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Genetic and pathophysiologic criteria prearrange the uncontrolled growth of neoplastic

cells that in turn initiates new vessel formation, which is prerequisite for further tumor

growth and progression. This first endothelial lining is patchy, disordered in structure

and thus, angiogenic tumor vessels were proven to be functionally inferior. As a result,

tumors were characterized by areas with an apparent oversupply in addition to areas with

an undersupply of vessels, which complicates an efficient administration of intravenous

drugs in cancer therapy and might even lower the response e.g. of radiotherapy (RT)

because of the inefficient oxygen supply. In addition to the vascular dysfunction, tumor

blood vessels contribute to the tumor escape from immunity by the lack of response

to inflammatory activation (endothelial anergy) and by repression of leukocyte adhesion

molecule expression. However, tumor vessels can remodel by the association with

and integration of pericytes and smooth muscle cells which stabilize these immature

vessels resulting in normalization of the vascular structures. This normalization of the

tumor vascular bed could improve the efficiency of previously established therapeutic

approaches, such as chemo- or radiotherapy by a more homogenous drug and oxygen

distribution, and/or by overcoming endothelial anergy. This review highlights the current

investigations that take advantage of a proper vascular function for improving cancer

therapy with a special focus on the endothelial-immune system interplay.

Keywords: neovascularization, angiogenesis, radiotherapy, anti-angiogenic therapy, vascular stabilization,

immune escape

INTRODUCTION

New vessel formation is a hallmark of tumor growth and progression (1–3). Once a critical tumor
mass (of approximately 1–2 mm3) has formed, the metabolic demands of the growing cancer
cells together with the diffusion limits of nutrients and oxygen foster the generation of a tumor-
associated neovasculature (4). Known as the angiogenic switch, this process is regulated directly and
indirectly by the tumor using a variety of pro- and anti-angiogenic signaling molecules, including
vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), angiopoietins
and thrombospondins, among others (5, 6).

In contrast to the normal, usually quiescent vasculature, tumor blood vessels were proved to
be functionally abnormal because of their immature phenotype: the endothelial lining is patchy,
the basement membrane is defective or discontinuous and respective vessel walls lack the mural
elements (smoothmuscle cells and pericytes); so they cannot actively respond to physiologic stimuli
(Figure 1) (7, 8). Thus, there is relative imbalance between tumor tissue and the formation of
adequate vascular structures, which finally results in tumor areas with an apparent oversupply
in addition to areas with an undersupply of vessels. This complicates not only the efficient
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FIGURE 1 | Functional characteristics of normal versus tumor-associated endothelium. In the healthy state, mature endothelial cells (shown as green cells) are

characterized by quiescence. A regular blood flow and pressure is achieved by vascular stabilization, which is the association and integration of vascular mural cells

(smooth muscle cells and pericytes; shown as red cells). Thus, the normal endothelium provides an efficient barrier to liquids or cell extravasation. Upon activation,

e.g., in response to inflammatory signals, normal endothelial cells can up-regulate cell adhesion molecules (selectins and integrins) for the capture, rolling and arresting

of circulating immune cells prior tissue extravasation. The anergic tumor endothelium lacks that response to inflammatory stimuli. In response to tumor-secreted

angiogenic factors the endothelium becomes activated. This activated and/or “angiogenic” endothelium phenotype is characterized by a missing or defective

basement membrane and structural instability (lack of vascular mural cells), which leads to increased vascular leakage. In addition, these newly formed and functional

abnormal blood vessels are chaotically organized which, together with endothelial anergy, limits the effective immune cell distribution and tissue infiltration. The altered

expression of co-stimulatory and–inhibitory molecules with the potential to block anti-tumor immune cells further contributes to an immunosuppressive

microenvironment within the tumor.

distribution of nutritions and oxygen but also the effective
administration of cancer therapeutics. Even at the molecular
level, i.e., regarding the expression of important signaling
molecules, receptors or cell adhesion molecules in the tumor
vascular bed, there is an imbalanced state between pro- and
anti-oxidants, -inflammatory molecules, and -coagulation signals
(9–11). As a result, tumor endothelial cells bear immune-
regulatory properties: alterations in the immune cell attraction
and activation, as well as in the expression of co-stimulatory
and -inhibitory molecules can promote immune tolerance and
thus generate an immune-privileged tumor microenvironment
(12–14).

