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ABSTRACT

C. korshinskii is one of the most widely-planted sand-fixing legumes in northwest China
and exploring its rhizosphere microbiome is of great ecological importance. However,
the effect of long-term sand fixation on the composition, diversity, and underlying
functions of microbes in the C. korshinskii rhizosphere in dryland ecosystems remain
unclear. Here, we performed high-throughput sequencing using a 16S rRNA (absolute
quantification) and bacterial functional annotation of prokaryotic taxa (FAPROTAX)
analysis and an ITS (relative quantification) and fungal functional guild (FUNGuild)
analysis to investigate the C. korshinskii rhizosphere microbiome and metabolic
functional groups at different sand-fixing ages (six years, CK6; twelve years, CK12;
and eighteen years, CK18) and determined the physicochemical properties of the
rhizosphere soil. Results showed that the key bacterial taxa of the rhizosphere were
significantly more abundant in CK18 than in CK12 and CK6 at the phylum-class-
genus level, and that fungal Glomeromycota was also significantly more abundant
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evidence that the rhizosphere microbes of C. korshinskii are closely related to the

accumulation of N in the restoration of desert ecosystems, and that the ecological
functional processes they are involved in mainly involve C and N cycles, which play
an important role in desertification reversal.

Subjects Agricultural Science, Microbiology, Molecular Biology, Plant Science, Soil Science

Keywords Rhizosphere, Microbial community, C. korshinskii, Nitrogen (N), Function prediction,
Years of sand fixation

INTRODUCTION

In recent decades, an increasing number of studies have reported that revegetation can
effectively promote desertification reversal (Lyu et al., 2020; Zhou et al., 2020a), and that
the sand-fixing model of combining straw checkerboard with vegetation is one of the
most effective measures (Li et al., 2020). In the context of the “Grain for Green” program
advocated by the Chinese government, various kinds of drought-tolerant plants have been
applied during afforestation (Yu et al., 2020). C. korshinskii, one of the most widely-planted
xerophytic legume shrubs in northwest China, is also a pioneer plant for soil and water
conservation and sand fixation and has a strong water acquisition strategy in dryland
ecosystems (Fang et al., 2008; Wang et al., 2021a; Waseem et al., 2021). One common
method of sand restoration is planting N-fixing leguminous shrubs to restore vegetation, so
C. korshinskii has been widely-used in long-term restoration projects in dryland ecosystems
(Issah et al., 20145 Xu et al., 2019). Studies have reported that C. korshinskii has a unique
survival strategy in ecological restoration and a strong resistance to extreme drought (Gao
etal., 2018; Zhao et al., 2021), which may be strongly related to its rhizosphere (Hartman
et al., 2017). Studying the rhizosphere microorganisms and soil environmental factors of
C. korshinskii will likely identify potential microbial functional groups and processes in its
rhizosphere that explain this shrub’s ability to grow so well in harsh climates.

Plants depend on the rhizosphere in order to maintain health, absorb nutrients, and resist
pathogens. Rhizosphere studies of an annual herbaceous plant showed that soil habitat
had a significant effect on rhizosphere community composition and gene expression. The
continuous increase of carbohydrate depolymerization genes in the rhizosphere led to
the diversity of functional groups, formed obvious niche differentiation, and drove the
rhizosphere C cycling process (Nuccio et al., 2020). Importantly, the rhizosphere is part of
a dynamic ecological process. Within the rhizosphere, plant roots act as the supplier of
nutrients to the soil, and nutrients flow between inorganic and organic substances, which are
mediated by the rhizosphere microbes (York et al., 2016). Plant growth is greatly impacted
by the availability of soil N and phosphorus (P) in the rhizosphere. The N-fixing ability of
legumes helps address the problem of N deficiency in dryland ecosystems (Hartman et al.,
2017; Kobayashi, Yamaguchi & Iwasa, 2021). This is because the leguminous rhizosphere
depends on powerful rhizobia to form symbiotic nodules and to continuously “fix”
atmospheric dinitrogen (N;) into ammonia (NHj3) in order to provide the N needed for
the host plants (Kobayashi, Yamaguchi ¢ Iwasa, 2021; Yang et al., 2021). Rhizobia in the
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rhizosphere of legumes can induce plant root nodulation, which significantly improves
the soil by N fixation, increasing crop production. There are many species of rhizobia,
belonging to 18 genera in the family Rhizobiaceae, of which Rhizobia is the largest genus.
Most of a plant’s total N is used in the formation of chloroplasts, so N plays a vital role
in plant photosynthesis and production (Lindstrom ¢ Mousavi, 2019); in return, plant
photosynthates supply the needs of the rhizosphere microbes, resulting in cooperative
relationships between plants and microorganisms, fulfilling the C and N needs of both
(Henneron et al., 2020). The rhizosphere N-fixing microbes are numerous and diverse; the
main bacteria that come from Proteobacteria include: Alphaproteobacteria (ct-rhizobi),
Gammaproteobacteria (y -rhizobi), Betaproteobacteria (8-rhizobia), Deltaproteobacteria,
and some Actinomycetes (Vadakattu ¢ Sharma, 2020). Studies have shown that fungal
mycorrhizas (e.g., arbuscular mycorrhizal fungi, AMF) attach some bacteria to their
mycelia and spores, which play a dual role in P solubilization and N fixation and cover
approximately 80% of plants in terrestrial ecosystems (Kiers et al., 2011). AMF mainly
originate from the soil fungal phylum Glomeromycota and are responsible for large-scale
nutrient migration and C sequestration; furthermore, C availability triggers N utilization
through arbuscular mycorrhizal symbiosis, achieving a mutually beneficial trade of C, N
and P with AMF hosts (Bucking ¢» Shachar-Hill, 2005; Fellbaum et al., 2012; Kiers et al.,
2011). AMF also play a critical role in N and P metabolism (Wang et al., 2021b).

