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Predicting seasonal influenza 
epidemics using cross-hemisphere 
influenza surveillance data and 
local internet query data
Yuzhou Zhang  1, Laith Yakob2, Michael B. Bonsall  3 & Wenbiao Hu1

Can early warning systems be developed to predict influenza epidemics? Using Australian influenza 
surveillance and local internet search query data, this study investigated whether seasonal influenza 
epidemics in China, the US and the UK can be predicted using empirical time series analysis. Weekly 
national number of respiratory cases positive for influenza virus infection that were reported to the 
FluNet surveillance system in Australia, China, the US and the UK were obtained from World Health 
Organization FluNet surveillance between week 1, 2010, and week 9, 2018. We collected combined 
search query data for the US and the UK from Google Trends, and for China from Baidu Index. A 
multivariate seasonal autoregressive integrated moving average model was developed to track 
influenza epidemics using Australian influenza and local search data. Parameter estimates for this 
model were generally consistent with the observed values. The inclusion of search metrics improved the 
performance of the model with high correlation coefficients (China = 0.96, the US = 0.97, the UK = 0.96, 
p < 0.01) and low Maximum Absolute Percent Error (MAPE) values (China = 16.76, the US = 96.97, the 
UK = 125.42). This study demonstrates the feasibility of combining (Australia) influenza and local search 
query data to predict influenza epidemics a different (northern hemisphere) scales.

Determining the key drivers of the dynamics of seasonal and non-seasonal influenza outbreaks remains a major 
challenge1. Influenza epidemics typically occur during the winter months, which is considered May to October in 
the southern hemisphere and October through May in the northern hemisphere2. Influenza transmission alter-
nates between the northern and southern hemispheres through these seasons. For instance, Southeast Asia was 
shown to maintain continuous circulation of influenza strain A (H3N2) which seeded transmission in Oceania 
and subsequently to North America, Europe and South America3. We hypothesize that influenza data from 
Australia is predictive of influenza transmission in the northern hemisphere’s impending seasonal influenza. 
Thus, status in Oceania countries may provide early warning for other countries, especially for countries in the 
northern hemisphere.

Through 2017, Australia experienced the severest influenza outbreak for five years with the predominant 
circulating influenza virus being H3N24. Deaths reported in notified laboratory cases confirmed influenza was 
higher in 2017 (n = 745) than in recent years (5 year average = 176; Range: 28–745)4. This strain (in conjunction 
with influenza B virus) led to the largest influenza epidemic outbreak in the last five years in the northern hemi-
sphere during the 2017–2018 season, up to 15th March, 2018, a total of 128 influenza-associated pediatric deaths 
and 327 confirmed deaths had been reported in the US and the UK respectively5,6.

There is often a delay of up to two weeks between the onset of influenza disease and when notification data is 
compiled into traditional surveillance reports7. This lag in reporting limits the ability for conventional surveil-
lance systems to provide timely epidemiological intelligence and delays the response of health officers to mitigate 
or manage possible outbreaks8. Recently, there has been growing interest in using internet search metrics to 
perform rapid detection and surveillance for infectious diseases outbreaks9–12. This new tool relies on the premise 
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that disease activity can be predicted by tracking changes in frequencies of related internet searches for key terms, 
as people will actively seek related information from the internet when they contract a disease in the early phase13. 
Although burgeoning, maximising the benefit of this new approach is still work in progress, with previous inter-
net search data-based models sometimes producing erroneous projections14–16.

This study aims to develop an empirical time series model using Australian influenza surveillance and local 
internet search query data to predict seasonal influenza epidemics in the northern hemisphere. We will assess 
predictive performance separately for China, the US and the UK (these three countries account for 23.7% of the 
world population at the end of 201717). Our aim is to improve upon predictive tools utilising only infection sur-
veillance data through complementation with internet search data.

Results
Descriptive analysis of influenza epidemics. The trends and systemic seasonal variation of influenza 
infection are illustrated in Fig. 1. From seasonal decomposition and time series analysis, clear seasonal patterns 
are evident for Australia, China, the US and the UK. The influenza epidemics were observed to peak between 
January and March in the US, the UK and China and between August and October in Australia. Moreover, differ-
ent influenza subtypes predominated each year. However, for most of the study period, the strains circulating in 
the subsequent northern hemisphere influenza seasons of China, US and the UK were the same as those circulat-
ing in Australia (Supplementary Table 1)18.