However the newly formed tumor vessels can remodel in
terms of vascular maturation within the course of tumor
progression (7, 10, 15, 16). Herein, a partial stabilization, which
is achieved by the association and integration of vascular mural
cells occurs particularly in the central areas of the tumors, which
is associated with a significant reduction of vascular densities
and augmented necrosis in these tumor regions (Figure 2) (7,
16, 17). The process of vascular remodeling within a tumor is
influenced by the cancer therapy. Especially in anti-angiogenic
therapy, angiogenesis inhibitors foster vascular stabilization and
a partial normalization of the tumor vascular bed, which is

supposed to improve the efficiency of the previously established
therapeutic approaches, such as chemo-, radio-, and/or immuno-
therapy (18–20). This review highlights the central role played
by the tumor vascular endothelium for cancer therapy and
summarizes the current strategies that take advantage of a proper
vascular function for overcoming anti-tumor immunity and thus
improving immunotherapy.

ENDOTHELIAL ACTIVATION AND
DYSFUNCTION

One important physiological function of normal endothelial
cells is quiescence of the inflammatory response and thus,
participation in immune surveillance (21, 22). Quiescent
endothelial cells fail to provide the requisite signals for leukocyte
recruitment; but the cells can be activated to express adhesion
molecules and to release chemokines that promote capture and
transmigration of blood leukocytes into tissues. Endothelial cell
activation can typically induced by multiple factors, including
circulating inflammatory cytokines, such as tumor necrosis
factors (TNF) and interleukins (IL), reactive oxygen species,
oxidized low density lipoprotein, autoantibodies and traditional
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FIGURE 2 | The impact of vascular remodeling for cancer therapy. Tumor neovascularization supplies a high dense network of chaotically organized, immature and

unstable vessels. Vascular dysfunction as well as the unresponsiveness to inflammatory stimuli results in an uneven blood flow and pressure as well as an inefficient

distribution of blood stream components, including circulating immune cells. This complicates the effective administration of cancer therapeutics. In the course of

tumor progression, these angiogenic vessels can mature by the association of vascular mural cells (vascular remodeling) that stabilizes the immature vessels resulting

in normalization of the vascular structures. Vascular remodeling is dynamic and strictly regulated process; an ordered remodeling seems to be critical for proper

vascular development, maintenance and stability of the vessel wall. The process of vascular stabilization is accelerated in cancer therapy when anti-angiogenic agents

were applied. As a result, blood vessel perfusion and thus oxygenation as well as the efficient distribution of applied drugs are improved. In addition, vascular

maturation and normalization restores the potential of the tumor endothelium to recruit and direct circulating immune cells to the tumor tissue.

risk factors directly and indirectly activate endothelial cells (21).
The term activated endothelium implies a change in endothelial
cell morphology (23). Endothelial activation was further specified
as a change in surface molecules and in endothelial cell functions
in response to cytokine treatment, and it was emphasized that
these changes does not represent endothelial cell injury or
dysfunction (24, 25). Components of endothelial cell activation
are upregulation of surface antigens (e.g., HLA molecules)
and leucocyte adhesion molecules (e.g., E-selectin, ICAM-1/2,
and VCAM-1), pro-thrombotic endothelial cell changes (e.g.,
loss of the surface anticoagulant molecules thrombomodulin
and heparan sulfate), cytokine production (e.g., IL6, IL8,
MCP1), and changes in the vascular tone (e.g., loss of vascular
integrity, expression of vasodilators, andNO). These components
mutually interact in causing local inflammation (25). Endothelial
activation also leads to an increase in angiopoietin-2, which is
known to destabilize barrier function and promote inflammation
(26). The recruited and extravasated immune cells appear
then in vicinity of the activated endothelial cells, and can
further become activated (23). Importantly, the phenotype of
activated endothelial cell is reversible and can return to the
quiescent, non-activated phenotype when the activating factors
were removed (27–30). Prolonged activation of the endothelium
can be associated with the loss of microvascular barrier integrity
and subsequent vascular injury or progress to endothelial cell
apoptosis (31).