Based on changes in environmental factors, the functional group of rhizosphere
microorganisms can trigger the rhizosphere priming effect and promote the functional
processes of the rhizosphere soil (Mo et al., 2021; Tkacz ¢ Poole, 2020). Previous studies
have shown that key groups of microbes have specialized metabolic functions and are
able to maintain the stability of the community in the rhizosphere (Xun et al., 2021). For
example, a series of functional traits in legumes are related to symbiotic N fixation, and
these traits may determine the successional and functional niches of different legumes
(Dovrat et al., 20205 Schulte et al., 2021). Environmental stress (Astorga-Elo et al., 2020;
Zhang et al., 2022), degradation of pollutants (Rong et al., 2021), continuous cropping
(Alami et al., 2020; Yao et al., 2020), and biological invasion (Gao et al., 2019) could all lead
to changes in the microbial functional groups and metabolic processes, specifically, a higher
abundance of chemoheterotrophy and aerobic chemoheterotrophy. Chemoheterotrophic
bacteria are mainly responsible for the decomposition of organic matter and are the main
groups consuming environmental C sources (Kimpfer et al., 1993). The disturbed host, by
changing root exudates to recruit functional groups, again regulates soil nutrient cycling,
resulting in soil C:N and N:P ratio imbalances (Canarini et al., 2019; Ding, Cong ¢ Lambers,
2021; Mo et al., 2021).

Given the excellent performance of C. korshinskii in the ecological restoration of sandy
land over the years (Gao et al., 2018) and also the N fixation characteristics of legumes, there
is still a poor knowledge about how the relationship between the composition and functional
groups of the leguminous C. korshinskii rhizosphere and soil nutrients changes with years of
sand fixation in extremely desertificated ecosystems. Hence, we put forward the following
research questions: (1) How do the characteristics of functional microbial composition
and soil physicochemical properties in the C. korshinskii rhizosphere change with years?
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(2) What is the relationship between rhizosphere microbial functional composition and
soil properties? According to these research questions, we hypothesized that years of sand
fixation with the N-fixing C. korshinskii could effectively enrich the functional rhizosphere
microbes by accumulating soil N nutrient. The major aims of our study were to (1) examine
the functional microbes and soil properties of the C. korshinskii rhizosphere after 6, 12 and
18 years of sand-fixing, (2) determine and evaluate the relationship between soil properties
and microbes of the rhizosphere, and (3) predict the function of the rhizosphere microbes
and reveal the relationship between physicochemical properties (especially the soil N
nutrient content) and functional groups. Our study will better elucidate the adaptation
mechanism of C. korshinskii in extremely arid or sandy habitats from the perspective of
rhizosphere microbial ecology, and provide a reference for vegetation restoration.

MATERIALS AND METHODS

Sampling sites and sampling design

The sampling was carried out in the core area of straw checkerboard-coupled shrub sand
fixation in the Baijitan National Nature Reserve (37°58'24”N, 106°24'06"E), located in
the southwest margin of the Mu Us Sandy Land, China. The study site is a typical, sandy,
ecological recovery area and has an annual precipitation of 230-292 mm, with nearly 70%
of the precipitation concentrated in July to September when the summer transition to
the autumn months. The site has a semiarid, continental monsoon climate with a mean
annual accumulated temperature of approximately 3,334.8 °C, a mean annual temperature
of approximately 8.1 °C, and a 157-d frost-free period (Zhou et al., 2020b). This area was
a moving dune before 2001, with strong sand storms seriously affecting the local living
conditions. In 2001, straw checkerboard sand fixation technology began to be implemented
throughout China, including at the study site. Then, starting in 2002, indigenous drought-
tolerant seedling shrubs, such as C. korshinskii, Calligonum mongolicum, Corethrodendron
scoparium, and C. fruticosum var. mongolicum, were planted yearly on the checkerboard.
Among these shrubs, C. korshinskii had the largest planting area. In 2002, 2008 and 2014,
straw checkerboards were established, and C. korshinskii was planted successively in the
Baijitan Nature Reserve. These three straw checkerboard combined vegetation sand-fixing
areas established by C. korshinskii have had significant impacts on sand fixation and
desertification reversal, and the moving dunes are now well controlled (Fig. 1). We selected
these three areas, established in 2002, 2008, and 2014 as the observation plots in this study,
represented by CK18, CK12 and CK6 (Fig. 1), respectively. The study area is in the National
Nature Reserve and has not been disturbed by anthropogenic activities.

Soil sampling

In order to keep the samples as consistent as possible, all chosen plots had the same slope

and terrain. We chose three plots in each of the three areas (CK6, CK12, and CK18) and

two replicate areas (10 m x 10 m, at least 100 m apart), so each area had 6 replicates in

total. We collected samples in the summer (on July 26) and fall (on October 17) of 2020.
Before sampling, we excavated the roots of C. korshinskii in advance for preliminary

observation and found that the key branches of the C. korshinskii roots, which were
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PAST

Established straw checkerboard In 2002, 2008 and 2014, Caragana
Moving dune (Before 2001) sand-fixing region, in 2001 korshinskii was planted in the established
straw checkerboard

After 18 years After 12 years After 6 years

PRESENT

Photo of C. korshinskii planted in 2002 Photo of C. korshinskii planted in 2008 Photo of C. korshinskii planted in 2014
(CK18) (CK12) (CK6)

Real scene photo of straw checkerboard planting C. korshinskii in 2020

Figure 1 Sand-fixation process of straw checkerboard-coupled shrubs and performance in the C. kor-
shinskii planting stages.
Full-size Gal DOI: 10.7717/peer;j.14271/fig-1

interwoven with more root hairs, were concentrated 30—40 cm below the surface of the soil.
Studies have confirmed that the root hair region is the region closest to the rhizosphere
soil-microbe-host relationship (Koebernick et al., 2017; Ling, Wang ¢» Kuzyakov, 2022).
Therefore, we determined that the rhizosphere sampling range of C. korshinskii was 3040
cm below the soil surface. For each of the two sampling periods, we selected 2—3 healthy C.
korshinskii plants of similar size in each replicate area, collecting the top 30 to 40 cm of the
rhizosphere soil with a shovel, and mixing it evenly into a duplicate sample. The rhizosphere
soil sampling approach involved gently shaking off the bulk soil around the root, brushing
the soil tightly attached to the root surface with a sterile brush, and then passing it through
a 1-mm soil sieve (we found that using a soil sieve with a 2-mm diameter resulted in too
much dead root-bark litter in the final soil samples). After 5 g of rhizosphere soil was
collected from each sample plant, the sample soil was put into a numbered tube, placed
into a dry ice bucket (McPherson et al., 2018), and then transported to the refrigerator at
—80 °C for DNA extraction. Approximately 1 kg of the bulk soil shaken from the plant
roots was also collected for a physicochemical properties analysis. At the time of sampling,
the wet soil mass was immediately weighed for subsequent determination of soil moisture
(SM).
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Analysis of soil physicochemical properties

