute and chronic cardiac diseases. It is also
widely accepted that chronic metabolic alterations secondary to obesity, insulin resistance,
dyslipidemia and type 2 diabetes mellitus (T2DM) represent important risk factors for
CVDs, including CAD and HF [137]. Through a complex spectrum of metabolic interac-
tions, these main cardiovascular risk factors can induce both direct adverse actions to the
myocardium and indirect effects to the vascular system.

Table 2. Cardiometabolic alterations in cardiac diseases.

Acute and Chronic
Cardiac Diseases Cardiometabolic Alterations References

Ischemic heart disease

↓ Mitochondrial oxidative metabolism
↑ Utilization of glucose

↑ Rates of free fatty acid oxidation Accumulation of lactate and protons
Reduction in intracellular pH

[138,139]

Heart failure

↑ Uptake of glucose and free fatty acid
↓ Uptake and oxidation of glucose and free fatty acid in mitochondria

Cytosolic accumulation of metabolic intermediates Lipotoxicity and glucotoxicity
↑ Reliance on ketone bodies

[140]

Arrhythmias Abnormalities in Ca2+, K+, Na+ homeostasis Oxidative stress [141]

Atrial fibrillation

↑ β-hydroxybutyrate generation, ketogenic amino acids
(tyrosine and glycine) and 3-oxoacid-CoA

transferase
Mitochondrial dysfunction Oxidative stress

[142]

Hypertrophic
cardiomyopathy

↓ Free fatty acid oxidation
↑ Ketone bodies and glucose oxidation [143,144]

Dilated cardiomyopathy
↓ Oxidative metabolism in cardiomyocytes

↑ Anaerobic glycolysis
↑ Acylcarnitine and ketone bodies

[145]

Restrictive
cardiomyopathy

Glycogen accumulation
Amyloid deposits

Iron overload
Glycosphingolipids accumulation

[146]

Diabetic cardiomyopathy

↑ Free fatty acid release and
myocyte sarcolemmal free fatty acid transporters.

Lipotoxicity
↑ Triacylglycerols

Impaired mitochondrial Ca2+ handling
↑ Oxidative stress

[147]

Valvular heart disease

↑ Lipid deposition and oxidized low-density
lipoprotein formation

↑ Inflammation-associated factors
↑ Superoxide and hydrogen peroxide levels

[148]
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Despite the advancement in medical therapy for the treatment of chronic HF, this
syndrome continues to have an enormous impact (64.3 million people are suffering from
HF worldwide with a prevalence of 1–2% in the general adult population of developed
countries [149,150]) and is still associated with a significant increase in the total annual
cases [149,150]. Chronic HF is a complex and multifactorial disease, where several co-
existing causative factors can lead to the syndrome and various comorbidity conditions
increasing the severity of HF, considered as the chronic stage of any disease leading to
cardiac functional impairment, as well as the final clinical event of CVDs [150,151].

From an energetic viewpoint, the energetic impairment and the flexibility of the heart
to metabolically adapt to the pathological changes occurring in a failing heart play a
crucial function in the pathogenesis of HF; accordingly, several approaches targeting the
modulation of cardiac metabolism achieved promising results for the treatment of HF
over the past years. These relatively recent findings have represented the concretization
of numerous studies on myocardial energetic from the 1940s and are still alimented by a
considerable number of studies aiming to identify further metabolic targets to be exploited
in clinic.

The typical metabolic impairment occurring in HF concerns changes in substrate uti-
lization, oxidative phosphorylation and high-energy phosphate metabolism. The shift from
fatty acid to glucose utilization for obtaining energy is accompanied by a decreased oxida-
tive metabolism and energy reserve [152]. These events induce mitochondrial dysfunction
and ATP deficiency that ultimately alter contractile function [88,153] (Table 2).

It is known that if the predominant cardiac metabolism is based on carbohydrate
use for obtaining energy before birth, in the post-natal phase, the oxidation of fatty acids
becomes the main source of energy and linearly correlates with a molecular and genetic
profile typical of the adult phenotype [154,155]. However, several pathophysiological
conditions (as indicated above) reflect specific cardiometabolic profiles mainly based on
the overturning of the energy substrate utilization from fatty acid oxidation to glucose oxi-
dation and on the reprogramming of a selective fetal gene profile, including the expression
of atrial natriuretic factor (ANF), transforming growth factor β (TGF-β) and early response
genes, such as c-myc and c-fos [154]. This cardiac metabolic remodeling based on the
reversion to fetal metabolism is particularly evident in the HF secondary to pathological
cardiac hypertrophy.