Time-series cross correlation analysis. The cross-correlation function (CCF) showed the strong-
est correlations between Australia with China, the US and the UK in the trends of influenza surveillance at a 
lag of 21 weeks (r = 0.184), 22 weeks (r = 0.622) and 22 weeks (r = 0.289) (all p < 0.05), respectively (Fig. 2) 
(Supplementary Table 2). Additionally, the CCFs showed that BI at a lag of 1 week had a significant associa-
tion with seasonal influenza at China (r = 0.467); similarly, a 1-week lag had the closest association between GT 
and the US (r = 0.632) and the UK (r = 0.419) (all p < 0.05), separately (Supplementary Fig. 1) (Supplementary 
Table 3).

Seasonal autoregressive integrated moving average (SARIMA) model. Australian influenza data 
and local search query with maximal correlation coefficient were used to construct the time series models. Thus, 
we used Australian influenza at 21-week, 22-week and 22-week lag to construct the models for China, the US and 
the UK, respectively. The local search data at 1-week lag was also included in the model construction as an inde-
pendent covariate. The SARIMA model (1,1,1) (1,0,2), (2,2,2) (2,0,0) and (3,0,2) (1,0,0) with Australian influenza 
and local search data was found to provide the best fit to the data in China, the US and the UK, respectively. The 
analysis of goodness-of-fit revealed that the SARIMA models fitted the data well, as the autocorrelation function 
(ACF) and partial autocorrelation (PACF) of the residuals of the models fluctuate around zero (Supplementary 
Fig. 2). The results reveal that the models including Australian influenza surveillance data and local internet query 
data fitted the reported influenza data better with larger R² and smaller BIC and RMSE values (Table 1). Thus, the 
models that incorporated lagged Australian influenza and lagged local search data were selected as the predictive 
models for validation. Results of SARIMA models are presented in Table 2. Fitted and 1-week ahead predicted 
values of SARIMA models are shown in Fig. 3 and Supplementary Fig. 3.

The evaluation of forecasting performance of the 1-week ahead predictive models is presented in 
Supplementary Table 4. This table shows that the predictive capacity of the models including Australian influenza 

Figure 1. The trends (upper panel) and systematic seasonal factors (lower panel) of positive influenza 
virological number of Australia, China, the US and the UK between week 1 2010 and week 9 2018. (X axis: date 
(week), Systematic seasonal factors were generated by seasonal decomposition procedures).
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surveillance data and local search data is higher with larger overall Pearson correlations (China = 0.96, the 
US = 0.97, the UK = 0.96, p < 0.01). The models were also robust as indicated by the smaller size of the over-
all MAPE (China = 16.76, the US = 96.97, the UK = 125.42), which measures the discrepancies between the 
off-target model predictions and the observed influenza notifications.

Discussion
Here, we have used time series analysis and local internet search data to predict emerging influenza dynamics. To 
the best of our knowledge, this is the first attempt to combine Australian influenza surveillance and local internet 
search data to predict influenza epidemics in the northern hemisphere. We used FluNet, the positive virological 
data of variable flu strains to predict influenza epidemics in the study. Across years in which both the same strains 
dominated in the different hemispheres, our models demonstrated a good predictive capacity using Australia 
influenza surveillance data. Intrinsic strain virulence is only part of what makes up the force of infection, with 

Figure 2. Cross-correlation between Australian influenza surveillance with Chinese, the US and the UK 
influenza surveillance data. Confidence intervals (95%) are indicated by the black lines (X axis: lag value, Y axis: 
CCF value).

China (1,1,1) (1,0,2) US (2,2,2) (2,0,0) UK (3,0,2) (1,0,0)

R2 BIC RMSE R2 BIC RMSE R2 BIC RMSE

Model 1 92.80 13.17 301.55 94.20 14.33 557.46 91.60 12.27 139.23

Model 2 94.10 11.42 292.37 96.70 12.62 530.75 93.30 9.73 124.99

Model 3 93.90 11.87 297.41 96.40 12.94 536.18 92.90 10.06 128.37

Model 4 94.40 11.12 245.18 96.80 12.16 405.13 93.90 9.52 111.95

Table 1. The goodness-of –fit results of SARIMA models. Model 1: Australian influenza data and local search 
data excluded model; Model 2: Australian influenza data included model; Model 3: Local search data included 
model; Model 4: Australian influenza data and local search data included model.
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Parameters Coefficients Standard error t P value

China

AR 0.75 0.10 7.68 0.000

MA 0.52 0.13 4.12 0.000

SAR 0.71 0.32 2.21 0.028

SMA 0.73 0.33 2.21 0.028

Search 0.16 0.04 4.57 0.001

Influenza 0.01 0.01 2.17 0.031

The US

AR 1.65 0.04 40.91 0.000

MA 1.99 0.02 81.24 0.000

SAR 0.04 0.07 0.52 0.602

Search 3.24 0.38 8.44 0.000

Influenza 0.22 0.07 3.12 0.002

The UK

AR 0.95 0.02 54.60 0.000

MA 0.85 0.08 6.13 0.000

SAR 0.27 0.06 4.57 0.001

Search 0.10 0.02 8.47 0.000

Influenza 0.01 0.01 2.33 0.020

Table 2. Parameters estimates (and significance testing) associated with the SARIMA models for China, the 
US and the UK. AR: autoregressive, MA: moving average, SAR: seasonal autoregressive, SMA: seasonal moving 
average, Search: local internet search metrics, Influenza: Australian influenza infection.