SM was measured by drying to constant mass in an oven at 105 °C. The air-dried rhizosphere
soil was then divided into two groups with one group put through a 1-mm soil sieve and the
other put through a 0.149 mm soil sieve. The soil pH and electrical conductivity (EC) were
measured using a pH meter (PHS-3D, Shanghai Sanxin Instrument, Shanghai, China) and
a conductivity meter (DDS-307A, Shanghai Youke Instrument Co. Ltd., Shanghai, China),
respectively. Soil organic carbon (SOC), total phosphorus (TP), available phosphorus
(AP), total nitrogen (TN), and available nitrogen (AN) were measured using the methods
described by Bao (2000). We also calculated the rhizosphere soil stoichiometric ratios
(SOC/TN, C:N; SOC/TP, C:P; TN/TP, N:P).

DNA extraction, library preparation, and lllumina MiSeq sequencing
The total microbial genomic DNA was extracted using the FastDNA® SPIN Kit for Soil
(MP Biomedicals, Santa Ana, CA) according to the manufacturer’s instructions. In order
to understand the changes in the soil microbiome of C. korshinskii after 6, 12 and 18
years, accurate 16S bacterial absolute quantification sequencing was performed (Jiang et
al., 2019). The bacterial absolute quantitative sequencing process was as follows: the 16S
amplicon library was constructed and sequenced by adding a certain amount of the synthetic
“Spike-in Standards” sequences to the sample DNA, and then the standard curve was drawn
according to the number of 16S amplicon reads and their absolute copy numbers of spike-in
standards. The absolute copy number of 16S rRNA genes was calculated for species within
the range of the standard curve in the sample (Yang et al., 2018). Primers 515F/907R (5'-
GTGCCAGCMGCCGCGG-3'/5'- CCGTCAATTCMTTTRAGTTT-3) and ITS1F/ITS2R
(5'- CTTGGTCATTTAGAGGAAGTAA-3'/5'- GCTGCGTTCTTCATCGATGC-3") were
used to amplify the bacterial 16S rRNA V4-V5 hypervariable regions (Wang et al., 2019)
and the fungal ITS1 gene region (Shi et al., 2021c), respectively. The whole sequencing
process was performed using technology from Genesky Biotechnologies Inc., Shanghai,
China (201315) (Jiang et al., 2019).

Data analysis
The raw read sequences were processed by QIIME2 (Fung et al., 2021), and the DADA2
plugin was used to identify amplicon sequence variants (ASVs; (Callahan et al., 2016).
Taxonomic assignments of ASV representative sequences were performed with a confidence
threshold of 0.8 by a naive Bayes classifier that was trained on the Ribosomal Database
Project (RDP) (version 11.5) (http:/rdp.cme.msu.edu/). Then, the spike-in sequences were
identified, and the total reads were counted. A standard curve for each sample was generated
based on read counts and spike-in copy number. The absolute copy number of each ASV
in each sample was calculated by using the read counts of the corresponding ASVs, and the
spike-in sequence was removed in the subsequent analysis (Jiang et al., 2019).
FAPROTAX (Functional Annotation of Prokaryotic Taxa) was originally used to predict
the bacterial metabolic functional groups of aquatic ecosystems (Louca, Parfrey ¢ Doebeli,
2016), but in recent years, it has also been used to predict the C and N metabolic functional
groups in terrestrial soil systems (Sansupa et al., 2021). The FUNGuild Database is an
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annotated database of the functional groups of fungi (Alami et al., 2020). In the present
study, we investigated the sand-fixation effect of C. korshinskii, regardless of any association
with N fixation and C utilization in the rhizosphere. Therefore, FAPROTAX and FUNGuild
analyses were used in this study to predict the functional group characteristics of the C.
korshinskii rhizosphere to facilitate subsequent research.

Alpha diversity (Shannon, Simpson and Coverage) and richness (Observed, Chaol
and ACE index) were evaluated using the ASV table by QIIME2 (Fung et al., 2021).
Venn diagrams and heatmaps were drawn by the “ggplot2” and “Vegan” R packages (R
4.0.5; https:/www.r-project.org/). Changes in the soil microbial community composition,
functional groups, and physicochemical properties of the C. korshinskii rhizosphere, as
well as their differences between sand fixation years (CK18, CK12 and CK6), and the
subsequent correlation analysis (linear and matrix correlation analysis), were measured
using one-way ANOVAs with Duncan’s tests by Origin 9.8.0.200 (OriginLab Corporation,
Northampton, MA, USA). A redundancy analysis (RDA) was conducted by Canonco 5
to explore the relationship between rhizosphere composition, functional groups, and soil
physicochemical properties. The above figures were processed by Adobe Illustrator CS6,
and the significance of the difference is indicated by P < 0.05, P < 0.01, and P < 0.001.

