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Abstract

Background: House dust mite (HDM)‐induced allergic rhinitis (AR) is a highly

prevalent disease with bothersome symptoms. Genetic variants of the Hippo

pathway genes play a critical role in the respiratory disease. However, no study has

reported associations between variants of the Hippo pathway genes and HDM‐
induced AR risk.

Methods: Forty‐three key genes in the Hippo pathway were selected from the

Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome pathway database,

and previous reported studies. A case‐control study of 222 cases and 237 controls

was performed to assess the associations between 121 genetic variants in these

genes and HDM‐induced AR risk. DNeasy Blood & Tissues Kits were used for

extracting genomic DNA from the venous blood and Infinium Asian Screening Array

BeadChips for performing genotyping. A logistic regression model was applied to

evaluate the effects of variants on HDM‐induced AR risk. The false discovery rate

(FDR) method was utilized to correct for multiple testing. The receiver operating

characteristic (ROC) curve was plotted to obtain the cut‐off value of total IgE for

the diagnosis of HDM‐induced AR. Histone modification and transcription factor

binding sites were visualized by UCSC genome browser. Moreover, expression

qualitative trait loci (eQTL) analysis was obtained from Genotype‐Tissue Expression
(GTEx) database.

Results: We found that rs754466 in DLG5 was significantly associated with a

decreased HDM‐induced AR risk after FDR correction (adjusted odds ratio

[OR] = 0.52, 95% confidence interval [CI] = 0.36–0.74, p = 3.25 � 10−4,

PFDR = 3.93 � 10−2). The rs754466 A allele reduced the risk of HDM‐induced AR in

the subgroup of moderate/severe total nasal symptom score (TNSS). Furthermore,

rs754466 was associated with a high mRNA expression of DLG5. Additionally,
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histone modification and transcription factor binding sites were rich in the region

containing rs754466.

Conclusion: Our findings indicated that rs754466 in DLG5 decreased the suscep-

tibility to HDM‐induced AR.
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1 | INTRODUCTION

Allergic rhinitis (AR) is often triggered after exposure to indoor or

outdoor aeroallergens, such as house dust mite (HDM), pollens, ani-

mal dander and fungal allergens.1 HDM is almost omnipresent and

perennial indoors, leaving no effective measures to eliminate HDM.

Additionally, constant exposure to HDM, compared with other aer-

oallergens, may contribute to more chronic and severe symptoms

that exert long‐term impact on quality of life.2‐4 Moreover, HDM‐
induced AR can increase the risk of asthma.5 Many studies have

verified the critical role of genetic variants in the pathogenesis of

AR.6 This inspired us to delve into HDM‐induced AR mechanism

through genetic variations.

The Hippo pathway, first identified in Drosophila melanogaster, is

an evolutionarily conserved pathway regulating organ size, tissue

generation, and stem cell self‐renewal.7,8 Dysregulation of the Hippo

pathway is widely implicated in cancers,9 cardiac diseases,10 renal

diseases,11 and respiratory diseases.12–14 Previous studies suggested

that single‐nucleotide polymorphisms (SNPs) in YAP, FRMD6, BIRC5,

and DLG2 of the Hippo pathway were associated with asthma

risk.13,15,16 To date, no study has been undertaken to investigate the

associations between genetic variants in the Hippo pathway and

HDM‐induced AR risk.

In this study, we hypothesized that genetic variants in the Hippo

pathway were associated with HDM‐induced AR risk, and tested this

hypothesis with a case‐control study among Han Chinese.

2 | MATERIALS AND METHODS

2.1 | Study population

A total of 222 cases and 237 controls were included in this case‐
control study. The cases were recruited from the First Affiliated

Hospital of Nanjing Medical University between May 2008 and

October 2017. The diagnosis of HDM‐induced AR was established

according to Allergic Rhinitis and its Impact on Asthma criteria.1 All

cases were allergic simultaneously to Dermatophagoides pteronyssinus

(Der p) and Dermatophagoides farinae (Der f). Cases with asthma, atopic

dermatitis, sinusitis, other nasal disorders, and malignant diseases

were excluded. The healthy controls were randomly selected from

physical examination centers in the same geographical region from

April 2015 to October 2019 and with matched age (�5 years) and

sex. The healthy controls met all the following criteria: (1) no

symptoms of nasal disorders; (2) no symptoms and family history of

atopic diseases; (3) specific allergen‐IgE < 0.35 kUA/L measured by

the Phadiatop test (ThermoFisher Scientific, Uppsala, Sweden). All

the individuals were Han Chinese and signed informed consent.

