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Abstract: Controlling for the multiplicity effect is an essential part of determining statistical significance in large-scale
single-locus association genome scans on Single Nucleotide Polymorphisms (SNPs). Bonferroni adjustment is a 
commonly used approach due to its simplicity, but is conservative and has low power for large-scale tests. The 
permutation test, which is a powerful and popular tool, is computationally expensive and may mislead in the presence of 
family structure. We propose a computationally efficient and powerful multiple testing correction approach for Linkage 
Disequilibrium (LD) based Quantitative Trait Loci (QTL) mapping on the basis of graphical weighted-Bonferroni
methods. The proposed multiplicity adjustment method synthesizes weighted Bonferroni-based closed testing procedures 
into a powerful and versatile graphical approach. By tailoring different priorities for the two hypothesis tests involved in 
LD based QTL mapping, we are able to increase power and maintain computational efficiency and conceptual simplicity. 
The proposed approach enables strong control of the familywise error rate (FWER). The performance of the proposed 
approach as compared to the standard Bonferroni correction is illustrated by simulation and real data. We observe a 
consistent and moderate increase in power under all simulated circumstances, among different sample sizes, heritabilities, 
and number of SNPs. We also applied the proposed method to a real outbred mouse HDL cholesterol QTL mapping 
project where we detected the significant QTLs that were highlighted in the literature, while still ensuring strong control 
of the FWER.
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INTRODUCTION

Linkage Disequilibrium (LD) analysis plays a 
fundamental role in gene mapping, as a tool for uncovering 
biological trait regulating genes. Many biological traits are 
influenced by genetic variants and hence it is possible to 
determine the rough genomic position of the causative 
variations through associations between SNPs and phenotype 
[1-13]. Among the popular SNP selection approaches, the 
single-locus association with solid multiplicity correction 
ability remains a powerful tool as associations can generally
only be found over small distances [14]. Moreover, as tens-
of-thousands of SNPs for genome-wide association studies 
(GWAS) are under demand [5], the single SNP based LD 
analysis can at least provide a necessary initial screening 
selection to detect a subset of promising candidates for 
further exploration [15, 16].

Despite the great progress which has already been made 
within LD based Quantitative Trait Loci (QTL) mapping, 
powerful and computationally efficient methods for large-
scale simultaneous testing of individual SNPs with strong 
control of the familywise error rate (FWER) are still lacking 
[17, 18]. FWER is the most accepted error rate used to 
determine significance levels for large-scale testing problems
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where the goal is to provide conclusive results. In some 
studies, researchers often control the False Discovery Rate 
(FDR) to obtain a large pool of potentially significant SNPs 
and then select only the most significant subset for validation 
due to cost restrictions. However , this rule can lead to 
unwanted results as the FDR is controlled only for all
selected SNPs , and provides no promise of control for an 
arbitrarily selected subset of the significant SNPs. Thus, we 
recommend controlling the FWER (in place of the FDR) in 
exploratory scenarios where only the most promising results
will be considered.

The Bonferroni correction, as one of the most widely 
used statistical procedures, is often employed to control the 
FWER when multiple tests are conducted. However, the 
Bonferroni correction is not favorable in large-scale testing
because it substantially reduces the statistical power, hence 
decreasing the chances of detecting SNPs with real effects 
[19]. While permutation procedure has been widely 
employed to adjust for correlated tests, it is computationally 
expensive [15, 20, 21] and may mislead in the presence of 
family structure [22]. Moreover, the permutation approach 
was designed for only one test setting. In LD based QTL 
studies, the high likelihood of dependencies among SNPs 
and the two tests structure strongly demand a new
multiplicity adjustment approach that maintains simplicity 
but is more powerful.

