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INTRODUCTION

Inflammation of neuronal tissue, or neuro-inflammation, is associated with neurological diseases,
including Alzheimer’s disease (AD) (Patel et al., 2005; Walters et al., 2016; Wang B. et al., 2016).
The exact role of neuro-inflammation in AD remains uncertain as it may be a result of other
causative factors in AD, but can subsequently contribute to the course of the disease, or be caused
by other factors. Neuro-inflammation is significantly correlated with changes in the expression
of brain proteins that regulate the transport or signaling pathways of endogenous and exogenous
molecules (Tilleux and Hermans, 2007; Kim et al., 2015; Gao et al., 2017). ATP-binding cassette
(ABC) proteins, such as ABCB1 (P-glycoprotein, P-gp), are highly expressed in the brain capillary
endothelial cells of the blood - brain barrier (BBB) and limit the uptake of certain endogenous
and exogenous compounds into the brain (Löscher and Potschka, 2005; Zhang et al., 2015).
Several studies have reported alterations in the expression and functions of ABCB1 in AD models
(Wijesuriya et al., 2010; van Assema et al., 2012). The formation of amyloid beta (Aβ) (a substrate
of ABCB1) plaques in the brain is a histological hallmark associated with AD (Lee et al., 2004;
Wildburger et al., 2017). The ABCB1 transporter removes Aβ from the brain into the circulatory
system (Hartz et al., 2010; ElAli and Rivest, 2013). Thus, alterations in the expression or function
of ABCB1 may affect the progression of AD. The role of ABCB1 in AD progression and treatment
has been recently reviewed, elsewhere (Pahnke et al., 2014; Sita et al., 2017). However, the focus of
this opinion article is to discuss the effects of neuro-inflammatory cytokines on ABCB1 function
and their role in the pathogenesis of AD.

ALZHEIMER’S DISEASE IS ASSOCIATED WITH
NEURO-INFLAMMATION

AD is the leading cause of dementia in the elderly and its prevalence has significantly increased
over the last two decades (Reitz and Mayeux, 2014). Epidemiological studies indicated that more
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than 4.5 million people in the United States (U.S.) had AD
in 2000 and this number may triple by 2050 (Hebert et al.,
2003). Learning and memory impairments, as well as cognitive
dysfunction, have been observed in animal models of AD (Dao
et al., 2013; Webster et al., 2014; Xiao et al., 2017). Notably,
AD is characterized by the formation of neurofibrillary tangles
and amyloid beta (Aβ) plaques and the loss of cholinergic
neurons in multiple brain regions (Paulson et al., 2008; Iba et al.,
2013; Parent et al., 2013). The cleavage of amyloid precursor
protein (APP) by the enzymes beta (β) secretase and gamma
(γ) secretase produces Aβ in the brain (O’Brien and Wong,
2011). Studies indicate that Aβ causes neuro-inflammation
through various signaling pathways (Liu et al., 2012; Parajuli
et al., 2013). Aβ affects inflammatory signaling by activating
toll-like receptor-2 (TLR-2) (Liu et al., 2012). Additionally, the
incubation of human monocytes in vitro with Aβ (10µM) for
30min increases the mRNA expression of the pro-inflammatory
cytokine IL-1β, while incubation for 48 h increases tumor
necrosis factor-α (TNF-α) (Yates et al., 2000). This study also
reported that concurrent incubation of mouse microglial cells
with fibrillar Aβ (10µM) and lipopolysaccharide (6.25, 12.5, or
25 ng/ml) for 48 h significantly increased the release of IL-1β
and TNF-α compared to microglial cells that were incubated
with only lipopolysaccharide. A prior study reported that
nucleotide-binding and oligomerization domains, as well as
caspase-1, are involved in oligomeric Aβ-induced interleukin-
1β (IL-1β) processing (Parajuli et al., 2013). Further studies
found that Aβ activates NLRP3 (nucleotide-binding domain,
leucine-rich-containing family, pyrin domain-containing-
3)/caspase1 inflammasome signaling pathway, resulting in
neuro-inflammation induction (Gold and El Khoury, 2015;
Saresella et al., 2016). The mRNA and protein expression of
the NLRP3 inflammasome was increased in monocytes in
individuals with moderate or severe AD (Saresella et al., 2016).
The activation of this pathway has been found to increase the
production of active inflammatory cytokines such as IL-1β
(Gold and El Khoury, 2015). This indicates that stimulating
the NLRP3/caspase1 inflammasome/IL-1β cascade might affect
ABCB1 function or expression in AD patients. Studies are
warranted to explore the pharmacological role of this pathway
in modulating ABCB1 in AD models. In addition, IL-1β was
detected in the nucleus basalis (NB) 24 h following the injection
of Aβ (4 µg/µL) into the NB of rats (Giovannini et al., 2002).
This effect was associated with activation of microglia and p38
MAPK pathway. Conversely, the incubation of cortical glial cells
with IL-1 (100 ng/ mL) for 14 h or IL-6 (50–200 ng/mL) for
6 h significantly increased the mRNA expression of APP (Del
Bo et al., 1995). Pro-inflammatory cytokines, such as TNF-α
or interferon-γ (IFN-γ), have been reported to increase the
production of Aβ in astrocytes expressing APP (Yamamoto
et al., 2007). TNF-α, IFN-γ, and IL-β1 have been shown to
stimulate γ-secretase, thereby increasing Aβ levels (Liao et al.,
2004). Moreover, the pre-incubation of neuroblastoma cells with
0.1mM of ibuprofen for 12 h significantly reduced Aβ secretion
induced by 24 h of incubation with TNF-α and IFN-γ (Blasko
et al., 2001). These data suggest that targeting these signaling
pathways stimulated by Aβ could provide a pharmacological