THE TUMOR ENDOTHELIUM

Phenotypic differences at the molecular and functional levels
have been identified for tumor and normal endothelial cells (32).
Tumor secreted growth factors, and in particular VEGF, are the
principal drivers of most the fundamental morphogenetic events
involved in the induction of tumor vascularization including
activation of the hitherto quiescent endothelium in terms of
stimulating endothelial cell proliferation and migration (33).
Many tumor types are characterized by a VEGF upregulation.
Tumor hypoxia can also foster increased VEGF expression
levels, which in turn perpetuates angiogenic processes (34).
Tumor endothelial cell are very heterogeneous and thus vascular
function of respective tumor blood vessels vary depending on
the type of tumor and progression stage (35, 36). The newly
formed blood vessels of tumors as well as of metastatic tumors
are more immature with fewer pericytes. In general, tumor
endothelial cells are characterized by a proangiogenic phenotype,
with the upregulation of several angiogenesis-related genes,
such as VEGFR1/R2 and matrix metalloproteinases (MMPs) to
modulate the basement membrane and degrade the extracellular
matrix allowing endothelial cell migration. The resulting tumor
vascular bed is disorganized, tortuous, and the leaky phenotype
of angiogenic tumor blood vessels that is accompanied by
an irregular blood and heterogeneous permeability limits for
the efficient distribution of blood components within the
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tumor mass. Further on, the structural abnormalities like
poorly interconnected endothelial cells, no regular associated
mural cells, and abundance of vesiculo-vacuolar organelles
contribute to the leaky, hyper-permeable phenotype, finally
causing extravasation of intravascular fluids and plasma proteins
(37, 38). Therefore, an markedly increase in the intra-tumor
fluid pressure throughout the tumor is observed, while normal
pressure values were found in the tumor’s periphery or in the
surrounding tissue (39, 40). The high tissue pressure within the
tumor, together with mechanical stress from the proliferating
cancer cells and the extra mass of generated matrix, is able to
collapse tumor vessels, that means closing their lumen through
compressive forces, leading to the collapse of the blood vessels
and finally resulting in hypoxia (32, 38, 41). The compromised
blood flow in tumor blood vessels further decreases oxygen and
nutrient supply, causing physiological stress to the tumor. The
physiological microenvironments of many macroscopic tumors
were therefore characterized by high interstitial fluid pressure
(interstitial hypertension), which besides nutrient deprivation
and hypoxia in turn was associated with malignant progression,
development of metastatic disease and a poor disease-free
survival in a large number of cancer types (42–44).

Angiogenic growth factors were further shown to suppress the
expression of adhesion molecules involved in leukocyte binding
(e.g., ICAM-1/2, VCAM-1, E-selectin and CD34) in tumor
endothelial cells, which then causes the unresponsiveness of
tumor endothelial cells to inflammatory signals, a phenomenon
called endothelial cell anergy that causes lymphocyte tolerance
(45–48). Hence, the interaction of leukocytes with the endothelial
cells lining the vessels is reduced, and thus intra-tumoral
recruitment of effector T-cells, either induced or adoptively
transferred, is impaired and subsequently fail to exert the anti-
tumor effects necessary to eradicate the tumor (49, 50). This
is one of the mechanisms tumors have developed to escape
the immune surveillance (51). Concerning the mechanism,
angiogenic growth factor like VEGF and bFGF inhibited
the TNF-mediated activation of NF-KB. In addition, bFGF
induced hyperphosphorylation of p38 MAPK on endothelial
cells (52, 53). Promoter histone modifications were further
shown to mediate tumor endothelial cell anergy, as adhesion
molecule expression was shown to be epigenetically repressed
in tumor endothelial cells, and that DNA methyltransferase and
histone deacetylase inhibitors which have angiostatic activity
could re-induce expression of the ICAM-1 gene by reversal of
histone modifications in the ICAM-1 promoter, thereby restoring
leukocyte-vessel wall interactions and leukocyte infiltration (51).