4.1. The Shift towards Glucose Utilization in the Failing Heart

The increase in glucose uptake, through GLUT1 or GLUT4, and glycolysis rate are
common events of hypertrophied and failing hearts. It has been demonstrated that the
increased glucose entry into the cell and the activation of the rate-limiting enzyme phos-
phofructokinase lead to an augmented flux through the glycolytic pathway in the heart
with pressure-overload left ventricular hypertrophy [156]. The improved glucose entry
could represent an important mechanism to induce glucose uptake, necessary to maintain
a normal cardiac function; it is presumable that this metabolic mechanism represents
a compensatory response occurring in HF for improving the oxygen efficiency for ATP
production in a condition in which oxygen availability becomes limited [153].

In this regard, some data appeared discordant and the possibility that the shift towards
glucose utilization in HF could be considered a putative maladaptive response, as well as
an integral pathological process, represented an intensely debated issue.

4.1.1. Is the Induction of Glucose Utilization a Double-Edged Sword in Heart Failure?

Important findings showed that the increased glucose utilization represents a com-
pensatory mechanism to the down-regulated fatty acid metabolism occurring during
hypertrophy. Important information about this has also been provided by works carried
out using genetic and transgenic mouse models, as well as isolated working heart prepa-
rations. In particular, several genetic model-based studies showed that the decrease in
glucose utilization appears deleterious for cardiac failure and hypertrophy, while its use
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in hypertrophied hearts of mice overexpressing GLUT1 exerts protective effect against
contractile dysfunction and cardiac dilation after chronic pressure overload [157]. This
suggests that increasing the availability of cardiac glucose could regulate the hypertrophic
program, thus exerting beneficial effects against myocardial dysfunction. Other studies
demonstrated that also the cardiac deficiency of GLUT4 (the main glucose receptor present
in the adult heart and the most important transporter responsible for the cardiac glucose
uptake [158]) induces hypertrophy and profound disturbances in Ca2+ and pH homoeosta-
sis in a rodent model of insulin-resistant cardiomyopathy [159]. These findings provide
important information about the potential therapeutic significance to target GLUT4 in the
diabetic cardiomyopathy and suggest that the loss of insulin-dependent glucose uptake
can induce pathological responses [159]. Similar results have been obtained on the isolated
working heart preparation, a widely used experimental model that is ideal to simultane-
ously record different parameters of cardiac function and energy substrate metabolism,
in particular related to glucose and fatty acids metabolism in both physiological and
pathological conditions.

In particular, by exposing the hearts of mice with cardiac-selective ablation of the
GLUT4 gene to global low-flow ischemia, Tian and Abel [160] demonstrated that the in-
creased glucose uptake occurring during ischemia is crucial for protecting the heart and for
the myocardial post-ischemic recovery. These evidences further support the hypothesis that
GLUT4-dependent glucose transport mediates crucial cardioprotection against ischemic
insult. Moreover, Wambolt et al. [161] observed higher rates of glycolysis from exogenous
glucose and glycogen turnover in hypertrophic hearts compared to control hearts exposed
to severe ischemia, suggesting that hypertrophy induces significant differences in the
metabolism of exogenous glucose and glycogen.

Other mechanistic evidences in small pre-clinical models indicate that also increasing
the glucose utilization by overexpressing hexokinase-2, the enzyme that phosphorylates
glucose to form glucose-6-phosphate that represents the initial phase of glucose metabolism,
is a crucial beneficial actor against cardiac hypertrophy in response to chronic β-adrenergic
stimulation [162,163]. These results suggest that glucose phosphorylation is an impor-
tant step determining cardiac glucose utilization, as also demonstrated by Liang and
colleagues [164], according to whom the increase of the hexokinase activity resulted in
enhanced glycolysis and increased glycogen storage in the heart [164]. Notably, glucose
phosphorylation by hexokinase is the initiating step in all the pathways using glucose,
such as glycolysis and glycogenesis in addition to the pentose phosphate and hexosamine
biosynthetic pathways [165]; data demonstrated that these last two processes also resulted
enhanced in models of hypertrophy [166,167].