Approximately 5 ml of peripheral venous blood was donated by each

individual. The research approval was obtained from the ethics

committee at Nanjing Medical University.

2.2 | Clinical evaluation

A total nasal symptom score (TNSS) on a scale of 0–12 evaluating

sneezing, rhinorrhea, nasal itching and nasal obstruction was used to

assess the disease severity. The score of each symptom is: 0 = no

symptoms; 1 = mild symptoms (symptom clearly present, but easily

tolerated); 2 = moderate symptoms (definite awareness of symptom,

i.e., bothersome but tolerable); 3 = severe symptoms (symptom, i.e.,

hard to tolerate; causes interference with activities of daily living

and/or sleeping).17 Cases with TNSS of 0–4 and 5–12 were diagnosed

with mild and moderate/severe HDM‐induced AR, respectively.18

The serum total IgE was measured by ImmunoCAP system (Ther-

moFisher Scientific, Uppsala, Sweden). Serum specific IgEs to Der p,

Der f, cat dander, dog dander, Blatella germanica, Alternaria alternate,

Ambrosia elatior, and Artemisia vulgaris were also detected in cases by

ImmunoCAP system. Phadiatop tests were conducted in controls.

2.3 | Selection of genes and genetic variants in the
Hippo pathway

Forty‐three key genes in the Hippo pathway were selected from the

Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome
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Pathway database, and reported studies.15,16,19–23 Genes located on

sex chromosomes were excluded. Next, the data of Han Chinese

in Beijing (CHB) and Japanese in Tokyo (JPT) from the 1000

Genomes Project (March 2012) was used to identify genetic

variants. Then, variants matching the following quality control criteria

were selected: minor allele frequency (MAF) > 0.05, call rate

> 95%, and p value of Hardy–Weinberg equilibrium (HWE) > 10−6.

After that, pairwise linkage disequilibrium (LD) analysis (r2 ≥ 0.8) was

performed to obtain tagging SNPs by Haploview 4.2 software. Finally,

web‐based tools (SNPinfoWeb Server (https://snpinfo.niehs.nih.gov/),

HaploReg (http://pubs.broadinstitute.org/mammals/haploreg/hap-

loreg.php), andRegulomeDB (https://www.regulomedb.org/regulome‐
search/)) were used to predict putative functions of genetic variants. In

addition, genetic variants with RegulomeDB Score ≥6 were removed.

2.4 | SNP genotyping

Genomic DNA was successfully extracted from the venous blood of

all individuals using DNeasy Blood & Tissue Kits (QIAGEN, Hilden,

Germany). Genotyping was performed by Infinium Asian Screening

Array BeadChips (Illumina, Inc., San Diego, CA, United States). The

genetic variants and samples were selected according to a uniformed

quality control protocol.

2.5 | In silico analysis

Histone modification and transcription factor binding sites were

visualized by UCSC genome browser from chromatin immunopre-

cipitation sequencing (ChIP‐Seq) data stored in ENCODE. The

expression qualitative trait loci (eQTL) analysis was obtained from

Genotype‐Tissue Expression (GTEx) database (https://www.gtexpor-

tal.org/home/) for genetic variants.

2.6 | Statistical analysis

Student's t‐test was used for continuous variables and Chi‐square
test for categorical variables to compare the demographic distribu-

tion and clinical variables between cases and controls. HWE in con-

trol group was calculated by a goodness‐of‐fit χ2 test. The receiver

operating characteristic (ROC) curve was plotted to obtain the cut‐
off value of total IgE for the diagnosis of HDM‐induced AR. The

levels of total IgE and specific IgEs to both Der p and Der f were

analyzed after logarithmic transformation. The logistic regression

model was performed to calculate adjusted and crude odds ratios

(ORs) and their 95% confidence intervals (CIs). The false discovery

rate (FDR) method was utilized to restrict the probability of false‐
positive findings, due to the large number of genetic variants

selected. The heterogeneity was tested with Cochran Q‐test and I2

statistic. p < 0.05 was considered as a statistically significant level. All

statistical analyses were computed by R 3.6.2 and PLINK v1.09.

3 | RESULTS

3.1 | Characteristics of study population

The demographic and clinical characteristics of 222 cases and 237

healthy controls are summarized in Table 1. No significant differ-

ences in age (p = 0.739) and sex (p = 0.974) were found between

cases and controls. The level of total IgE was significantly higher in

cases than in controls (p < 0.001). According to the ROC curve

(Figure S1), the cut‐off value of total IgE was set as 60.45 kU/L, with

<60.45 kU/L in 44 cases and ≥60.45 kU/L in 178 cases. The mean

values of specific IgE to Der p and specific IgE to Der f were 1.26 and

0.97, respectively. Among 222 cases, 180 were diagnosed with

moderate/severe HDM‐induced AR.