TUMOR ENDOTHELIUM-MEDIATED
REGULATION OF THE IMMUNE
RESPONSE: CLINICAL IMPLICATIONS FOR
TARGETING THE TUMOR VASCULATURE
TO IMPROVE IMMUNOTHERAPY

A functional vascular network is prerequisite not only for
nutrients or oxygen supply but also for the immune cells to
enter the tissues. The functional and structural abnormalities of

tumor blood vessels together with the unresponsiveness of the
endothelium to inflammatory stimuli caused by proangiogenic
factors decrease the recruitment of immune effector cells into the
tumor, thus limiting the effectiveness of cancer immunotherapies
(54, 55). Given that the abnormal tumor vasculature contributes
to the immune-suppressive tumor microenvironment, processes
of vascular normalization in terms of vessel maturation were
supposed to potentiate cancer immunotherapy by promoting
immune cell infiltration into tumors and reducing the immune
suppression within the tumors (55, 56).

Today, immunotherapy for activating therapeutic anti-tumor
immunity has become a mainstay of cancer therapy (57, 58).
Although the use of monoclonal antibodies directed against
cytotoxic T-lymphocyte associated protein 4 (CTLA-4) and the
programmed cell death-1 (PD-1/CD279) T-cell receptor and/or
its ligand (programmed death-ligand 1 (PD-L1/B7-H1/CD274)
showed unprecedented durable responses in some patients with
a variety of cancers, acquired resistance to immune checkpoint
antibody blockades was commonly observed in most cancer
patients (59, 60).

The different approaches being currently explored to increase
recruitment of immune effector cells, include manipulating
the expression of homing-associated molecules on T-cells
and tumor endothelial cells. Concerning the first option,
a successful approach to target or restore tumor-induced
immunosuppression was made by adoptive cell therapy using
tumor-reactive T-lymphocytes that resulted in objective tumor
regression in>50% of treated patients (61). The potential to treat
a wide range of solid cancers with autologous T-cells was further
highlighted when re-directed T-cells expressing a non-MHC
restricted chimeric antibody receptor (recognizing CD19 on B-
cells) in refractory B-cell malignancies were successfully used
to overcome dominant immunosuppression (62, 63). However,
the success of such therapies again depends on applied agents
(here the lymphocytes) in finding their desired place, leaving
the bloodstream and subsequently infiltrating the tumor tissues
(12, 64).

Thus, strategies addressing directly the vascular system
to sensitize tumors or improve the therapeutic response in
cancer therapy were established and already shown to exert
beneficial effects in immune checkpoint blockade. In a very
elegant preclinical study Elia et al. showed that a selective
(pre)activation of the tumor endothelium with the cytokine
TNF promoted intratumoral T-cell infiltration, and immune
checkpoint blockade (65). The authors used low doses of
NGR-TNF, a Cys-Asn-Gly-Arg-Cys peptide-TNF fusion product,
in simultaneous combination with anti-CTLA-4 and anti-
PD-1 antibodies to treat transgenic adenocarcinoma of the
mouse prostate (TRAMP) mice with autochthonous prostate
cancer and mice with orthotopic B16 melanoma. NGR-TNF
administration was already used as a safe and therapeutic
systemic administration to target TNF selectively to angiogenic
tumor vessels which then altered the endothelial barrier function
together with an upregulation of leukocyte-endothelial cell
adhesion molecules, the release of pro-inflammatory cytokines,
and the infiltration of tumor-specific effector CD8(+) T-cells.
As a result, NGR-TNF enhanced the therapeutic activity of
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adoptive and active immunotherapy, delaying tumor growth and
prolonging survival (66, 67). Finally, the combined therapy had
beneficial effects on endogenous immune surveillance, through
depletion of regulatory T-cells and expansion of a fully functional,
polyclonal repertoire of cytotoxic T-lymphocytes (65).