The hypothesis that increased glucose utilization is compensatory during cardiac hy-
pertrophy derive from studies on mice models with myocardium-specific overexpression of
PPARα, a nuclear receptor that transcriptionally controls the cardiac energy metabolism and
that is strongly implicated in the hepatic metabolic response to diabetes mellitus [168,169].
Here, mice exhibiting increased myocardial fatty acid oxidation rates and decreased glucose
uptake and oxidation through the cardiac-restricted overexpression of PPARα resembled
the phenotype of diabetic cardiomyopathy, including ventricular hypertrophy [170]. On
the other hand, the ablation of PGC-1α gene, a master regulator of oxidative metabolism
and mitochondrial function in several tissues, in particular in the heart, induces ener-
getic cardiac defects resulting in cardiac dysfunction, in addition to hypertrophy and HF
progression after pressure overload [171,172].

Notwithstanding these reports, it should be considered that specific conditions char-
acterized by obligate cardiac use of glucose can correlate with hypertrophy development.
This is the case of some studies on isolated hearts exposed to high workload in the pres-
ence of glucose, indicating that glucose can induce a metabolic remodeling preceding and
inducing structural and functional cardiac dysfunction [173]. Other reports showed that
the increased myocardial glucose uptake precedes the development of left ventricular
hypertrophy in hypertensive humans [174]. Furthermore, patients treated with a tyrosine
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kinase inhibitor (sunitinib), able to increase cardiac glucose uptake, exhibit activation of
the fetal gene program developing cardiac dysfunction or failure [175,176]. These results
suggest that reliance on glucose can be harmful for the heart [177].

Moreover, it has been demonstrated that although the short-term cardiac-specific
induction of GLUT1 at the onset of pressure overload hypertrophy induced in mice can
mitigate the altered structural and mitochondrial remodeling, it is unable to maintain
contractile function [178]. These findings provide evidence that excess glucose might induce
potential short-term harmful action that impairs the cardiac function. Other evidence
supporting this hypothesis was achieved by Yan et al., using transgenic mice with cardiac-
specific overexpression of GLUT1 [179]; the authors demonstrated how augmented rates
of myocardial glucose uptake and oxidation can predispose the heart to impaired function.
To further address the mechanism by which glucose might alter the cardiac function,
Wende et al. [180] investigated the consequences to restore glucose delivery in a context of
short-term diabetes onset using transgenic mice with inducible cardiac-specific expression
of GLUT4. This study showed that the increased myocardial glucose delivery associates
with an accelerated mitochondrial dysfunction in diabetic cardiomyopathy, indicating
how reducing the glucose uptake during uncontrolled hyperglycemic conditions could
represent an important therapeutic intervention to limit glucotoxicity.

4.1.2. Significance of Glucose Utilization during Heart Failure

On the whole, it is still controversial whether the metabolic changes are the basis of an
adaptive or maladaptive response during cardiac hypertrophy and HF and other concerns
remain to be clarified. Based on the available data, it is possible to claim that the increased
glucose metabolic utilization induces adaptive response as long as the energetic demand
is met in the normal heart. However, the protracted metabolic remodeling related to the
hyper-reliance of glucose could alter the adaptive capacity of the heart to the substrate’s
utilization contributing to disease progression [152].

During HF the metabolic rearrangements induce a progressive decrease of cardiac en-
ergy production generated by a continuous impairment of substrate use and mitochondrial
function. In particular, the metabolic changes are due to alterations in substrate flux rather
than to the absence of substrate availability, generating a metabolic imbalance that nega-
tively affects the cardiac function, culminating in a failing heart which can be considered as
an “engine out of fuel” [59]. The progressive increase of the metabolic demand induced by
the continued activation of the sympathetic nervous system typical of HF can worsen the
cardiac dysfunction [181]. In evaluating the metabolic changes in HF and chronic-related
cardiac pathological states, it is therefore important to consider the influence of several ad-
ditional factors, including the degrees of workload and wall stress, as well as concomitant
cardiovascular risk factors. Furthermore, the metabolic profile differs between different
contexts inducing HF and myocardial adaptation is also influenced by the different clinical
stages characterizing the progression of HF (i.e., compensated hypertrophy with or without
diastolic dysfunction versus manifest systolic dysfunction) [153].

4.2. Impact of Glycogen Metabolism during Heart Failure

Among the myocardial energetic changes occurring during HF, the glycogen metabolism
and its controlled breakdown should not be underestimated, also considering that glucose
6-phosphate is a substrate for glycogen synthesis, as well.