3.2 | Genetic variant in DLG5 and HDM‐induced AR
risk

Of 49 candidate genes from KEGG and Reactome Pathway database,

we teased out 43 genes having vital functions in diseases from re-

ported studies (Figure S2 and Table S1). The flow chart of selecting

genetic variants is presented in Figure 1. We identified 5066 variants

in 43 genes from the 1000 Genomes Project after quality control.

Next, 577 genetic variants were filtered out with LD analysis. Then,

121 variants in 33 genes were retained for further study after

functional annotation predicted by SNPinfo, HaploReg, and Reg-

ulomeDB. In this study, we found that 8 genetic variants (rs754466,

rs11002309, rs7744287, rs6790596, rs2032, rs7650899,

rs2425672, and rs2236947) were nominally associated with HDM‐
induced AR risk in the additive genetic model (all p < 0.05)

(Table 2). After FDR correction, only rs754466 in DLG5 was found to

be associated with a decreased risk of HDM‐induced AR

(PFDR = 3.93 � 10−2).

To comprehensively investigate the association between

rs754466 and HDM‐induced AR risk, we used four genetic models

(codominant, additive, dominant, and recessive models) to analyze

the correlation of rs754466 with HDM‐induced AR risk (Table 3).

The frequencies of TT, TA, and AA were 76.6%, 22.1%, and 1.3% in

the cases and 62.4%, 31.6%, and 6.0% in the controls. Compared with

the TT genotype, TA and AA genotypes were associated with a

decreased risk of HDM‐induced AR (adjusted ORhet = 0.57, 95%

CI = 0.37–0.87, p = 9.16 � 10−3; ORhom = 0.18, 95% CI = 0.05–0.65,

and p = 8.88 � 10−3). In the additive model, we observed that in-

dividuals with the A allele had a reduced risk of HDM‐induced AR,

compared with those with the T allele (adjusted OR = 0.52, 95%

CI = 0.36–0.74, p = 3.25 � 10−4). Compared with the TT genotype,

the TA/AA genotypes were associated with a lower risk of HDM‐
induced AR (adjusted OR = 0.51, 95% CI = 0.34–0.76,

p = 1.13 � 10−3). Furthermore, the AA genotype was also associated

with a decreased risk of HDM‐induced AR compared with TT/TA

genotypes (adjusted OR = 0.21, 95% CI = 0.06–0.76,

p = 1.69 � 10−2).
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TAB L E 1 Characteristics of HDM‐induced AR cases and controls

Variables Cases (%), n = 222 Controls (%), n = 237 p

Age, years (mean � SD) 23.23 � 12.18 23.61 � 12.40 0.739

Sex 0.974

Male 128 (57.7) 137 (57.8)

Female 94 (42.3) 100 (42.2)

Total IgEa (log kU/L, mean � SD) 2.09 � 0.47 1.33 � 0.63 < 0.001

Lowb 44 (19.8)

Highc 178 (80.2)

Specific IgEa (log kUA/L, mean � SD)

Der p 1.26 � 0.59

Grade 1–3 102 (45.9)

Grade 4–6 120 (54.1)

Der f 0.97 � 0.63

Grade 1–3 147 (66.2)

Grade 4–6 75 (33.8)

TNSS

Mildd 42 (18.9)

Moderate/severee 180 (81.1)

Symptom: sneezing

Mild 59 (26.6)

Moderate/severe 150 (67.6)

None 13 (5.8)

Symptom: rhinorrhea

Mild 52 (23.4)

Moderate/severe 160 (72.1)

None 10 (4.5)

Symptom: nasal itching

Mild 62 (27.9)

Moderate/severe 127 (57.2)

None 33 (14.9)

Symptom: nasal obstruction

Mild 57 (25.7)

Moderate/severe 137 (61.7)

None 28 (12.6)

Abbreviations: AR, allergic rhinitis; Der f, Dermatophagoides farinae; Der p, Dermatophagoides pteronyssinus; HDM, house dust mite; SD, standard deviation;

TNSS, total nasal symptom score.
aThe levels of total IgE and specific IgEs were log transformed to normalize the distribution.
bTotal IgE < 60.45 kU/L.
cTotal IgE ≥ 60.45 kU/L.
dTNSS ≤ 4.
eTNSS > 4.
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3.3 | Stratification analyses of rs754466 with HDM‐
induced AR risk

Subgroup analyses based on different demographic characteristics

were performed (Figure 2 and Table S2). The rs754466 A allele was

associated with a lower risk in age and sex subgroups (all p < 0.05).