Figure 3. Weekly observed and 1-week ahead predicted positive influenza virological number using SARIMA 
model in China, the US and the UK from week 1, 2015 to week 9, 2018 (X axis: date (week), Y axis: positive 
influenza virological number, LCL: the lower control limit, UCL: the upper control limit).
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other components including abiotic factors and population-level susceptibility19. We developed an early warning 
model combining the surveillance data from different geographic scales as the dramatic change in patterns of 
population movement over last decade has been reported as an important contributor for the transmission of 
infectious diseases20.

Seasonal time series decomposition analysis showed clear seasonal patterns of influenza infections in each 
country. Larger numbers of individuals reported with positive influenza viral loads were observed during winter 
and spring months across the eight-year study period. The strong association between the influenza surveillance 
data of China, the US and the UK with that of Australia during the previous influenza seasons indicated the 
significant potential for monitoring influenza epidemics in northern hemisphere using southern hemisphere’s 
influenza surveillance coupled with significant improved refinement, albeit at reduced lead-in time, when also 
combined with local internet search data.

Results of cross correlation showed that significant associations were exhibited at 1–7 week lag between local 
internet search data and influenza surveillance data. The signalling of variation in search metrics may offer suffi-
cient time to implement influenza preventive measures. These results suggest that a pre-requisite for constructing 
early warning systems for influenza would be to combine southern hemisphere influenza data with local internet 
search data. The southern hemisphere data provides a multi-month lead-time while the internet query data sig-
nificantly improves predictive performance just prior to the increased transmission in the northern hemisphere.

Our results indicate that time series models that combine opposite-hemisphere influenza surveillance data 
with internet search covariates allow a marginal increase in forecasting accuracy at one week ahead, as internet 
search data can be collated faster with emerging northern hemisphere epidemiological influenza trends. Several 
recent studies have demonstrated similarly improved forecasting capabilities when combining local surveillance 
data with internet data21,22. Linking variation in influenza infections of southern hemisphere with local internet 
search data could provide longer time windows for government and health authorities in northern hemisphere 
countries to implement cost-effective influenza preventive measures.

There is an opportunity for using search data in diseases surveillance in the countries (with strong informa-
tion communications technology capacity) for monitoring emerging infectious diseases in vulnerable regions or 
where access to traditional disease surveillance is limited23. Moreover, collating these data can capture anomalous 
patterns of diseases in real-time, which is unlikely to be achieved by traditional surveillance24. The results of this 
study suggests the SARIMA models that included internet search query improve the ability to predict patterns in 
the time series.

It is important to bear in mind that there are some limitations with these sorts of studies that will only improve 
with better reporting structures. For instance, the FluNet only includes reported virological data from partici-
pating laboratory, and this database does not include patients who have influenza but do not seek medical care. 
Furthermore, it is acknowledged that different internet-seeking behaviours, self-reporting and media-driven 
biases exist between different sectors11: for example, previous studies reported that media bias can adversely 
influence internet-based surveillance systems10,25. These sources of (observation) error have obvious implications 
for developing precise predictions about epidemic outbreaks. Developing methods to deal with better reporting 
mechanisms and/or novel, contemporary statistical approaches should be future goals. Moreover, we used the 
total number of the positive virological data of variable flu strains in the study. Further work is needed to assess 
predictive performance when multiple flu strains are co-circulating at high levels.

All these issues notwithstanding, shifting patterns of health-seeking behaviour, the digitisation of society and 
increased internet access provide a unique opportunity to address emerging infectious disease events9. The inter-
net provides online, real-time health-related data with high geographical resolution that can be systematically 
queried, aggregated and analysed to inform public health agencies26. The potential impact of disease outbreaks 
generally extends beyond the local scale. Surveillance combining traditional and internet data sources will have 
global relevance and could contribute to the improvement of global health security9. In the future, a dynamic and 
integrated spatiotemporal influenza early warning system, which incorporates uncertainty around the dynamic 
and heterogeneous asymptomatic rate of disease27 and that is developed by combining web search engine query 
data with socio-environmental factors and historic disease surveillance data may have the potential to assist pub-
lic health authorities in identifying high risk areas on a global scale.