RESULTS

Changes in the microbial community composition in the

C. korshinskii rhizosphere at different years of sand fixation

The sequences and ASVs of both bacteria and fungi had few differences in the summer
and fall samples, so we averaged the summer and fall results from all soil samples for the
statistical analysis. We obtained a total of 3,381,990 and 1,060,779 bacterial and fungal
community sequences, respectively. The average number of bacterial sequences (211,437)
varied from 203,385 to 219,955 per sample, whereas the average number of fungal sequences
(66,616) varied from 14,437 to 81,553 per sample (Table S1). A total of 1,862 bacterial
ASVs were common among CK18, CK12, and CK6, accounting for 21.3%, 21.8%, and
23.0% of the total bacterial ASVs, respectively. A total of 110 fungal ASVs were common
among CK18, CK12, and CK6, accounting for 11.4%, 12.6%, and 14.4% of the total fungal
ASVs, respectively (Fig. S1). The rhizosphere microbial community of C. korshinskii was
dominated by bacterial groups.

Although there were no significant differences in the alpha diversity of microorganisms
between CK18, CK12, and CK6 (Fig. S2), we found that the abundance of some groups
of bacteria in the rhizosphere of C. korshinskii increased gradually with time (Fig. 2),
with the highest levels found in CK18. These bacterial groups were represented at different
taxonomic levels. The dominant phyla that were significantly higher in both summer and fall
CK18 samples than in CK12 and CK6 (P < 0.05, 0.01) were: Actinobacteria, Proteobacteria,
Chloroflexi, Bacteroidetes, Planctomycetes, and Firmicutes (Figs. 2A—2B). At the class
level, Actinobacteria, Alphaproteobacteria, Gammaproteobacteria, Deltaproteobacteria,
Sphingobacteriia, Betaproteobacteria, Anaerolineae, and Thermomicrobia levels were
significantly higher in CK18 (P < 0.05) than in CK12 and CK6 (Figs. 2C-2D). At the
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Full-size Gal DOI: 10.7717/peerj.14271/fig-2

fungal phylum level, the relative abundance of Glomeromycota in CK18 was significantly
higher (P < 0.01) than in CK12 and CK6 (Figs. 2E-2F).

The abundance of genus level groups in the rhizosphere of C. korshinskii in both
summer and fall also increased with year, and we found that the bacterial genera were also
most abundant in CK18, including Streptomyces, Flavobacterium, Chitinophaga, Kribbella,
Mesorhizobium, Opitutus, Actinophytocola, Pseudonocardia, Rhizobium, Amycolatopsis,
Sphingomonas, Ensifer, and Neorhizobium, especially Streptomyces (Figs. 3A-3B).
Among these genera, Rhizobium, Ensifer, Neorhizobium, Mesorhizobium, Streptomyces,
Sphingomonas, and Flavobacterium have typical nitrogen-fixing and/or phosphate-
solubilizing characteristics. This result suggests that the enrichment of the rhizosphere
microbiome significantly increases with year, with certain functional groups shaping these
changes.
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Figure 3 Heatmap of the rhizosphere bacterial composition of C. korshinshii at the genus level in both
summer (A) and fall (B) after 6, 12, and 18 years of sand-fixing restoration.

Full-size Eal DOI:

10.7717/peerj.14271/fig-3

Variations in the physicochemical properties of the rhizosphere soil

of C. korshinskii and the relationships of these variations with the
rhizosphere microbes
The soil physicochemical properties of the rhizosphere differed among the three stages of C.

korshinskii restoration (Fig. 4). In both summer and fall, the soil AN (summer: P < 0.001,
F =13.71, R> = 0.696; fall: P < 0.01, F = 6.94, R = 0.50), TN (summer: P < 0.001,
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Figure 4 Changes in the soil physicochemical properties of the C. korshinskii rhizosphere in summer
and fall after 6, 12, and 18 years of sand-fixing restoration.
Full-size Gal DOI: 10.7717/peerj.14271/fig-4

F =39.46, R* = 0.868; fall: P < 0.01, F =10.58, R* = 0.602), pH (summer: P < 0.001,

F =171.3, R* =0.966; fall: P < 0.001, F = 52.88, R* = 0.883), and EC (summer: P < 0.001,
F=112.7, R* =0.95; fall: P < 0.001, F = 18.73, R? = 0.728) were significantly higher in
CK18 than in CK12 and CK6, with no significant difference seen between CK12 and CK6
(P > 0.05). The stoichiometric ratio also changed significantly, and the ratio of N:P in
CK18 (summer: P < 0.01, F = 6.98, R* = 0.54; fall: P < 0.01, F =10.12, R* =0.591) was
significantly higher than that in CK12 and CK6, while the C:N ratio (summer: P < 0.05,
F =6.16, R* =0.507; fall: P < 0.01, F =9.75, R =0.582) showed the opposite change,
with the C:N ratio significantly lower in CK18 than in CK6 and CK12. These results indicate
that over along period of year, C. korshinskii is able to effectively promote the accumulation
of soil N in the rhizosphere.

A redundancy analysis (RDA) indicated that the dominant bacterial phyla and classes
of the rhizosphere were positively correlated with soil TN, AN, SM, and pH in summer,
which explained 85.27% and 84.25% of the total variation at the phylum level (Fig. 5A)
and class level (Fig. 5C), respectively. In fall, the dominant bacterial phyla and classes of the
rhizosphere were positively correlated with soil AN, which explained 84.02% and 81.81%
of the total variation at the phylum level (Fig. 5B) and class level (Fig. 5D), respectively. At
the genus level, the dominant genera were positively correlated with soil AN and TN, which
explained 89.54% and 66.23% of the total variation in summer (Fig. 5E) and fall (Fig. 5F),
respectively. The rhizosphere fungi were related to soil EC and weakly related to soil AN
and SM, explaining 84.5% and 46.71% of the total variation in summer (Fig. S3A) and fall
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Figure 5 Ordination plots from a redundancy analysis (RDA) indicate the relationship between the
dominant rhizosphere bacterial taxon (A-B) phylum level; (C-D) class level; (E-F) genus level) and soil
factors in summer and fall across after 6, 12, and 18 years of C. korshinshii sand-fixing restoration.
Full-size Gal DOI: 10.7717/peerj.14271/fig-5

(Fig. S3B), respectively. An RDA also showed that the rhizosphere soil characteristics were

closely related to the abundance of microorganisms in the rhizosphere of C. korshinskii in
both summer and fall, explaining 67.6%, 71.45%, and 73.65% of the total variation at the
phylum, class, and genus levels, respectively. These results revealed that the accumulation

of N in the rhizosphere was a key factor in the enrichment of the rhizosphere bacterial

communities at different taxonomic levels with years.