As evidenced in the fetal heart, the failing heart also presents high levels of glycogen,
which appears essential for the heart’s development, as demonstrated by the perinatal
death of mice presenting disrupted isoform 1 of glycogen synthase caused by severe cardiac
defects and heart dysfunction [182]. The shunting of intracellular free glucose into glycogen
protects cellular proteins from excess glycosylation, thus mitigating the glucotoxicity [183]
and several studies indicate a positive correlation between cardioprotection against is-
chemic injury and other cardiac pathologies and glycogen availability [184]. Furthermore,
myocardial glycogen stores represent a crucial source of glucose to support the cardiac
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function not only in the normal heart, but also in the hypertrophied heart [185]. The con-
tribution of glycogen metabolism in the hypertrophied heart during severe ischemia is of
particular importance since rates of glycolysis from both exogenous glucose and glycogen
result in being augmented in the hypertrophied heart, along with the increase in glycogen
turnover [185], suggesting that glycogen homeostasis and metabolism represent important
metabolic targets with potential therapeutic impact during HF.

4.3. Role of Free Fatty Acid Metabolism in the Failing Heart

During HF, alterations in transcription of key enzymes involved in fatty acid metabolism
are detected [186]. Since HF can correlate with increased circulating fatty acid levels due to
high lipolysis rates, several studies in both pre-clinical models and patients with cardiac
hypertrophy and HF demonstrated the beneficial action of selective inhibitors of key steps
of fatty acid oxidation. [187]. On the contrary, other studies reported decreased myocardial
fatty acid oxidation rates in the failing heart, as evinced by decreased transcriptional level
of genes involved in fatty acid oxidation, making the impact of fatty acid oxidation a
complex issue in the context of HF. However, on examining the myocardial energetic
profiles during HF progression, it can be observed that the increased glucose utilization
mainly occurs during the early stage of the syndrome, when the metabolic shift in substrate
utilization is still not significantly evident (i.e., fatty acid use is still unchanged) [186].
Conversely, in the advanced stage of HF, the fatty acid and glucose utilization appear
decreased, the latter due to the myocardial insulin resistance development [186], with
consequent alteration in the energy transfer to the myofibrils. Notably, the contribution
played by circulating free fatty acids, glucose and insulin that increase in HF should be also
considered for discerning the involvement of intrinsic metabolic adaptation related to fatty
acid and glucose metabolism during HF [186]. Accordingly, myocardial insulin resistance
inevitably leads to altered intracellular insulin signaling with consequent reduced cardiac
responsiveness to the physiological circulating levels of insulin and decreased insulin
stimulation of glucose uptake and oxidation [188].

Indeed, this condition, which is predominant in obesity and T2DM, is also character-
ized by elevations in circulating free fatty acids; the resulting imbalance between fatty acid
uptake and mitochondrial β-oxidation induces fatty acid accumulation and lipotoxicity
driving the genesis of myocardial insulin resistance that culminates in myocardial mechan-
ical dysfunction [188]. Alterations in fatty acid β-oxidation also represent a significant
contributor to the development of cardiac dysfunction in HF and ischemic heart disease,
thus its inhibition can represent an important metabolic target for the treatment of cardiac
function deficiency associated with dysmetabolic states and ischemia [63]. In support of
this, many studies reported that a specific “metabolic footprint” occurs in DMT2, obesity
and metabolic syndrome, as recently reviewed by Gibb and Hill [3]. Here, the authors
greatly highlighted how, in addition to lower rates of glucose oxidation, glycolysis and
lactate oxidation, main triggers of left ventricular hypertrophy and diastolic dysfunction
in the diabetic heart are represented by higher rates of fatty acid and ketone oxidation.
The resulting glucotoxicity and lipotoxicity in turn increase the amount of advanced gly-
cation end products and ROS that induce mitochondrial dysfunction and cardiac insulin
resistance [3].