In the LD based QTL model [13], detecting a significant 
QTL that is associated with a certain phenotype requires two 
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hypothesis tests, one testing for the existence of a QTL for a 
given SNP (i.e. whether or not the QTL is associated with the 
phenotype), and the other testing for the strength of the LD 
between the SNP and the existing QTL (i.e. whether or not 
the QTL is successfully detected by the model). Although the 
existence of a significant QTL is the ultimate goal, the 
degree of LD between the QTL and SNP is also critical in 
guaranteeing the basic assumptions of the model. By Fu et
al.'s assumptions [13], the unobservable QTL can be mapped 
by its association with the observable SNP through the 
conditional probability of the genotype of the QTL given the 
genotype of the SNP. Therefore, only QTLs that are not only 
significantly existing but also strongly linked with a SNP 
will be identified, i.e. identifying a significant QTL requires 
rejecting these two hypotheses simultaneously. Although the 
LD based QTL model has been successful in locating 
significant QTLs [13, 23, 24], the Bonferroni multiplicity 
correction approach used previously ignored two important 
issues. First, if the QTL existence test fails to reject, then the 
LD between the SNP and QTL is not identifiable in their 
mixture model. Second, the Bonferroni correction is too 
conservative for large-scale of SNPs.

In this article, we propose a new power improving 
multiplicity correction approach specially designed for the 
LD based QTL mapping, on the basis of graphical weighted-
Bonferroni methods [25]. By introducing a logical 
structuring for the two tests involved for each SNP, i.e. 
higher order for QTL existence testing (primary) than the LD 
testing (secondary), the LD test will never be investigated if 
the primary test concludes that the QTL does not exist. By 
exploiting the priority ordering of the two hypotheses to 
adjust the p-values, our proposed approach can avoid the 
previously mentioned identifiability issue, and address the 
multiplicity correction for large-scale number of SNPs. None 
of the current LD based QTL methodologies directly 
overcome these challenges when performing these two tests 
[13, 23, 24]. Our proposed multiple correction approach with 
priority structuring has been shown to synthesize weighted 
Bonferroni-based closed testing procedures such as the 
weighted Bonferroni-Holm procedure, fixed sequence tests, 
gatekeeping procedures, and the fallback procedure into a 
powerful and versatile graphical approach [25], which we 
tailor here for the LD based QTL mapping.

In the following section we present the LD based QTL 
model and the two tests involved. Next, we describe in detail 
how we design the logical structuring to perform the 
multiplicity correction for the LD based QTL model. The 
significance of the power advantage of the proposed method 
over the Bonferroni correction is established through both 
simulations and one real QTL mapping project. Since sample
size, heritability, and number of SNPs all determine the power 
of the method, we illustrate the power through heritability of 
0.1 and 0.4, sample size small (100), medium (300), and large 
(500), and number of SNPs changing from 1, 10, 50, 100, 500, 
to 1,000. We end with a discussion of the results.

METHODOLOGY

LD Based QTL Mapping Model

To map the rough location of the QTL regulating a 
certain biological trait, we apply the mixture model [13]. 
Under this model, QTL is detected by statistically modeling

the genotypic variation through not only the association 
between phenotype and the putative QTL, but also the 
association between the putative QTL and SNP. Since the 
SNP genotype is observable, we can infer the probabilities of 
a putative QTL genotype by the conditional probability of 
QTL ( A) genotype given the SNP ( M) genotype, as long as 
there exists LD between the SNP and putative QTL [26].

The mixture model of [13] assumes each individual's 
phenotype iY , ni ,1,= … , is a random variable from density 

)|( lil Yf � , where {1,2,3}�l denotes three distinct QTL 
genotypes. Each QTL genotype is assumed to induce a 
separate distribution of phenotypes. Typically, normal 
distributions are assumed for each )|( lil Yf � with

),(= ��� ll . From these assumptions, the corresponding 
likelihood is expressed as [13] 

),,|(=),|,( |
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where il|� is the conditional probability of individual i
having QTL genotype l given their SNP genotypes , l� is
the phenotypic mean for QTL genotype l , � is the 
common standard deviation for all genotypes, and 

),|( ��lil Yf is the probability density of observations for 
individual i at QTL genotype l [13, 26, 28].