Functional prediction and relationship between soil properties and

functional groups

The long-term use of C. korshinskii for sand-fixation afforestation had different effects on

the different bacterial functional groups, but little effect on the fungal functional groups
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(Fig. 6). Bacterial ecological functions, including chemoheterotrophy (Che.), aerobic
chemoheterotrophy (AC), ureolysis (Ure.), aromatic compound degradation (ACD),
nitrate reduction (NR), nitrification (Nit.), aerobic nitrite oxidation (ANO), fermentation
(Fer.), methylotrophy (Met.), and methanol oxidation (MO; Figs. 6A—6B), and the fungal
arbuscular mycorrhizal (AM) function (Fig. 6C), were all significantly higher in both
seasons of CK18 than in CK12 and CK6 (P < 0.05). In general, the rhizosphere bacteria
that were present after 18 years of afforestation with C. korshinskii were dominant in
chemoheterotrophy and aerobic chemoheterotrophy.

An RDA indicated that most of the ecological functions of the abundant bacteria and
fungi were closely related to soil factors (Figs. 6D—6E). In summer, the largest contributor
to functional indicators of the soil microbiome was pH, followed by AN and N:P ratio,
which accounted for 96.41% of the total variation, combined. In fall, the main soil
factor was AN, which explained 87.39% of the total variation. Soil AN was the key
factor affecting the microbial functional abundance in the rhizosphere of C. korshinskii.
A simple linear regression analysis showed that AN was positively correlated with the
ten bacterial ecological functions that were higher in CK18 (Fig. 54). A Spearman’s rank
correlation analysis suggested that the functional predictors of these differences were
positively correlated with some microbial phyla, including Actinobacteria, Proteobacteria,
Chloroflexi, Bacteroidetes, Planctomycetes, Firmicutes, and Verrucomicrobia, and the
fungal phylum, Glomeromycota (Fig. S5).

DISCUSSION

Rhizosphere microbes were closely related to soil physicochemical
properties

In this study, the rhizosphere microbes of C. korshinskii were well formed and dominated
by the key classes of Actinobacteria, o-Proteobacteria, y -Proteobacteria, §-Proteobacteria,
and B-Proteobacteria, and included Sphingobacteriia (Bacteroidetes), Chloroflexia
(Chloroflexi), Thermomicrobia (Chloroflexi), and Caldilineae (Chloroflexi), as well

as a small amount of Glomeromycota (Fig. 2). More importantly, the abundance of
typical nitrogen-fixing and/or phosphate stabilizing bacterial genera, such as Rhizobium,
Ensifer, Neorhizobium, Mesorhizobium, Streptomyces, Sphingomonas, and Flavobacterium,
increased significantly in the rhizosphere after 18 years of sand fixation (Fig. 3), which well
confirmed our hypothesis. Some of the nitrogen-fixing bacteria formed in the rhizosphere
of C. korshinskii in our study were similar to those reported by Rahimlou, Bahram ¢
Tedersoo (2021), who confirmed that some genera of «-Proteobacteria (Rhizobium, Ensifer,
Neorhizobium, Allorhizobium, Microvirga, Mesorhizobium, Bradyrhizobium, Azorhizobium,
and Methylobacterium) and S-Proteobacteria (Paraburkholderia, Cupriavidus) have
potential N-fixing abilities. These nitrogen-fixing groups are mainly derived from the alpha
(o), beta (B), delta (8), and gamma () groups of Proteobacteria as well as Actinomycetes,
which form symbionts to facilitate legume growth (Chen et al., 2020a; Vadakattu ¢
Sharma, 2020). This may be because a mutually beneficial symbiotic relationship was
established between rhizobia and C. korshinskii, which provided sufficient N nutrients
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Figure 6 Functional predictive analysis (FAPROTAX and FUNGuild) of the rhizosphere microbiome
and RDA between functional items and soil physicochemical factors among the 18-, 12-, and 6-year-
restored dunes in Mu Us Sandy Land. A-B represent bacteria in summer (A) and fall (B) after 6, 12, and
18 years of sand-fixing restoration.(C) represents fungi in summer (left) and fall (right), while panels (D)
and (E) represent RDA of functional groups in summer and fall, respectively. Different uppercase letters
in the histogram represent significant differences among different sand-fixing years (P < 0.05). The func-
tional annotation items are abbreviated as follow: chemoheterotrophy (Che.), aerobic chemoheterotro-
phy (AC), ureolysis (Ure.), aromatic compound degradation (ACD), nitrate reduction (NR), nitrifica-
tion (Nit.), aerobic nitrite oxidation (ANO), fermentation (Fer.), methylotrophy (MeL.), methanol oxi-
dation (MO), dark oxidation of sulfur compounds (DOSC) in bacteria, are represented in black for RDA;
arbuscular mycorrhizal (AM), plant pathogen-plant saprotroph (PPPS), plant pathogen-wood saprotroph
(PPWS), endophyte-lichen parasite-plant pathogen-undefined saprotroph (ELPU) in fungi, are repre-

sented in underlined purple for RDA.

Full-size Gl DOI: 10.7717/peerj.14271/fig-6
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for the rhizosphere of C. korshinskii (Lindstrom ¢ Mousavi, 2019; Wendlandt et al., 2022).

Studies have shown that these mutually beneficial relationships promote the accumulation
of N in the rhizosphere soil (Welmillage et al., 2021), and that the contribution of symbiotic
N fixation in agricultural ecosystems can exceed 80% (O’Hara, 2008), for example, in the
rhizosphere of cultivated indica (Zhang et al., 2019a). These results indicate that years of

sand fixation using C. korshinskii can effectively increase the abundance of bacterial genera
that have functions related to N metabolism.