strategy to attenuate neuro-inflammation associated with AD,
potentially improving AD symptoms and slowing disease
progression.

ROLE OF NEURO-INFLAMMATORY
CYTOKINES IN NEURODEGENERATIVE
DISEASES AND PSYCHIATRIC DISEASES,
AND THEIR EFFECT ON ABCB1
EXPRESSION

The production of pro-inflammatory cytokines has been found
in pre-clinical models of various neurodegenerative diseases. For
example, transient focal ischemia was reported to be associated
with an increase in the levels of TNF-α (Chu et al., 2007).
Moreover, the concentrations of IL-1β, IFN-γ, and TNF-α are
increased in the brains of animals following traumatic brain
injury produced by Feeney’s weight-drop model (Wei et al.,
2012). Long-term exposure to drugs of abuse, such as ethanol,
produces a significant increase in TNF-α concentrations in the
hippocampus of rats (Alfonso-Loeches et al., 2010; Marshall
et al., 2016b). The exposure of C57BL/6J mice and Wistar
rats to ethanol significantly increases IL-1β mRNA expression
and concentrations, respectively, in the brain compared to the
control groups (Alfonso-Loeches et al., 2010; Marshall et al.,
2016a). In addition, a significant increase in immunoreactive
TNF-α in glial cells has been reported in the substantia nigra of
Parkinson’s disease (PD) patients compared to the control group
(Boka et al., 1994). Furthermore, the levels of IL-1β and IL-6
are significantly increased in striatal dopaminergic neurons of
PD patients (Mogi et al., 1994). IL-1β levels were increased in
the frontal cortex and hippocampus of AD patients compared
to individuals with vascular dementia and control subjects
(Cacabelos et al., 1994). Importantly, the level of inflammatory
cytokines was positively correlated with the level of Aβ in amouse
model of AD (Patel et al., 2005). These findings indicate that the
levels of pro-inflammatory cytokines are increased in pre-clinical
neurodegenerative and psychiatric diseases models, as well as the
disease states they are purported to model.