The probability of the SNP's major allele ( M) is denoted 
by p , and correspondingly p�1 for the minor allele ( m).
Similarly, the probability of the QTL's major allele ( A) is 
denoted by q , and correspondingly q�1 for the minor allele 
( a). Together, the SNP and QTL form four haplotypes ( MA,
Ma, mA, and ma) with corresponding frequencies 

Dpqp +=11 , Dqpp �� )(1=10 , Dqpp �� )(1=01 , and 
Dqpp +�� ))(1(1=00 , respectively. Here, D is the linkage 

disequilibrium between SNP and QTL. The conditional 
probabilities il|� of the QTL's various genotypes ( AA, Aa,
and aa) can be calculated upon the observed SNP genotypes 
( MM, Mm, and mm) from the joint probabilities [13, 27].
Hence, il|� is a function of p , q , and D . The EM 
algorithm is then applied to the likelihood in (1) to obtain 
maximum likelihood estimates for all parameters [13, 27].

Two Hypothesis Tests

Through the likelihood in (1), the hypotheses 

vs==: 3210 ���LH

1
LH : one of the equalities above does not hold (2)

can be used to test if the QTL is significantly associated with 
phenotype Y ( i.e. existence of QTL ). Since all the 
unknown parameters in (1) were estimated by maximum 
likelihood estimates (MLEs), a log likelihood ratio statistic 
can be used to test the hypotheses in (2) [13]. The resulting 
test statistic ( 2

L� ) is asymptotically distributed as a 2
2� under

LH0 for large enough samples [13, 26].
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On the other hand, linkage disequilibrium, denoted by 
D , between the SNP and QTL can be tested by means of the 
hypotheses

0.:    vs0=: 10 �DHDH DD    (3)

Once the existence of a QTL is established, the test 
statistic used to judge whether or not the QTL is significantly 
associated with SNP is [13, 29]:

)ˆ(1ˆ)ˆ(1ˆ

ˆ2=
2
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qqpp
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D
��

�
    (4)

.ˆ2= 2rn       (5)

Here, 2r̂ is the square of the correlation coefficient 
between the SNP and QTL that has been used in most of the 
related literature, which has many good sampling properties 
[30, 31]. Under DH0 , 2

D� is asymptotically distributed as 2
1� ,

from which the tail probability (p-value) of the observed 
level of association can be determined [10, 23, 26, 29, 32].

Because whether or not a QTL exists and whether or not 
the existing QTL is able to be successfully identified by the 
model are both critical, the QTL will not be interpreted as 
significant unless the two hypothesis tests (2) and (3) are 
both rejected. Three problems urge the improvement on this 
two hypothesis tests setting. Firstly, D is not identifiable 
under the null hypothesis ���� ===: 3210

LH [33, 34].
That is, the parameter il|� falls out of the model when the 
means are equal, as the 1,2,3=),,|( lYf lil �� in the likelihood 
(1) are identical in this case, resulting in 

),|(=),|(|
3

1=
����� ililill

YfYf� . Hence, the likelihood 

reduces to ),|(=),|,(
1=

���� i
n

i
YfMYL � , so that D which is 

computed from il|� can not be computed. As a result, testing 

0�D under LH0 is not meaningful. Secondly, a multiplicity 
correction is needed for simultaneous testing of all SNPs. 
Thirdly, the existence of a QTL underlying certain biological 
traits is the ultimate goal for the real application. Inspired by 
the idea of the graphical Bonferroni approach [25], we set 
the existence of QTL (2) to be the primary test and the LD 
test (3) to be the secondary test. If the primary test is not 
rejected, the secondary test will not be investigated. As a 
result, our proposed multiplicity correction approach increases 
the power, while preserving strong control of FWER and 
avoiding the identifiability issue of D under LH0 .

Graphical Bonferroni Approach

The Graphical Bonferroni Approach (GBA) is a versatile 
and easily communicated general adjustment method for 
multiple testing [25]. Provided as a generalized framework, 
it must be specially tailored to each testing situation. 
Generally speaking, it is most powerful for situations where 
hypotheses can be partitioned into levels of importance such
that the most important hypotheses are tested first and the 
lower level hypotheses are tested only if the higher level 
hypotheses show significant results.