We found that the abundance of Glomeromycota in the rhizosphere of C. korshinskii
also increased significantly after 18 years of sand-fixation restoration (Fig. 2). Arbuscular
mycorrhizal fungi (AMF) are mainly derived from the phylum Glomeromycota.
Approximately 80% of all plants in terrestrial ecosystems have been colonized by AMF
with well-established symbiosis (Smith ¢ Read, 2008). Both plant roots and AM fungal
extraradical hyphae can produce enzymes, protons, and carbohydrates, explaining the
differences in soil properties between the rhizosphere soil and bulk soil (Johansson, Paul
¢ Finlay, 2004). 1t has been proven that some bacteria attach to the hyphae and spores
of AMF (Scheublin et al., 2010) and stimulate mycelia, spore growth, and germination,
as well as mycorrhizal formation (Artursson ¢ Jansson, 2003). These mycorrhizal helper
bacteria include gram-negative Proteobacteria (Rhizobium, Azospirillum, Azotobacter,
Agrobacterium, Enterobacter, Burkholderia, Klebsiella, Bradyrhizobium, and Pseudomonas),
gram-positive Firmicutes (Paenibacillus, Bacillus, and Brevibacillus), and gram-positive
Actinomycetes (Streptomyces, Arthrobacter, and Rhodococcus; (Frey-Klett, Garbaye ¢
Tarkka, 2007). Other mycorrhizal helper bacteria, including Sphingomonas, Variovorax,
Xenophilus, Hydrocarboniphaga, Brevundimonas, and Microbacterium have recently
been identified (Shi et al., 2021a). Rhizobium, Arthrobacter, Sphingomonas, Bacillus,
Burkholderia, Pseudomonas, and Flavobacterium all have the dual functions of fixing
N and dissolving P (Rodriguez ¢ Fraga, 1999; Shi et al., 2021a; Taktek et al., 2015). It is
probable that the mycelia of AMF and these N-fixing bacteria combined to play a role
in the rhizosphere of C. korshinskii, resulting in the accumulation of N nutrients in the
rhizosphere soil.

Streptomyces was the most abundant bacteria in our study (Fig. 3). It is the largest genus
of Actinobacteria and produces high-yield antimicrobial compounds (Hutchings, Truman
& Wilkinson, 2019); for example, Arabidopsis thaliana specifically recruits Streptomyces
bacteria to its roots to resist pathogenic soil-borne diseases and stimulate the secretion
of endogenous hormones in host plants (Worsley et al., 2020). Studies have shown that
the enrichment of Streptomyces in the rhizosphere not only improves soil N availability
and microbial composition, but also eventually increases the photosynthetic efficiency
and yield of legumes (AbdElgawad et al., 2020); therefore, the C. korshinskii rhizosphere
in desert systems might also have the same functional processes. In the present study, the
long-term establishment of C. korshinskii led to abundant Flavobacterium and Chitinophaga
accumulation (Fig. 3). Studies have shown that the combination of the Flavobacterium
and Chitinophaga, Bacteroidetes can suppress diseases caused by fungal roots and form
functional endophytic bacteria that benefit the host rather than the rhizosphere (Carrion et
al., 2019). Recent studies have shown that the phosphatase (PafA) prevalent in Bacteroidetes
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is mainly synthesized by Flavobacterium, which can rapidly mineralize organophosphorus
and release effective phosphate, greatly improving the utilization efficiency of P (Lidbury
et al., 2022). These are also the most promising prospects of endophytic bacteria in C.
korshinskii roots in desert ecosystems, which we hope to explore in future studies.

Changes seen in the physicochemical properties of the rhizosphere soil further confirmed
that the rhizosphere microbiome was closely related to C, N, and P cycling under long-
term sand fixation with C. korshinskii, especially the accumulation of N in the rhizosphere
(Fig. 4), which fully supported our hypothesis. The higher N content and abundance of
associated groups in the rhizosphere of C. korshinskii may be attributed to the release
of primary metabolites by root exudates, called the exudation-induced priming effect
(EPE), which promotes nutrient mobilization and regulates the stoichiometric ratio of
rhizosphere soil (Canarini et al., 2019; Mo et al., 2021; Tian et al., 2019). The acceleration
of the N mineralization rate after 18 years of C. korshinskii afforestation resulted in the
imbalance of the rhizosphere stoichiometric ratio, such as higher N:P and lower C:N
ratios, but no obvious change to the C:P ratio (Fig. 4), indicating that the supply and
demand of C and N deviated, with N levels increasing. N:P imbalances have occurred in
oligotrophic dune ecosystems, but they mainly occur in invasive woody legumes (Acacia
longifolia) (Ulm et al., 2017). In this study, the higher N accumulation in the rhizosphere of
C. korshinskii was similar to those seen in invasive plants. Invasive plants generally increase
their competitiveness by changing the rhizosphere environment, especially N metabolism
(Gibbons et al., 2017). Mikania micrantha, for example, is a typical invasive plant species.
It can accelerate the N cycle in the rhizosphere, promoting the accumulation of AN in the
rhizosphere to compete with other plants (Yu et al., 2021). The invasive characteristics of
Ageratina adenophora include increasing the N content, nitrification rate, ammonification
rate, and N fixation rate of the rhizosphere soil, accelerating the process of rhizosphere N
cycling (Zhao et al., 2019). C. microphylla is considered an artificially cultivated invasive
species (Zhang et al., 2019b), and C. korshinskii, a member of the same genus, may have
similar invasive properties, specifically its competitive ability to obtain water (Waseerm et
al., 2021), survive in dunes (Fang et al., 2011), and create a higher N and N:P in rhizosphere
soil, as seen in this study.