Several studies investigated the effects of certain pro-
inflammatory cytokines on the expression and function of
ABCB1 (Evseenko et al., 2007; Iqbal et al., 2012; Walther et al.,
2015). The mRNA and protein expression of Abcb1/ABCB1
were significantly decreased following incubation with TNF-
α (30 ng/mL) for 24–72 h (Walther et al., 2015). Furthermore,
incubation of cytotrophoblasts with TNF-α (20 ng/mL) or IL-
1β (2 ng/mL) significantly decreased the expression of the
Abcb1/ABCB1 mRNA and protein (Evseenko et al., 2007).
ABCB1 function and mRNA levels in cultured guinea pig
brain endothelial cells (harvested at postnatal day 14) were
significantly decreased following incubation with TNF-α, IL-
1β, or IL-6, at 3.3 × 103 or 103 pg/mL, for 24 h (Iqbal et al.,
2012). Thus, neuro-inflammatory cytokines affect the expression
and function of ABCB1, suggesting that neuro-inflammation
in neurodegenerative diseases, including AD, may alter ABCB1
expression, although this remains to be determined.
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THE IMPACT OF MODULATING ABCB1 ON
THE PROGRESSION OF ALZHEIMER’S
DISEASE

Data suggest a relationship between neuro-inflammation,
regulation of ABCB1 transporter, and Aβ clearance in the
brain. The release of IL-1β, IL-6, and TNF-α are increased in
brain micro-vessels compared to larger vessels of AD patients
(Grammas and Ovase, 2001). Overall, IL-1 levels are also
significantly increased in the brain of AD patients, compared
to control subjects (Griffin et al., 1989). IL-6 levels in the
cortex and hippocampus of AD patients are greater than those
in control subjects (Bauer et al., 1991; Strauss et al., 1992).
Since these cytokines, as discussed above, can regulate ABCB1
expression, an increase in pro-inflammatory cytokines in the
brains of AD patients could reduce ABCB1 expression or
function, contributing to the pathogenesis or progression of
AD. A reduction in the expression of ABCB1 may lead to

the accumulation of substances in the brain that promote
inflammation or contribute to neurodegeneration in AD,
most notably Aβ. Indeed, ABCB1 overexpression attenuated
neurodegeneration in a mouse AD Model (Qosa et al., 2012;
Durk et al., 2014), which is likely due to its transport of Aβ.
In a mouse model of AD, increased Aβ is eliminated from the
brain by ABCB1 (Bruckmann et al., 2017). St. John’s Wort also
significantly decreased the accumulation of Aβ in the brain, in
part, by increasing the expression of the ABCB1 protein in mice
(Brenn et al., 2014). These findings were further supported by
studies reporting that 1α,25-dihydroxy-vitamin D3 significantly
decreased the concentrations of Aβ in the cerebral cortex of
mouse AD model (Durk et al., 2014) and increased ABCB1
activity and expression in brain capillaries of rats and mice,
as well as in isolated endothelial cells of human micro-vessels
(Chow et al., 2011; Durk et al., 2012). Rifampicin (20 mg/kg
i.p., once daily for 3 weeks) had prophylactic efficacy against
the development and progression of symptoms in a mouse

FIGURE 1 | Neuro-inflammatory cytokines modulate ATP-binding cassette B1 (ABCB1), affecting the pathogenesis of Alzheimer’s disease. Alzheimer’s disease is

associated with an increase in the formation of amyloid beta (Aβ) protein in the brain. Amyloid precursor protein (APP) generates Aβ through sequential proteolysis by

beta (β) secretase and gamma (γ) secretase enzymes. Soluble APP-alpha (sAPP-α) and soluble APP-beta (sAPP-β) are produced through cleavage of APP by