Methods
Data collection. Weekly data on national total number of individuals with influenza positive viruses that 
were reported to the FluNet surveillance system in Australia, China, the US and the UK were obtained from 
World Health Organization FluNet surveillance between week 1, 2010, and week 9, 201818. FluNet is a global 
web-based tool for influenza virological surveillance, which was provided remotely by National Influenza Centres 
(NICs) of the Global Influenza Surveillance and Response System (GISRS). We used Google Trends (GT; for the 
US and the UK) and the Baidu Index (BI; for China) to collect search data. We selected ten top search terms, (the 
selected search terms for data analysis are showed in Supplementary Table 5) which highly correlated with the 
term “influenza” from Google Correlate (GC) for the US and the UK, and from BI for China, then we combined 
the selected search terms as one search query to collect search data. FluNet has 53 weeks’ surveillance data in 
2015 and the number of influenza positive viruses in the week is relatively small. Thus, we aggregate the data of 
week 53, 2015 into week 52, 2015 in the study. Moreover, no overlap between the last week and first week of the 
following year was found in the weekly influenza surveillance data and search data.

Data analysis. Descriptive analysis of influenza epidemics. All data analyses were performed with SPSS 
Statistics software, version 25 (SPSS Inc; Chicago, IL, USA). Statistical significance was set at P < 0.05. All data 
were checked for completeness and accuracy before analysis.
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Time series decomposition procedures are able to describe the trend and seasonal factors in a time series28. 
The goal of this analysis was to determine systematic seasonal variations in influenza epidemics in the study 
period.

Time-series cross correlation analysis. To assess the correlations between Australian influenza infections and 
other countries’ data (the US, the UK and China), as well as the associations between the influenza epidemics 
data (the US, the UK and China) and their local search data, time-series cross correlation was undertaken. We 
used seasonal adjusted data in this analysis by performing seasonal decomposition analysis. As the variables are 
strongly associated with each other with different time lags, only those with maximal correlation coefficient were 
used to construct the models in the analysis12,29.

SARIMA model with Australian influenza and local search query data. As influenza has a strong seasonal char-
acteristics in time series30, SARIMA models were developed to control the effects of seasonality in the forecast of 
influenza epidemics10,31. We used Australian influenza data and local search query as the independent variable 
to predict influenza epidemics of the US, the UK and China, separately. Generally, there are three significant 
components of a SARIMA model, an autoregressive (AR) component, a differencing and moving average (MA) 
component. These parameters are typically selected when fitting these model: (p, d, q) (P, D, Q); where p is the 
order of the AR, d is the order of the differencing, q is the order of the MA, P is the order of the seasonal AR, D is 
the order of the seasonal differencing, and Q is the order of the seasonal MA32.

The equation of this model is formulated as:

y A A a A A A 1 A 1 A AusInf LocSch( ) ( ) ( )/ ( ) ( )( ) ( )t q Q
s

t P
s

P
s

p
d s D= Θ Θ Φ Φ Φ − − + +

where ΦP(As) is seasonal autoregressive operator, Φp(A) is autoregressive operator, Θq(A) is the operator of moving 
averages, ΘQ(As) is seasonal operator of moving averages, at is white noise, yt is predicted influenza surveillance 
data, AusInf and LocSch are Australian influenza surveillance data and local search data’s regressive coefficients.

To test the goodness-of-fit of the model for training period, autocorrelation and partial autocorrelation of 
residuals were assessed. In addition, Bayesian information criterion (BIC), the stationary R square (R²) and the 
Root Mean Squared Error (RMSE) were also used to examine the goodness-of-fit of the model in training period. 
The data file was divided into two data sets: data from week1, 2010 to week 52, 2014 was used as a training dataset 
to construct models and data from week 1, 2015 to week 9, 2018 was used as a test data set to validate the models. 
Additionally, a comparison of performance of SARIMA models that either included or excluded local search data 
was undertaken. A particular SARIMA model can be considered an improvement relative to others if it has a 
large R² value and a small BIC value. The better fitting model was selected for use as the predictive model. Here, 
we reported three metrics to evaluate the predictive performance of the SARIMA model in validation period: 
Pearson correlation, RMSE and the Maximum Absolute Percent Error (MAPE)12,33.

Data Availability
The datasets analysed during the current study are calculated based on the methods described in this study and 
the original data of the influenza surveillance, which can be found at www.who.int/influenza/gisrs_laboratory/
flunet/en/.
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