Proper vascular function as revealed by measurements of
vessel perfusion was further used to predict the therapeutic
response to immune checkpoint blockade (68). Here, the
authors used clinically relevant mouse breast tumor models
that were either sensitive or resistant to immune checkpoint
blockade treatment (with anti–CTLA4 and anti–PD1 agents)
and thus mirror cancer progression and therapy response
in humans. A significantly enhanced vessel perfusion was
observed mostly in treatment-sensitive tumors, which was
accompanied by an accumulation of CD8+ T-cells and
interferon-gamma production, strongly suggested that increased
vessel perfusion reflects the successful activation of anti-tumor
T-cell immunity by immune checkpoint blockade (68). Thus,
the authors reported here a reliable and noninvasive indicator
for predicting immune checkpoint blockade responsiveness
which was related to proper vascular function of the tumor
endothelium.

Conclusively, tumor endothelial cells are actively involved
in immune cell exclusion and inhibition of lymphocyte
activation, fostering an immunosuppressive intratumoral
microenvironment that contributes to the tumor immune escape
and severely impairs conventional cancer therapies (9, 14, 69).
Hypothetically, tumors resistant to immune checkpoint blockade
could become sensitive to such treatment again when the
tumor endothelium specific alterations in leukocyte-endothelial
adhesive interactions were normalized. In line with this idea,
Huang et al. showed that synchronizing vascular normalization
by antiangiogenic (anti-VEGFR2) therapy with T-cell activation
induced by a whole cancer cell vaccine therapy enhanced
anticancer efficacy in a CD8(+) T-cell–dependent manner
in both immune-tolerant (MCaP0008) and immunogenic
(MMTV-PyVT) murine breast cancer models (56). Even
the administration of an antibody against mouse VEGF
synergized with adoptive cell transfer-based immunotherapies
(70). Herein, normalization of the tumor vasculature through
disruption of the VEGF/VEGFR-2 axis increased extravasation of
adoptively transferred T-cells into the tumor. Combining VEGF
blockade with an additional blockade of angiopoietin-2 by a
bispecific antibody provided superior therapeutic benefits in the
melanoma cancer as well as in metastatic breast and pancreatic
cancer models (71, 72). Neutralization of both angiogenic factors
resulted in vascular regression of angiogenic blood vessels
whereas the remaining blood vessels were normalized and
facilitated the extravasation and perivascular accumulation of
activated, IFNγ-expressing CD8(+) cytotoxic T lymphocytes
(72). The perivascular T-cells in turn induced the expression of
PD-L1 in tumor endothelial cells via IFNγ, which was utilized
when additionally PD-1 blockade improved tumor control by
the bispecific antibody in the different cancer models.

Using regulator of G protein signaling 5-deficient mice, a
genetically induced vascular normalization mouse model, in
which newly formed blood vessels were characterized by a

mature and thus stabilized phenotype, it was further shown
that tumor vessel normalization consequently reduced vascular
leakiness and hypoxia within the tumors, leading to an influx
of immune effector T-cells (22, 30). Herein, vessel maturation
was accompanied by a restoration of endothelial cell anergy
as adhesion molecules on the luminal surface of tumor
endothelial cells were increased and more uniformly distributed.
Furthermore, the use of anti-angiogenic therapy was shown to
normalize the tumor vasculature and thereby improve cancer
immunotherapies.

Instead then of starving tumors from their blood supply and
achieving complete vessel regression, vessel normalization by
anti-angiogenic therapy has gainedmore attention for generating
more mature and regular functioning tumor blood vessels
with increased vessel perfusion. This is supposed to improve
distribution of circulating blood components, oxygenation,
removal of suppressive metabolites, as well as distribution of
therapeutically applied drugs (56). In addition, anti-angiogenic
therapy mediated vessel normalization was shown to reverse
endothelial cell anergy resulting in (re)sensitizing tumor blood
vessels to inflammatory stimuli by inducing homing molecule
expression and thus an improved T-cell-dependent anti-cancer
immunity (12, 70, 73).