A comprehensive RDA found that N enrichment in the rhizosphere was closely related
to microbiome involvement (Fig. 5, Fig. S3). N-limitation conditions occur when the
microbial demand for N exceeds the supply of N, the excess C is then metabolized and
mineralized through the root exudates. When the demand for C exceeds the supply of C,
the excess N is mineralized (Schimel & Weintraub, 2003). Root exudates can improve N
availability by stimulating microorganisms to accelerate nitrogen cycling (Meier, Finzi ¢
Phillips, 2017). The rhizosphere microbial communities of leguminous shrubs (Hedysarum
mongolicum and H. scoparium) in desert ecosystems are mainly influenced by the properties
of the soil. The rhizosphere effect recruits and enriches beneficial microbes; in particular,
the enrichment of @- and y -proteobacteria is dependent on organic carbon (Zhou et al.,
2020D), resulting in a lower C:N ratio. These results are consistent with the results of this
study and indicate that the increase in rhizosphere N nutrients eliminates the N limitation
condition, turning it into a P limitation. This promotes the acquisition of photosynthetic C,
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which affects plant growth and rhizosphere C cycling (Ding, Cong & Lambers, 2021; Liang
et al., 2020; Peng et al., 2019; Zhan et al., 2017), further contributing to the higher N:P ratio
and the lower C:N ratio in the C. korshinskii rhizosphere during long-term restoration.
The N:P ratio of the rhizosphere soil in desert ecosystems has rarely been reported. In
subtropical plantations, the N:P ratio in roots is positively correlated with the rhizosphere,
and the C:N:P stoichiometry depends on rhizosphere soil properties (Shi et al., 2021D).
Most importantly, microbial activation strongly affects the turnover rates of C and N
(Mo et al., 2021) or the consumption of C and mineralization and accumulation of N,
especially nitrate N (Wang ¢ Tang, 2018). Based on these findings, C. korshinskii is likely
able to survive in harsh environments long-term by regulating the ratio of C to N in the
rhizosphere (Figs. 4, 5). Itis also likely that the rhizosphere’s nitrogen-fixing ability enhances
photosynthesis and rhizodeposition to trigger the recruitment of rhizosphere microbes,
initiating C and N trading and N cycling, leading to higher aboveground distribution rates
and productivity (Henneron et al., 2020). Plants enhance the decomposition of organic
matter in the rhizosphere and then change the soil N cycling to control the accumulation
of photosynthate C (Henneron et al., 2020; Vance ¢» Heichel, 1991), thus facilitating C and
N trading (Kuzyakov & Xu, 2013). This finding was strongly supported by the positive
correlation between rhizosphere soil N and the major microbial groups in the RDA
ordination plots (Fig. 5, Fig. S3).

Rhizosphere microbial functional groups are shaped by nutrients and
promote nutrient cycling

The FAPROTAX analysis in this study showed that the functional groups of the C.
korshinskii rhizosphere were divided into two parts: one was responsible for C metabolic
groups (Che., AC, ACD, Fer., MeL., MO, and DOSC), and the other was responsible for N
metabolic groups (Ure., NR, Nit., ANO), which verified that the potential functions of the
rhizosphere microbial community were closely associated with the C and N cycles in the soil
(Figs. 6A—6B). Chemoheterotrophic bacteria are usually decomposers and play a role in the
in situ remediation and recycling of organic materials in ecosystems (Kdimpfer et al., 1993).
Che. and AC were the most common metabolic functions of the bacterial communities
associated with the C. korshinskii rhizosphere. This is a similar finding to other rhizosphere
studies, including a pioneer plant rhizosphere on the Andean Altiplano (Parastrephia
quadrangularis; (Zhang et al., 2022), a broad-spectrum herbicide (Clomazone) applied
to soil (Rong et al., 2021), the seagrass rhizosphere (Ling et al., 2021), the rhizosphere of
Tibetan barley in continuous cropping (Yao et al., 2020), and the rhizosphere of Cistanthe
longiscapa in the Atacama desert of Chile (Astorga-Elo et al., 2020). The lower C:N ratio
and higher N:P ratio found in the C. korshinskii rhizosphere proves that the rhizosphere
functional groups are heterotrophically dependent on root exudates and participate in
the C and N cycles, which may be because the extreme drought conditions of sand-fixing
systems lead to dramatic changes in the microbial functional groups and in C and N
distribution patterns (Schimel, Balser ¢~ Wallenstein, 2007). Given the biological needs of
microbes, functional processes in the rhizosphere, such as ANO, Nit., and Ure, produce
nitrate/ammonium for the host (Gao et al., 2019); in turn, microbes need the host to
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provide a C source for survival. Chitin is an important C source, and chitinolysis depends
on chitinases produced by functional groups of microorganisms (Beier ¢ Bertilsson, 2013),
which further contribute to C turnover, such as in Che., AC, ACD, Fer., MeL., MO, and
DOSC processes (Rosenberg et al., 2013). This conclusion is supported by the abundance
of chemoheterotrophic and nitrogen-fixing microbes observed, which further clarified the
C and N trading process in the C. korshinskii rhizosphere.

The abundance of metabolic functions in the rhizosphere was mainly affected by pH,
AN, and N:P in the summer and by AN in the fall (Figs. 6D—6E). During both seasons,
soil AN was highly correlated with functional groups and most enhanced the AM, ACD,
Ure., NR, AC, and Che. functional processes (Fig. 54), suggesting that AN was the main
factor promoting microbial metabolic function in the C. korshinskii rhizosphere. The
availability of N and P in the soil is known to limit plant growth; when P is chronically
limited in nutrient-deficient sand-fixing systems, N-fixing legumes may form nodule
symbioses with rhizobia for the transformation and accumulation of N (Ding, Cong &
Lambers, 2021; Dovrat et al., 2020; Peng et al., 2019). The intense competition between
N and P has been clearly manifested in arid and oligotrophic systems (Cui et al., 2018);
legumes use their own N fixation, not only completing the rhizosphere C and N trade under
the ground but also dominating the differentiation of the rhizosphere functional groups
(Hartman et al., 2017; Henneron et al., 2020; Schulte et al., 2021; Tkacz & Poole, 2020; Yang
et al., 2021). The N fixation process requires the activation of nitrogenase in a low-oxygen
environment (Gallon, 1981), promoting the coupling of dicarboxylates with rhizobia for
nitrogen fixation (Schulte et al., 2021). The rhizosphere microbial functional groups drive
N cycling and accumulation (Henneron et al., 20205 Schulte et al., 2021; Wei et al., 2018).
The N-fixing environment in the rhizosphere observed in this study may be due to the
consumption of rhizosphere oxygen by aerobic chemoheterotrophic groups.