All hypotheses of interest are depicted as nodes in a 
directed acyclic graph. Local significance thresholds for each 
node (hypothesis) dictate the local level at which each 
hypothesis is tested. Weighted edges between all nodes map 
the logical structuring of the designated testing approach. 
When a hypothesis is rejected, the weighted edges dictate the
proportion of the locally assigned significance threshold that 
is passed from the rejected node to all connected nodes. 
Thus, the graph induces an iterative testing approach that is 
shown to result in a closed-test that admits a short-cut [25]. 
Further, Algorithm 1 of [25] provides a simple updating 
technique that performs the short-cut. Strong control of the 
FWER at level � is proven to occur so long as three 
regularity conditions are met: 1) the sum of the local 
significance thresholds is no more than � , 2) the sum of 
outgoing edge weights from each node are no larger than 
unity, and 3) no node has an edge connecting to itself [25].

Rejection Scheme

Since the ultimate goal is to check existence of QTL, the 
first interest is in testing LH0 in (2) to see if the phenotype 
shows evidence of association with a latent QTL. Depending 
on the results of the test of (2), the testing for the given SNP 
will either end, or interest will be turned to testing DH0 in
(3) to see if the SNP is also associated with the QTL. (Fig.
1A) demonstrates how all of � is used to test the first 
hypothesis, LH0 , and none of � is initially given to the 

testing of DH0 . That is, node LH0 has local significance 

threshold � , and DH0 has local significance threshold 0. 

Assuming LH0 is claimed significant, the node belonging to 
LH0 would be removed and all of � passed on to DH0 as

signified by the edge weight of 1 along the path from LH0 to
DH0 . At this point, DH0 is tested at level � , its new local 

significance threshold given the rejection of LH0 as shown 
in (Fig. 1B).

Fig. (1). A: Demonstration of the GBA testing scheme for a single 

SNP. B: The updated graph after finding significant.

Note that adjusted p -values could be similarly obtained 

for each node. The adjusted p -value for LH0 would be the 

same as the unadjusted value. The adjusted p -value for DH0

would be either larger of its unadjusted value and LH0 's

unadjusted value (if LH0 was significant at level � ) or 1 (if 
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LH0 was not significant at level � ). The structuring ensures 

that a child node (such as DH0 in Fig. 1) cannot have a smaller 

adjusted p -value than its parent node ( LH0 in Fig. 1).

As a result, for the single SNP analysis, either both 
hypotheses will be tested at level � , or the testing will stop 
after LH0 without considering DH0 . Alternatively, the 
Bonferroni correction would test both hypotheses at /2� .
Hence, the Bonferroni adjustment has less power, due to its 
smaller thresholds. Compared to the traditional Bonferroni, 
the only potential disadvantage of the GBA method is that it 
skips testing DH0 if LH0 is not significant. However, this 
potential disadvantage becomes an advantage for the LD 
based QTL model because D is not identifiable under the 
null of LH0 . Thus, the only situation in which the Bonferroni 
method would have a possible advantage over the GBA 
method is not applicable here.

Our proposed GBA method further achieves an 
advantage in the case of multiple SNPs through sharing of 
the � -level between SNPs. Say there are m SNPs to be 
tested for both LH0 and DH0 . Let LiH0 and DiH0 denote
these two hypotheses respectively for the ith SNP, 

mi ,1,= … . The GBA approach begins by allocating initial 

local thresholds of m/� to each miH iL ,1,=,0 … . Initial 
local thresholds of zero are allocated to each 

miH iD ,1,= ,0 … . Edge weights of 1 are established from 

each iLH 0 to the corresponding iDH 0 for all mi ,1,= … .
Edges with weight 1)1/( �m are also established between 

each iDH 0 and all jL
H 0 for each mi ,1,= … and ij � .

Multiple testing (or multiplicity adjustment) then proceeds 
according to Algorithm 1 of [25].