Improving the aberrant structural abnormalities and
associated dysfunctionalities of tumor blood vessels, and thus
lowering tumor hypoxia and enabling immune cell infiltration,
by antiangiogenic therapy was shown to synergize with
immunotherapies for more durable effects (74). In an preclinical
study using the polyoma middle T oncoprotein breast cancer
and the Rip1-Tag2 pancreatic neuroendocrine tumor mouse
models it was shown that anti-angiogenic therapy can improve
anti-PD-L1 treatment and further, the other way round that anti-
PD-L1 therapy can sensitize tumors to anti-angiogenic therapy
and prolong its efficacy (74). Herein, vessel normalization (as
shown by reduced microvessel densities, increased diameters and
a regular pericyte coverage) promoted lymphocyte infiltration
and enhanced cytotoxic T-cell activity.

In addition, to tumor endothelial cell anergy that limits the
adhesion and subsequent extravasation of recruited leukocytes,
tumor-derived factors can further induce endothelial cell-
mediated apoptosis of recruited immune cells, e.g., by induced
death mediator Fas ligand (FasL, also called CD95L) expression
which directly kills anti-tumor T-cells finally leading to an
inefficient recruitment of effector CD8(+) T-cells into the tumor
(12, 75). Within the tumor endothelium of breast, prostate,
colon, bladder, renal cancers a selective expression of FasL was
reported that was associated with scarce CD8(+) infiltration
and a predominance of FoxP3(+) regulatory T-cells (76). As
the induced FasL expression in tumor endothelial cells which
acquired the ability to kill effector CD8(+) T-cells but not
regulatory T-cells was mediated by tumor-derived VEGF, IL10
and prostaglandin E2 cooperatively, the authors proposed a
“tumor endothelial death barrier” that contributes to the tumors
immune escape cells (76). The tumor endothelium was also
shown to express increased levels of PD-L1 under inflammatory
conditions, which in turn was able to bind to PD-1 on activated
lymphocytes to negatively control T-cell activation (77–79).
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Another molecule which became of interest for activating
therapeutic anti-tumor immunity is the interferon-inducible
intracellular enzyme indoleamine 2,3-dioxygenase 1 (IDO-
1), which catalyzes the initial and rate-limiting step in the
degradation pathway of the essential amino acid tryptophan to
kynurenine (80, 81). Kynurenines in turn induces proliferation,
activation and recruitment of T regulatory cells and myeloid-
derived suppressor cells that further suppress tumoricidal T-
cells. Increased IDO-1 expression levels were already associated
with tumor progression, poor prognosis, and a decreased
overall survival (82, 83). IDO-1 expression can be found in
different tumor cells, normal epithelial cells, monocyte-derived
cells and in particular also in tumor endothelial cells (84–
86). Of note, in some tumor entities, the tumor endothelial
cells rather than tumor cells were shown to be responsible for
increased IDO expression, e.g., in metastatic renal cell carcinoma
(84). IDO-1 expression levels in tumor endothelial cells were
further suggested being a predictive biomarker for the response
to immune-based cancer therapy (86–88). For example, in
colorectal cancer, IDO-1 expression by host endothelial cells
was a negative prognostic factor for regression free survival,
independent of disease stage (89). Therefore, an inhibition of
the (endothelial-specific) IDO-1 signaling pathway could be
a promising novel adjuvant therapeutic strategy for clinical
application in immunotherapy.

However, the actively participation of tumor endothelial
cells in the innate and adaptive immune responses is not
limited to the ability to attract and direct a wide range of
immune cells and elevate extravasation from the host circulation.
Tumor endothelial cells are believed to have a role in antigen
presentation (9, 13, 14). Endothelial cells were found to act
as antigen presenting cells by constitutively expressing major
histocompatibility complex I and II molecules and presenting
endothelial antigens to T-cells resulting in T-cell activation
(90, 91). Endothelial cells also were shown to express the co-
stimulatory molecules CD80 and CD86 that are essential for
activation of naïve T-cells, but following transplantation only
activation of CD4(+) or CD8(+) T-cells was reported (92).

Conclusively these findings strongly argue for new therapeutic
approaches including combinations of the anti-angiogenic
treatments with immunotherapies in addition to the current
standard regimens for cancers, particularly for those that do not
respond to surgery, chemotherapy, or radiation.