α-secretase and β-secretase, respectively. Aβ is transported across brain into the blood and vice versa by lipoprotein-related protein-1 (LRP-1) and the receptor for

advanced glycation end products (RAGE), respectively. ABCB1 is also involved in uptake of Aβ from the brain into the circulatory system. However, the increase of Aβ

plaque levels in the brain accelerates neuro-degenerations. The accumulation of Aβ leads to neuro-inflammation, characterized by activated microglia and the

production of pro-inflammatory cytokines [e.g., interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α)]. Pro-inflammatory cytokines overexpression down

regulates ABCB1 expression in the endothelial cells of brain capillary at the blood brain barrier (BBB). Pro-inflammatory cytokines increase the expression of APP. This

effect is associated with a further increase in the accumulation of Aβ in the brain.
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AD model by decreasing Aβ levels via the upregulation of
ABCB1 transporters in brain microvessels (Qosa et al., 2012).
These findings were confirmed by previous studies showing
that ABCB1 is critical in Aβ uptake across the BBB using
ABCB1-knockout mice (Wang W. M. et al., 2016).

Thus, there are data indicating the involvement of the ABCB1
transporter in Aβ transport and targeting this transporter may
attenuate the progression of AD. The treatment of mice with 5
mg/kg/day IP of oleocanthal, an anti-inflammatory compound,
significantly increases the clearance of Aβ from the cerebral
cortex of mice, in part, by upregulating ABCB1 transporters
in brain micro-vessels (Qosa et al., 2015). This effect was
associated with a decrease in IL-1β levels and a decrease in the
activation of astrocytes. This indicates that neuro-inflammation
may contribute to the accumulation of Aβ in the brain by
decreasing the expression of ABCB1 transporters, which could
contribute AD pathogenesis (Figure 1). Importantly, Aβ induced
an increase in the release of pro-inflammatory cytokines (Yates
et al., 2000; Liu et al., 2012; Parajuli et al., 2013), which may
further reduce the expression of the ABCB1 transporter in a
positive feedback loop that might contribute to the long-term
trajectory of the illness. This hypothesis was supported by a
previous study reporting that administration of Aβ-42 at 4
µg/h via subcutaneous transplanted ALZET pumps for 24 h
significantly decreased the expression of Abcb1 mRNA at the
BBB of 90-day old mice (Brenn et al., 2011). A recent study
reported that the incubation of isolated rat brain capillaries with
Aβ-40 (10 nM for 6 h) significantly decreased the expression and
transport activity of the ABCB1 transporter and this effect was
associated with a degradation of the ubiquitin-proteasome (UP)
(Hartz et al., 2016). The inhibition of UP in themicroglial cell line
enhanced the secretion of TNF-α (Kwon et al., 2008). Therefore,
a decrease in the ABCB1 transporter expression in the BBB
may lead to deposition of Aβ in the brain, contributing to the
progression of AD.

CONCLUSION AND FUTURE DIRECTIONS

The accumulation of Aβ, a substrate of ABCB1, in the brain is
associated with a decrease in the expression of ABCB1, which

could affect pathogenesis of AD. We hypothesize that pro-
inflammatory cytokines decrease the expression of ABCB1 in
the endothelial cells of the BBB, reducing Aβ efflux, based on
data from using preclinical models of AD. The upregulation
of the ABCB1 transporter could decrease the accumulation
of Aβ, thereby potentially attenuating the progression of
AD. Future research is warranted to determine the precise
role of neuro-inflammatory signaling pathways in regulating
ABCB1 expression, and in the pathogenesis of AD, including
cognitive effects. We suggest that compounds or treatments with
dual actions, including anti-inflammatory actions and ABCB1
stimulatory effects, may have greater efficacy in reducing the
progression of AD. Indeed, in a recent study, new compounds
with dual actions for the treatment of AD symptoms were
synthesized, although these compounds also targeted other
pathways (Pang et al., 2017). The overexpression of ABCB1
may be pivotal in attenuating AD symptoms induced by the
deposition of Aβ in the brain. Finally, reducing the accumulation
of Aβ in the brain would also lead to a decrease in the
levels of pro-inflammatory cytokines from microglia, limiting
the down-regulatory effects of these cytokines on ABCB1,
and interrupting the positive feedback loop between Aβ and
neuro-inflammation that may be critical to disease progression
in AD.
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