4.4. The Red Skeletal Muscle as a Counterpart: Common and Different Metabolic Traits

Numerous studies have comparatively investigated the metabolic profile of the my-
ocardium and the skeletal muscle under normal and physiopathological conditions, em-
phasizing the common and different traits of these striated red muscle tissues. In contrast to
the skeletal muscle, the myocardium must beat continuously and rhythmically in order to
maintain its structural and functional integrity. The diverse metabolic properties between
the cardiac and the red skeletal muscle strictly depend on their different morphological
structure and molecular setting [189–191]. In contrast to the cardiac muscle, which is flexi-
ble in the choice of energy substrates and shows a relatively low dependency on glucose
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and glycogen, the red aerobic skeletal muscle selects the substrates on the basis of the
duration and intensity of the exercise. Indeed, under resting, fasting and low intensity
exercise, skeletal muscle mainly draws energy from fatty acids and their oxidation. The
increased β-adrenergic stimulation, detectable in low- and moderate-intensity exercise,
induces lipolysis in the adipose tissue generating free fatty acids which are used to support
the muscle activity. However, the rate of fatty acid oxidation decreases under high intensity
exercise in favor of carbohydrate metabolism [192]. Glucose is crucial for contraction under
prolonged exercise. Training increases glucose uptake, glycolysis, glucose oxidation and
glycogenesis due to the activation of AMPK and the translocation of GLUT4 [193]. Of
note, skeletal red muscle metabolism undergoes adaptations which are related not only
to exercise intensity and duration but also to muscle size, fiber distribution and rate of
contraction [194].

As in the myocardium, ketone bodies represent an alternative energy source for the
skeletal muscle, mainly contributing under prolonged fasting, exercise, excess of fatty acid
availability and low carbohydrate consumption [195].

Under cardiac pathologies, such as HF, typical alterations of skeletal muscle mor-
phology, metabolism and function are observed. These abnormalities depend on different
factors, including inadequate oxygen delivery and excessive exposure to neurohumoral
stimuli [196,197]. Under these conditions, the skeletal muscle biochemical profile is charac-
terized by phosphocreatine and fatty acid metabolism changes. In particular, the impaired
fatty acid catabolism reduces ATP production and mitochondrial function with consequent
accumulation of lipid and limited exercise tolerance [196–198].

5. Therapeutic Strategies in Cardiac Diseases

Starting from the assumption that under pathological conditions, the shift of the
heart to a glucose metabolism is an adaptive/protective stratagem [199], the promotion
of carbohydrate utilization may represent a useful therapeutic strategy. Nonetheless, as
previously mentioned, the presence of uncontrolled hyperglycemia may worsen cardiac
function by glucotoxicity in diabetic patients [180].

In general, the goal of each anti-ischemic and cardioprotective pharmacological ap-
proach is based on its ability to reduce significantly the I/R-dependent myocardial injury.
Interventions aiming to attenuate the detrimental effects of metabolic alterations secondary
to acute I/R injury could protect the myocardium by reducing the infarct size, preserving
the left ventricular function and preventing the onset of HF.

5.1. Metabolic Therapies in Heart Failure

During the past years, since HF is known to associate with mitochondrial dysfunction
as a consequence of oxidative stress, antioxidants have been tested as possible protective
strategies [200]. However, the complexity of this severe condition prompted researchers to
consider new therapeutic frontiers.

Several attempts have been made to reduce the upstream fatty acid supply to the
heart, i.e., reducing their plasma levels, but without encouraging results. It is the case of the
lipolysis inhibitor acipimox, that was able to increase glucose utilization by the heart, with-
out inducing an improvement of cardiac function [201,202]. These results demonstrated
that the restriction of the available fatty acids does not represent the right way to achieve
the pursued goal. For this reason, more attention was paid to downstream enzymes,
such as CPT-I. In particular, the inhibition of this enzyme (by etomoxir, perhexiline, and
oxfenicine) reduces fatty acid oxidation, thus increasing the use of glucose, rather than
decrease their plasma levels [2]. More specifically, experimental evidence demonstrated
that etomoxir improves the cardiac performance through the sarcoendoplasmic reticulum
calcium ATPase [203,204]. In general, the inhibition of CPT-I resulted in being associated
with a significant recovery of cardiac function not only in animal models but also in human
trials [205–208].
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Many experimental data point towards dichloroacetate (DCA), a pyruvate kinase
dehydrogenate (PDK) inhibitor, as a possible cardioprotective tool via increasing the activity
of pyruvate dehydrogenase (PDH), promoting glucose oxidation [209–212]. However, even
if promising, the chronic neurotoxicity of DCA limited its application in humans [213,214].
Another possibility to limit fatty acid oxidation is represented by the activation of malonyl
CoA decarboxylase since it may inhibit the translocation of fatty acids into the mitochondria.
This strategy reduces fatty acid oxidation and confers cardioprotection after ischemic events
in animal models, but a role in HF still remains to be fully elucidated [5].