Fig. 2 demonstrates the case of multiple SNPs, taking 
3=m as an example for simplicity. In addition to the 

schemes demonstrated in Fig. 1, Fig. 2 shows two more 
rules. First, it includes the extra edge weights from each 

DiH0 node to all non-parent LiH0 nodes, i.e. to all LjH0 with
ij � . This allows for additional � -sharing between SNPs 

when both hypotheses (i.e. LiH0 and DiH0 ) are rejected for 
any given SNP i . Second, the � -level is split with a 
Bonferroni type allocation between the m top-level
hypotheses while none of � is initially provided to the m
lower-level hypotheses. Upon rejection of a higher-level
hypothesis, the lower-level child hypothesis receives all of 
the m/� -level of the parent (edge weight of 1). If the lower-
level child hypothesis is then also found to be significant, its 
� threshold is then shared between all remaining higher-
level hypotheses (edge weights of 1/2).

The power advantage of our proposed GBA over the 
Bonferroni method is evident from the larger thresholds.

Where the Bonferroni method would test each hypothesis at 
the /6� -level, the GBA tests each hypothesis by thresholds 
that are no smaller than /3� . To demonstrate, assume that 

1
0
LH and 3

0
LH from Fig. 2 are rejected at the /3� level, but 

that 2
0
LH is not. Then nodes corresponding to the rejected 

hypotheses 1
0
LH and 3

0
LH are removed and all �

thresholds and edge weights are updated as shown in Fig. 3.
Notice in Fig. 3 the reconnecting of edge weights which 
previously attached to 1

0
LH and 3

0
LH from 2

0
DH , 1

0
DH , and 

3
0
DH . This demonstrates how edges determine not only the 

weight that will be passed, but also define the inheritance of 
edge weights.

Fig. (2). Demonstration of the hierarchy of the GBA testing scheme 
for three SNPs.

Fig. (3). Demonstration of the GBA testing scheme for three SNPs 

assuming that hypotheses and from the initial graph in 
(Fig. 2) are rejected.

Assume now that 1
0
DH of Fig. 3 can be rejected at the 

/3� -level. The graph updating (Fig. 4A) becomes more 
complicated with this rejection because the rejected 
hypothesis is both sending out and taking in edge weight 
from the same hypotheses (nodes). Specifically, 2

0
DH is set 

to send half of its threshold to 3
0
DH and the other half to 

1
0
DH . Of the half that the now rejected 1

0
DH would have 

received from 2
0
DH , half is designated to 2

0
LH and the 

other half designated to go to 3
0
DH . This assignment causes 

the updated 2
0
DH to send a total weight of 3/4 to 3

0
DH .

However, recalling the logical structure of the hypotheses, it 
can be seen that 2

0
DH will not be considered for testing 

unless 2
0
LH is first rejected. Hence, the 1/4 that 2

0
DH would

pass on to 2
0
LH through 3

0
DH at this point is not logically 
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possible as this would require testing 2
0
DH before testing 

2
0
LH . This logical restriction allows us to move the 1/4 out 

from 2
0
DH by means of the only other path available, so that 

3
0
DH receives a total weight of 1 from 2

0
DH , as shown in 

Fig. 4A.

The node corresponding to 3
0
DH in Fig. 3 was sending

half of its threshold to 1
0
DH and the other half to 2

0
LH . With 

the removal of 1
0
DH , now assumed to be significant, 3

0
DH

will now be doubly joined to 2
0
LH and to itself by inheriting 

the outgoing paths from 1
0
DH to both 2

0
LH and 3

0
DH . This 

junction of 3
0
DH to itself would specifiy that the 1/2 that was 

going from 3
0
DH to 1

0
DH times the 1/2 that was going from 

1
0
DH to 3

0
DH would result in 3

0
DH returning 1/4 to itself. 

Since it is not possible for 3
0
DH to pass 1/4 back to itself, it 

passes to 2
0
LH the original 1/2 it was already sending to 

2
0
LH , plus the 1/4 inherited by 2

0
LH from 3

0
DH via 1

0
DH

plus the 1/4 that 3
0
DH re-inherited from 1

0
DH . The result is 

to have 3
0
DH send all of its threshold to 2

0
LH . This can also 

be viewed more simply by the fact that upon removal of 
1

0
DH from the graph (due to its rejection), 3

0
DH is left with 

only one outgoing edge to 2
0
LH , hence all of its threshold 

must be passed to 2
0
LH .