Additionally, the rs754466 A allele decreased the risk of HDM‐
induced AR in all subgroups of total IgE, specific IgE to Der p, and

specific IgE to Der f (all p < 0.05). However, no significant hetero-

geneity was observed in all these subgroup analyses (all p > 0.05).

In the moderate/severe TNSS subgroup, the rs754466 A allele

showed the most significant association with a reduced risk of HDM‐
induced AR (p = 9.70 � 10−4). A stronger association was also

observed between the rs754466 A allele and a decreased HDM‐
induced AR risk in moderate/severe rhinorrhea, moderate/severe

nasal obstruction, mild sneezing and mild nasal itching subgroups

(Figure 3 and Table S3).

3.4 | Function of rs754466 in DLG5

Using SNPinfo, HaploReg and RegulomeDB, we observed that

rs754466 possessed enhancer histone marks, DNAse hypersensitivity

sites, altered motifs, GRASP hit, and selected eQTL hits (Table S4).

Moreover, we found that histonemodification and transcription factor

binding sites were rich in the region harboring rs754466 by UCSC

genome browser (Figure S3). In addition, the rs754466 T allele was

associated with a high expression of DLG5 in whole blood, lung and

cultured fibroblasts based on GTEx database. However, rs754466

mutated in a manner of A > T in the public database, but T > A in our

study. This inconsistency may be explained by that the DNA strand

detected in our study was complementary to that detected in public

database.Moreover, similar resultswere reportedbyWanget al.24 and

Feng et al.25 Hence, the rs754466 A allele in our study increased the

expression of DLG5 in whole blood, lung, and cultured fibroblasts

(Figure S4).

4 | DISCUSSION

In mammals, the Hippo pathway is mainly composed of mamma-

lian STE20‐like protein kinase half (MST1/2), Salvador family WW

domain‐containing protein 1 (SAV1), large tumor suppressor half

(LATS1/2), MOB kinase activator 1 A/B (MOB1A/B), Yes‐
associated protein (YAP), and transcriptional co‐activator with

PDZ‐binding motif (TAZ).22,23 The Hippo pathway regulates the

F I GUR E 1 Flow chart for selecting SNPs in the Hippo pathway genes. Forty‐three key genes in the Hippo pathway were selected from the

Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome Pathway database, and reported studies
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proliferation of airway epithelial cells.26–29 When the Hippo

pathway is suppressed, YAP and TAZ translocate to the nucleus

to induce expression of target genes, thus causing asthma,

lung fibrosis and chronic rhinosinusitis with nasal polyps

(CRSwNP).12–14,22 It was reported that the susceptibility to HDM‐
induced AR was closely related to genetic variations.30 lesions,

Previous study indicated that rs9671722 in the Hippo pathway

increased the risk of AR with asthma.13 To our knowledge, no

study has reported the association between genetic variants in

the Hippo pathway genes and HDM‐induced AR risk. In the

present study, we found that rs754466 in DLG5 was strongly

correlated with a decreased risk of HDM‐induced AR.

DLG5, discs large MAGUK scaffold protein 5, encodes a

membrane‐associated guanylate kinase (MAGUK) containing a

coiled‐coil domain, a GUK domain, a SH3 domain, a CARD

domain, a Duff domain, and four PDZ domains.31 Recent studies

have reported that DLG5 can increase the phosphorylation of

YAP and TAZ to inhibit the nuclear translocation of YAP and

TAZ.19,32 TAZ promotes Th17 cells differentiation and attenuates

regulatory T cells development,33 which might serve as a mech-

anism in the pathogenesis of AR.34 Additionally, DLG5 maintains

the integrity of epithelial barrier to curb the invasion of patho-

gens into the tissue interstitium.35,36 As previously described,

DLG5 lowly expressed in Crohn's disease,35 breast cancer,32

prostate cancer,37 and hepatocellular carcinoma.38 Moreover,

previous studies have reported that DLG5 downregulation leads

to emphysema‐like lesions,31 indicating that DLG5 might function

in respiratory diseases. Notably, HDM may initiate HDM‐induced
AR through impairing nasal epithelial barrier.39 For the first time,

therefore, we speculated that DLG5 might participate in the

pathogenesis of HDM‐induced AR. However, the expression of

DLG5 is required to be detected for further validating our hy-

pothesis. And further biological function experiments are neces-

sary to fully illuminate the detailed molecular mechanisms

underlying the role of DLG5 in HDM‐induced AR.