From another point of view, targeting insulin sensitivity could be of interest, given
that insulin resistance is one of the principle independent causes of HF [215]. Indeed,
oral hypoglycemic and insulin sensitizing agents such as thiazolidinediones, acting as
PPARγ agonists, ameliorate glucose utilization also improving cardiac performance after
ischemia [216,217].

In the context of metabolic diseases, such as T2DM, studies aimed to prove cardio-
vascular safety of antidiabetic therapies, described the sodium–glucose cotransporter 2
(SGLT2) inhibitors as able to reduce the incidence of HF [218]. Since the human heart
does not express SGLT2, the beneficial effects of SGLT2 inhibitors on the cardiac muscle
are supposed to be indirect and linked to their systemic action [219]. Even if the exact
mechanism operating on the heart is still unknown, data from animal models depict a role
for the myocardial Na+/H+ exchanger and for oxidative stress. Indeed, SGLT2 inhibitors
could reduce the activity of Na+/H+ exchanger improving the excitation–contraction cou-
pling in cardiomyocytes and increasing the antioxidant ability of mitochondria [220–222].
Despite the lack of evidence regarding the specific machinery responsible for SGLT2 car-
diac beneficial effects, important clinical trials strongly support their positive outcomes on
HF [223–227].

In addition, data from both experimental and clinical trials describe metformin, one of
the most used therapies in diabetes, as a protective agent not only in T2DM but also with
regard to HF. Metformin is supposed to act by reducing oxidative stress and inflammation,
and by improving endothelial function [228–234]. It is likely that, operating as an AMPK
activator, metformin is able to raise glucose uptake in cardiomyocytes inducing a general
improvement of cardiac structure and function [235–237].

In the field of CVD associated with metabolic pathologies, promising results have
been reported for glucagon-like peptide-1 (GLP-1), an endogenous insulin secretagogue
that increases glucose utilization in the heart, globally improving cardiac function after
acute myocardial infarction [238]. Today, it is known that Glucagon-like peptide-1 receptor
analogs (GLP-1RAs) not only improve glycemic control but also reduce body weight and
blood pressure [239]. In particular, a significant reduction in the risk of developing CVD
events, such as HF, was observed in a large-scale trial testing the GLP-1RA Liraglutide
(Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Re-
sults, LEADER trial) [240]. Accordingly, two more clinical trials, SUSTAIN-6 [241] and
REWIND [242] showed a decrease in the rates of major adverse cardiovascular events
(Table 3).

It still remains to be elucidated whether the beneficial effects of anti-diabetic drugs on
CVD outcomes only reflect the positive systemic actions elicited by these molecules.
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Table 3. Metabolic pharmacological intervention in heart failure and myocardial infarction.

Cardiac Diseases Pharmacological Intervention Mechanism of Action References

Heart Failure

Acipimox Lipolysis inhibitor
↑ Glucose utilization [191,192]

Etomoxir, Perhexiline, and
Oxfenicine

CPT-I inhibitors
↓ Fatty acid oxidation
↑ Glucose utilization

[2,193–198]

Dichloroacetate PDK inhibitor
↑ Glucose oxidation [199–202]

Thiazolidinediones PPARγ agonists
↑ Glucose utilization [206,207]

SGLT2 inhibitors ↓ Na+/H+ exchanger activity
↑ Antioxidant ability of mitochondria [208–212]

Metformin

AMPK activator
↓ Oxidative stress and inflammation

Improved endothelial function
↑ Glucose uptake

[218–227]

GLP-1RAs GLP-1 Receptor Analogues
↑ Glucose utilization [229–232]

Myocardial
infarction

AMPK activators ↑ Glycolytic pathway [237–239]

Aminooxyacetate
and similar

Malate-aspartate shuttle inhibitors
↓ ROS production and oxidative stress [240–243]

Trimetazidine
3-KAT inhibitor

↓ Fatty acid oxidation
↑ Glucose utilization

[244–247]

Dichloroacetate PDK inhibitor
↑ Glucose oxidation [248–254]

GLP-1RAs GLP-1 Receptor Analogues
↑ Glucose utilization [255,256]

GIK infusion ↑ Glucose metabolism
↓ Fatty acid utilization [257–260]

5.2. Metabolic Therapies in Myocardial Infarction

The possibility to modulate the metabolic changes that are related to I/R injury may
offer an important opportunity in the development of clinical treatments. As previously
described, during an ischemic event several factors contribute to an increase of glycoly-
sis [136].