TUMOR ENDOTHELIUM MEDIATED
IMMUNOLOGICAL CONSEQUENCES IN
THE CONTEXT OF RADIOTHERAPY

Tumor eradication or local cancer control for a better outcome
are the main goals of radiation therapy. Endothelial cells act
as critical determinants of the radiation response in tumors as
radiotherapy generally fosters endothelial apoptosis, increased
vascular permeability, and acquisition of a pro-inflammatory and
-coagulant phenotype (93–95). The radiation sensitivity of vessels
in general correlates with their morphology: capillaries and small
vessels (like angiogenic tumor vessels) are extremely sensitive

to ionizing radiation, whereas larger blood vessels seem to be
less affected (96, 97). Radiation induces phenotypic changes of
tumor endothelial cells (e.g., apoptosis or senescence) as well
as wide range of microenvironmental changes by production
and secretion of reactive oxygen and nitrogen species, growth
and chemotactic factors, which in turn govern recruitment of
immune cells (11, 98, 99).

As an apparent approach, sensitizing tumor endothelial cells
to radiation-induced apoptosis resulted in a more pronounced
tumor growth delay upon irradiations in preclinical animal
models, which suggested that a therapeutic targeting at the level
of the tumor vasculature could counteract radiation resistance
(97, 100). In contrast, in an elegant preclinical studyModing et al.
reported that radiosensitizing endothelial cells did not increase
local tumor control of soft tissue sarcomas after stereotactic
body radiation therapy (101). Furthermore, proangiogenic
factors including VEGF can rapidly repress radiation induced
ceramide generation, and subsequently endothelial apoptosis
(102). Therefore, targeting endothelial cells aiming at achieving
complete tumor starvation is not supposed to be curative. More
likely, approaches that improve the vascular function and thus
tumor oxygenation as well as the recruitment and activation of
immune cells by tumor endothelial cells gained attraction also
in radiation therapy to enhance the sensitivity of the tumors to
ionizing radiation.

To improve blood perfusion and thus tumor oxygenation,
again vascular normalization using anti-angiogenic-therapy
was suggested (103, 104). According to this hypothesis Koo
et al. recently showed that a combined radiotherapy and
anti-angiogenic treatment (with the second-generation multi-
targeted receptor tyrosine kinase inhibitor sunitinib malate,
which inhibits PDGF and VEGF) showed synergistic effects
in anti-cancer treatment using heterotopic human lung cancer
xenografts (105). Herein, radiation induced extensive necrosis in
the central portion of the tumors, as the immature tumor blood
vessels were sensitive to radiotherapy. The resulting decreased
vascular supply created then a hypoxic area and decreased the
tumoricidal effect of radiotherapy by reducing the oxygen-free
radicals. When radiotherapy was then combined with anti-
angiogenic treatment that inhibits the formation of immature
blood vessels, the tumor perfusion was maintained and tumor
necrosis was reduced. This treatment combination resulted then
in a more significantly suppressed tumor growth, as vessel
normalization, which achieved an efficient tumor perfusion,
significantly improved tumor oxygenation that is prerequisite for
the tumoricidal effects of ionizing radiation (105). In line with
these findings Zhu et al. could show that inhibition of hypoxia-
induced angiogenesis limits the efficiency of radiotherapy (106).
Radiotherapy-sensitive lung tumors were characterized by low
levels of hypoxia inducible factor-1α and VEGF, which may
reflect better oxygenated tumors with less angiogenic and thus
more matured blood vessels. In contrast, high expression levels
of the respective genes were detected in radiotherapy-resistant
lung tumors which might be based on the hypoxic tumor
microenvironment with more angiogenic tumor blood vessels
(106). Conclusively, combining anti-angiogenic treatment with
radiation therapy can achieve better tumor control as oxygen
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is a potent radiosensitizer; this may result in the use of lower
radiation doses, as thus minimizing treatment-related normal
tissue toxicity (107).