Our study found that the bacterial phyla had a positive effect on the ecological
metabolic functions of the C. korshinskii rhizosphere, with the main bacterial phyla
being: Actinobacteria, Proteobacteria, Verrucomicrobia, and Bacteroidetes, followed by
Firmicutes, Chloroflexi, and Planctomycetes; the fungal phylum Glomeromycota was also
present. Most of the bacterial functional groups were involved in N metabolism (e.g.,
Ure., NR, Nit., ANO), and Glomeromycota was the only fungal phylum closely related
to the functional process (Fig. S5), indicating that considerable nutrient exchange occurs
in the rhizosphere soil (Sansupa et al., 2021). Louca, Parfrey ¢ Doebeli (2016) confirmed
that Proteobacteria (gamma-, alpha-, and beta-), Actinobacteria, Firmicutes (bacilli), and
Bacteroidetes (flavobacteria) were most associated with functional groups, which were
mostly attributed to environmental changes, but also slightly affected the microbes. This
may be because, after several years, the rhizosphere functional components of sand-fixing
plants made up for most of the environmental variation, partly explaining the differences in
the microbial community composition (Louca, Parfrey ¢ Doebeli, 2016). The large number
of symbiotic groups identified from the rhizosphere bacteria in desert environments,
such as Streptomyces, Flavobacterium, Rhizobium, Chitinophaga, Kribbella, Mesorhizobium,
Opitutus, Actinophytocola, Pseudonocardia, Amycolatopsis, Sphingomonas, and Ensifer, may
significantly contribute to the Che., AC, Ure., ACD, NR, and Nit processes (de Vries ¢
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Wallenstein, 2017; Hartman et al., 2017; Louca, Parfrey ¢ Doebeli, 2016). The main purpose
of microbial functional groups is to serve the host by consuming rhizosphere C and fixing
N2 (Hartman et al., 2017, Sansupa et al., 2021; Vadakattu ¢ Sharma, 2020). The microbes
were involved in a wide range of ecological functional processes, for example, Sphingomonas
(Proteobacteria) contributes to the formation of carbonate through the Ure. process (Stoner
et al., 2005) and Nocardioides (Actinobacteria) is involved in the degradation of aromatic
compounds (Takagi et al., 2009) and the functional diversity of rhizosphere bacteria in
mangroves (Thatoi et al., 2013).

FUNGuild is a functional annotation database containing more than 13,000 fungal
species (Chen et al., 2020b), which can provide guidance for saprophytes, pathogens,
decomposers or lichen-eating fungi based on their taxonomic characteristics (Nguyen et
al., 2016). The enrichment effect of Glomeromycota (Figs. 6C—6E, Fig. S5) in this study
further indicated that AMF could enhance the plant uptake of N and P from the soil and
participate in nitrification and nutrient decomposition (Bucking ¢ Shachar-Hill, 2005;
Fellbaum et al., 2012), promoting the transformation of carbohydrates and ensuring a
mutually beneficial nutrient supply (Kiers et al., 2011; Schulte et al., 2021). The extraradical
mycelium of AMF accelerates the turnover rate of the C cycle (Staddon et al., 2003). A large
number of studies have shown that AMF effectively combines with leguminous rhizobia
to promote N fixation, increase the mineralization rate of C and N, and enrich the soil N
content (Gan et al., 2021; Wang et al., 2021b; Yin et al., 2021), which are all closely related
to the pH and AN around the rhizosphere soil (Gan et al., 2021), consistent with our
summer results.

CONCLUSION

In conclusion, we comprehensively analysed the data from two seasons (summer

and fall) and confirmed that, although the microbial diversity of the C. korshinskii
rhizosphere did not change over time, the abundance of bacterial phyla (classes),

such as Actinobacteria, Proteobacteria (Alphaproteobacteria, Gammaproteobacteria,
Betaproteobacteria, Deltaproteobacteria), Chloroflexi (Anaerolineae), Bacteroidetes
(Sphingobacteriia), Planctomycetes, Firmicutes, and Thermomicrobia, was significantly
higher in CK18 as well as the fungal phylum Glomeromycota. The genera of rhizosphere
bacteria, specifically Streptomyces, Flavobacterium, Chitinophaga, Kribbella, Mesorhizobium,
Opitutus, Rhizobium, Actinophytocola, Pseudonocardia, Amycolatopsis, and Sphingomonas
were significantly higher in CK18. Among these genera, Rhizobium, Ensifer, Neorhizobium,
Mesorhizobium, Streptomyces, Sphingomonas, and Flavobacterium are typical nitrogen-
fixing and/or phosphate-solubilizing bacteria. The physicochemical properties of the
rhizosphere soil showed that sand fixation using C. korshinskii could significantly change
the rhizosphere soil properties and increase the soil pH, EC, TN, and AN, with a higher
N:P ratio and a lower C:N ratio. The RDA indicated that N content was the main factor
affecting the absolute abundance of the C. korshinskii rhizosphere microbiome at different
classification levels. Moreover, the FAPROTAX and FUNGuild analyses showed that the
ecological functions of the rhizosphere soil were greatly affected by chemoheterotrophy,
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aerobic chemoheterotrophy, ureolysis, aromatic compound degradation, nitrate reduction,
nitrification, aerobic nitrite oxidation, fermentation, methylotrophy, methanol oxidation,
dark oxidation of sulfur compounds, and arbuscular mycorrhizal. These functional groups
were closely related to soil AN and were mainly identified in Actinobacteria, Proteobacteria,
Verrucomicrobia, Bacteroidetes, and fungal Glomeromycota. Our study confirmed that
the function of the rhizosphere microbiome of C. korshinskii in desert ecosystems was
closely related to the accumulation and transformation of soil N and that the rhizosphere
microbiome plays an important role in the cycling of nutrients, providing a reference for
future desertification reversal research and efforts.
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