It is known that during/after ischemia, the heart is protected as long as glycolysis
goes on, demonstrating that it is the ATP derived from this pathway to confer cardioprotec-
tion [243]. Indeed, the ischemia-dependent cardiac contracture starts when glycolysis is
interrupted, causing a reduction of ATP that impairs the activity of critical enzymes [261].
In this context, in animal models of ischemia, cardioprotection has been achieved by in-
creasing glucose and insulin levels, or by raising the use of endogenous glycogen [262,263].
Promising results, in this respect, came from the use of AMPK activators, able to improve
cardiac performance recovery and to reduce the infarct size [264,265]. In fact, AMPK is a
key component of the well-established cardioprotective IPC which, surprisingly, is strongly
impaired in the absence of glucose, suggesting the importance of aerobic glycolysis in the
early reperfusion [266]. The importance of increasing the glycolytic pathway during/after
an ischemic event to protect the cardiac muscle is strongly emerging, making this metabolic
path a hopeful therapeutic target.
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Glucose is also used by the HBP, but to date the role of this pathway in cardiopro-
tection is still controversial and debated [68]. More likely, a possible target to prevent
ischemia-induced injury may be the malate-aspartate shuttle (MAS), whose transient inhi-
bition before or after ischemia (for example by aminooxyacetate) demonstrated protective
effects on the heart [267–269]. Oxidative stress is a pivotal actor under ischemic insults;
in this context, MAS inhibition is able to decrease the production of ROS induced by
succinate, reducing the oxidative stress visible during the reperfusion and responsible for
cardiomyocyte injury [270].

Looking at ischemia, another important feature that characterizes this condition is the
significative reduction of glucose oxidation, whose reactivation depends on the availability
of fatty acids that compete with glucose to enter this pathway [68]. So, stimulation of
glucose oxidation is supposed to be a possible beneficial mechanism in the presence of
myocardial infarction because of its ability to improve oxygen utilization [244] and to
reduce proton overload [245]. The importance of glucose oxidation in cardioprotection
is also supported by data showing that under IPC maneuver the pathway is strongly
activated [246,269].

On this basis, the possibility to modulate the Randle cycle may represent a useful ther-
apeutic mechanism in promoting glucose utilization and reducing fatty acid metabolism,
with significative cardioprotective effects. These may depend on a better metabolic effi-
ciency of the heart, since glucose oxidation, compared to FA, uses less oxygen to produce
the same amount of ATP [247]. Indeed, the Randle cycle describes the reciprocal rela-
tionship existing between glucose and FA oxidation, i.e., a dynamic adaptation of the
cells concerning the availability of energetic substrates [80,271]. Experimental evidences
demonstrated that during the early reperfusion, AMPK activation increases fatty acid oxi-
dation [248]; that in turn reduces glucose oxidation modulating the Randle cycle [248,249].
However, this event can be reverted by PDH activation when reperfusion induces a Ca2+

overload [250]. The Randle cycle can also be switched, in favor of glucose, indirectly by
inhibiting fatty acid oxidation and/or their uptake [251,252].

In this regard, trimetazidine, an inhibitor of FA oxidation, is emerging as a medically
accepted strategy for its ability to shift cardiac metabolism toward the use of glucose [253].
Indeed, in animal models of right ventricle hypertrophy and failure, the inhibition of
FA oxidation by trimetazidine enhances glucose oxidation ameliorating the cardiac func-
tion [254]. Trimetazidine beneficial effects in ischemia and HF are mainly due to its ability
to act as a competitive inhibitor of long-chain 3-ketoacyl CoA thiolase (3-KAT), the last
enzyme of FA oxidation [255]. This inhibition reverses the Randle cycle increasing glucose
oxidation with positive cardiac effects [256]. Clinical data demonstrated that trimetazidine
administration in HF-affected patients is able to ameliorate the symptoms, improving
cardiac function and clinical outcomes [257]. As in the case of HF, several ex vivo stud-
ies indicated that DCA is able to ameliorate cardiac performance recovery also under
ischemia [258–260,272]. In vivo experiments highlighted the protective effects of acute
administration of not only DCA [273] but also of reconstituted HDL (high-density lipopro-
teins) [274] and of phosphate compounds [275]. Similarly to HF, GLP-1ARs were able to
improve glucose oxidation and promote cardiac recovery also in I/R events and in the
presence of metabolic disorders [276,277].