In general, the pharmacological inhibition of pro-angiogenic
factors triggers apoptosis of angiogenic endothelial cells in
the immature and leaky tumor blood vessels leading to the
selection for mature, non-leaky vessels, the so-called pruning
effect. Within these matured and normal vessels endothelial
anergy is restored. Jaillet et al. reported that ionizing radiation
altered the glycosylation pattern of endothelial cells, in
particular increased highmannose-type N-glycans and decreased
glycosaminoglycans, which stimulated the interactions between
irradiated endothelial cells and monocytes (108). Thus, targeting
either the endothelium glycomemay be considered as therapeutic
target for modulating the inflammatory response or combining
radiation therapy that seems to reduce endothelial anergy with
anti-immunosuppressive therapy. Indeed, re-activation of the
tumor vasculature was also shown to improve the therapeutic
outcome of radiotherapy combined with immune-modulators.
e.g., vessel specific-delivery of IL2, a cytokine known to stimulate
the proliferation of cytotoxic T-cells, natural killer cells, and
regulatory T-cells, resulted in an additive or synergistic anti-
tumor effect when the administration of this immunocytokine
was combined with radiotherapy (109). Tumor endothelium
specific targeting was achieved by coupling IL2 to the small
immune protein L19 that recognizes the extra domain B (ED-
B) of fibronectin associated with tumor neovasculature. Of
note, specifically addressing the tumor vasculature resulted in
higher and thus more effective intratumoral local concentration
of IL2 while reducing side effects, as the high doses used
by systemic administration to reach an effective intratumoral
dose of IL2 often leads to toxicity (e.g., capillary leakage)
(109, 110).

In addition, preclinical and clinical evidence exists for
the immuno-stimulatory properties of radiotherapy. Radiation
treatment can foster immunogenic tumor cell death whereby
danger-associated molecular patterns (DAMPs, e.g., calreticulin
and adenosine triphosphate) were released which in turn can
recruit and activate dendritic cells to process tumor antigens
for naïve T-cells finally resulting in an anti-tumor immune
responses (111, 112). Of note, radiation-induced tumor-targeted
immunotherapy was shown to improve the therapeutic index
and to extend the reach of immunomodulatory agents (113). In
particular, radiation induced upregulation of VEGF expression
was used to target 4-1BB/ CD137, a major immune-stimulatory
receptor expressed on activated CD8(+) T-cells, to the irradiated
tumor as well as to distant tumor lesions. This innovative method
used radiation therapy to extend tumor-targeted immunotherapy

also to VEGF low tumors. Radiation-induced tissue injury, which
is known to trigger angiogenic processes, is accompanied by
upregulation of VEGF expression, especially in lesions expressing
low levels of VEGF. The agonistic 4-1BB oligonucleotide aptamer
was conjugated to an aptamer that binds to VEGF (114). The
administration of this conjugate after tumor irradiation was used
to induce an optimal 4-1BB co-stimulation at the tumor site
that in turn enhanced tumor immunity and inhibited tumor
growth, while no toxicities classically associated with systemic
administration of 4-1BB ligands was observed. Thus, systemically
administered but specifically tumor-/ VEGF-targeted 4-1BB co-
stimulation in combination with radiation elicited a potent
antitumor immune response capable of controlling the growth
of distant non treated subcutaneous and metastatic breast tumor
lesions (113). This anti-tumor T-cell activation as a result
from tumor-localized radiation-induced anti-tumor immune
responses strongly argues for a synergistic effect of radiotherapy
with immune checkpoint inhibitors (115).

CONCLUSION

The tumor vascular endothelium is a key cell compartment for
the response of tumors to cancer therapy. The tumor initiated
neovascularization for nutrients and oxygen supply prior tumor
progression results in a structural and functional abnormal
tumor vasculature, which contributes to a pro-tumorigenic
and immunosuppressive environment altering the therapy
response of tumor cells. In particular for clinically approved
immunotherapies, such as immune checkpoint blockade
and adoptive T-cell transfer, the functional abnormal tumor
vasculature fosters therapy resistance by limiting an inefficient
recruitment, distribution and infiltration of tumor eradicating
immune cells. Therefore, tumor vasculature targeting agents in
order to re-activate specifically the tumor endothelial cells in
terms of vascular normalization provide promising strategies
to optimize the efficacy of currently employed cancer therapies,
especially immunotherapies.
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