Many genetic variants in DLG5 are significantly associated

with Crohn's disease susceptibility.40 However, the associations

between genetic variants in DLG5 and HDM‐induced AR have not

been reported. In the stratification analyses, we found that the

rs754466 A allele decreased the risk of HDM‐induced AR in all

subgroups of age and sex, indicating that this variant might be of

predictive value for HDM‐induced AR population. Furthermore,

rs754466 in DLG5 had a significantly reduced risk of HDM‐
induced AR in subgroups of serum indexes (total IgE and spe-

cific IgEs) and nasal symptoms. The nasal epithelial barrier

dysfunction results in an increased allergen passage and then

B cells produce IgE after allergens uptake.41,42 Moreover, the

severity of nasal symptoms is correlated with status of nasal

barrier.43 Notably, DLG5 maintains the integrity of epithelial

barrier, preventing pathogens from invading into the tissue

interstitium.35,36 These results suggested that rs754466 might

strengthen the epithelial barrier function by regulating the

expression of DLG5, thereby restraining the allergens intrusionT
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and thus decreasing IgE production and the occurrence of nasal

symptoms. This hypothesis may be supported by our findings in

GTEx database. Although nasal tissues were unavailable in the

GTEx database, we observed that the rs754466 A allele came

with a high expression of DLG5 in lung tissues. Given the

anatomic relationship between nose and lung (located at the

upper and lower respiratory tract, respectively), we dared to

speculate that the rs754466 A allele might increase the expres-

sion of DLG5 in nasal tissues. As a consequence, the nuclear

translocation of TAZ was inhibited and barrier function was

strengthened, all contributing to the lower risk of HDM‐induced
AR. These findings may refresh our understanding of the patho-

genesis, provide a novel target for early prevention and precision

treatment of HDM‐induced AR.

Our study has some limitations. First of all, AR is a complex disease

induced by gene‐environment interactions. Many environmental fac-

tors such as nitric oxides, sulfur pollutants, organic chemical agents,

particulate matter and tobacco smoke have been shown associated

with AR risk.1 Thus, environmental factors in the study population

should be investigated. Second, neither next‐generation sequencing

TAB L E 3 Association between rs754466 in DLG5 and HDM‐induced AR risk

Genotypes

Cases Controls

OR (95% CI) p OR (95% CI)a paN % N %

TT 170 76.6 148 62.4 1.00 1.00

TA 49 22.1 75 31.6 0.57 (0.37–0.87) 8.79 � 10−3 0.57 (0.37–0.87) 9.16 � 10−3

AA 3 1.3 14 6.0 0.19 (0.05–0.66) 9.35 � 10−3 0.18 (0.05–0.65) 8.88 � 10−3

Additive model 0.52 (0.37–0.74) 3.32 � 10−4 0.52 (0.36–0.74) 3.25 � 10−4

Dominant model 0.51 (0.34–0.76) 1.13 � 10−3 0.51 (0.34–0.76) 1.13 � 10−3

Recessive model 0.22 (0.06–0.77) 1.80 � 10−2 0.21 (0.06–0.76) 1.69 � 10−2

Abbreviations: AR, allergic rhinitis; CI, confidence interval; HDM, house dust mite; OR, odds ratio.
aAdjusted for age and sex in the logistic regression model.

F I GUR E 2 Stratification analyses for the association between rs754466 and HDM‐induced AR risk in the additive model. A logistic
regression model with adjustments for age and sex was constructed to calculate adjusted odds ratios (ORs), and their 95% confidence intervals
(CIs). Padj, p value adjusted for age and sex; Phet, p value for heterogeneity
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nor genome‐wide approach was used in our study. Therefore, these

genetic techniques in large HDM‐induced AR cases and controls are

needed to systematically validate our findings and reveal novel sus-

ceptibility loci of HDM‐induced AR. Third, the expression of DLG5 in

nasal tissues should be analyzed. Finally, the study may benefit from

experiments of SNP rs7454466 and the functionally active proteins

related to the SNP. Future experiments including cell transfection,

Western blotting, quantitative real‐time PCR, chromatin immunopre-
cipitation assay and electrophoretic mobility shift assay should be

conducted to test the function of SNP and these proteins.

5 | CONCLUSIONS

We performed the first analysis for associations between genetic

variations in the Hippo pathway genes and the risk of HDM‐induced
AR in a Chinese population. And we found that rs754466 in DLG5

had a significant decreased risk of HDM‐induced AR. Our findings

might provide new insight into the pathogenesis of HDM‐induced AR
and a new therapeutic target.
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