Recently, glucose, insulin and potassium (GIK) infusion, firstly proposed by Sodi-
Pallares and collaborators [278] has been accepted as able to induce a shift to glucose
metabolism, protecting the heart during infarction. Experimental data obtained on animal
models showed that treatment with GIK after an ischemic event may promote glycolysis,
reducing cardiac injury and improving cardiac performance [279–281]. Clinical data from
the trial named IMMEDIATE (Immediate Myocardial Metabolic Enhancement During
Initial Assessment and Treatment in Emergency care) further supported the protective
ability of GIK, due to the promotion of glucose metabolism instead of the fatty acid use [249].
Resulting findings confirmed an improvement of clinical outcomes [282,283]. Moreover, a
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randomized controlled trial on patients undergoing cardiopulmonary bypass found that
GIK administration contributes to preserve cardiac muscle function [284] (Table 3).

Another important factor to consider within cardiac metabolism is the F0F1-ATP/
synthase. Indeed, under hypoxic conditions, this crucial enzyme starts to dissipate energy,
hydrolyzing ATP to extrude H+ [74,285,286], increasing ROS production, and causing
a raise of mPTP that contribute to cell death [68,286,287]. Therapeutic intervention on
F0F1-ATP/synthase may positively impact mPTP activity, recognized as crucial regulators
of cardiomyocyte survival, but further investigations in the field are still lacking.

The possibility to use fatty acid metabolism to protect the heart under ischemic events
represents an opportunity [43,288–290], but the protective effects may strictly depend on
the fatty acid plasma levels of the patient [246]. Moreover, this kind of cardioprotective
approach is controversial since cardiotoxicity, due to dangerous fatty acid intermediates,
may occur [290].

6. Conclusions

The current knowledge regarding the strict relationship existing between
cardiometabolism and human pathological conditions demonstrates that the ability of
the metabolism to adapt, being flexible, is crucial for the physiological structure and func-
tion of the heart. Even if further and more specific studies are needed, it is evident that
cardiac metabolic processes, and their changes under diseased conditions, may represent a
promising therapeutic intervention in both acute and chronic heart pathologies. Together
with the development of new pharmacological agents, a key issue is represented by treat-
ment time-points and by the possibility to translate the therapy to pathophysiological
conditions involving cardiometabolic changes. Overall, these data support the idea of
metabolic therapy as an up-and-coming strategy in cardiac diseases.
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AAC acetyl-CoA carboxylase
ADP adenosine diphosphate
AMP adenosine monophosphate
AMPK AMP-activated protein kinase
ANF natriuretic factor
ATP adenosine triphosphate
Ca2+ calcium
CABG Coronary artery bypass graft surgery
CACT carnitine acylcarnitine translocate
CAD coronary artery disease
CPD carnitine-palmitoyl transferase
CPT-I carnitine palmitoyl transferase I
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CPT-II carnitine acyl-CoA transferase II
CVDs cardiovascular diseases
FAODs fatty acid oxidation disorders
G6P glucose 6-phosphate
G6PDH glucose 6-phosphate dehydrogenase
GFAT fructose 6-phosphate amidotransferase
GLP-1 glucagon-like peptide-1
GLUT1 insulin-independent glucose transporter
GLUT4 insulin-sensitive glucose transporter
GSDs glycogen storage diseases
GSK glycogen synthase kinase
H+ protons
HBP hexosamine biosynthetic pathway
HDL high-density lipoproteins
HF heart failure
h-FABP heart-specific fatty acid-binding protein
I/R ischemia/reperfusion
IEM inborn errors of metabolism
IPC ischemic preconditioning
K+ potassium
LCHAD long chain 3-hydroxy-acyl-CoA dehydrogenase
LSDs lysosomal storage disorders
MCD malonyl-CoA decarboxylase
MI myocardial infarction
mTOR mechanistic Target of Rapamycin
ONOO– peroxynitrite
PCD primary carnitine deficiencies
PCI primary percutaneous coronary intervention
PFK-1 phospho-fructokinase-1
PGC-1α peroxisome proliferator-activated receptor-γ coactivator 1α
PH primary hyperoxaluria
PPARα peroxisome proliferator-activated receptor α
PPP pentose phosphate pathway
PTP permeability transition pore
ROS reactive oxygen species
T2DM type 2 diabetes mellitus
TGF-β transforming growth factor β
UCP3 uncoupling protein 3
UDP-GlcNAc uridine diphosphate-N-acetylglucosamine
VLCAD very long-chain acyl-CoA dehydrogenase
WHO World Health Organization
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