The final graph resulting from the rejection of 1
0
DH in

Fig. 3 is depicted in Fig. 4A. At this point it could be 
possible that 2

0
LH is rejected, but to demonstrate a more 

interesting scenario, assume that 3
0
DH only can be rejected 

at the /2� -level. The resulting graph with 3
0
DH removed is 

depicted in Fig. 4B. Interestingly, both 2
0
LH and (if 

significant) 2
0
DH can now be tested at the full level � .

Fig. (4). A: The updated graph from (Fig. 3) assuming the 

hypothesis of (Fig. 3) is rejected at the -level. B: Graph

resulting from the rejection of the hypothesis at the -
level.

In conclusion, we solve the three problems in the 
multiplicity testing scenario that exist in previous LD based 

QTL models. Firstly, the unidentifiable issue of D under the 
null hypothesis 3210 ==: ���LH is avoided by skipping 

testing DH0 when LH0 is not rejected. Secondly, by flexibly 
passing out different portions of significance level �
according to the conclusion of other tests, we make a 
correction for all multiple SNPs. Thirdly, by setting LH0 to

be the primary test over DH0 , we satisfy the real application 
concern that existence of QTL is the ultimate goal. In the 
remainder of this article, we show through simulation studies 
that the proposed GBA is more powerful for LD based QTL 
mapping than standard Bonferroni adjustments and thus 
leads to more scientific discovery while maintaining strong 
control of the FWER.

RESULTS

Power Simulation

We investigated a simulation study to quantify the power 
advantage of the proposed graphical Bonferroni approach 
(GBA) over the standard Bonferroni adjustment within the 
LD based QTL mapping model [13]. The QTL, phenotype, 
and SNPs were generated under the assumptions of the 
alternative hypotheses (described in Methodology section in 
(2) and (3) ). The QTL was generated using an assigned 
probability of 0.7=q for the major allele. For each 
individual i , lQi = with {1,2,3}�l was used to code the 
QTL genotypes of aa, Aa, and AA, respectively. The 
normally distributed phenotype dependent on the value of 
the QTL is generated as niNlQY lii ,1,= ),,()=(| …�� . The 
means for the phenotype Y corresponding to the values of 
the QTL were set at 8=1� , 10=2� and 12=3� . SNPs were 
then generated using the conditional probability of the SNP 
genotype given the value of the QTL genotype for each 
individual. In general, for an LD based QTL mapping model, 
researchers genotype the SNP first and then use the SNP to 
generate a QTL based on the conditional probability of QTL 
genotype given SNP genotype. However, for our purposes, 
we are interested in extending from single SNP mapping to 
multiple SNPs mapping. Therefore, we derive the 
conditional probability of SNP genotype given QTL 
genotype (see Table 1) from the Bayes Rule in Equation (6).

.
)QTL(

)M()M|QTL(=)QTL|M(
P

PPP    (6)

Sample sizes of 100=n , 300 , and 500 were used to 
represent small, medium, and large sample sizes, 
respectively. The number of SNPs per simulation was set at 

1=m , 10, 50, 100, 500, and 1,000 to show the initial power 
under the single SNP scenario and the corresponding 
decreasing power trend as the number of SNPs increases. 
Finally, the heritability was set at two values, 0.1=2H and
0.4, corresponding to high and low error variance [27]. The 
model error variance 2� was computed using the heritability 
and genetic variance of the QTL. Power estimates were 
averaged over 1,000 simulations.
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3
0
DH /2�
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Table  1. The theoretical conditional probabilities of SNP 
genotype (columns) given QTL genotype (rows).
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The simulation results, shown in Table 2 and depicted in 
Fig. 5, demonstrate the power comparison of the proposed 
GBA with the traditional Bonferroni adjustment. The 
traditional Bonferroni adjustment approach makes 
corrections not only for multiple SNPs but also for two tests 
of each SNP, with total m2 number of tests. Here m is
number of SNPs. Our proposed GBA performs number of 
corrections somewhere between m and m2 , flexibly 
depending on the real situation of each SNP. The designed 
simulation results also provides an experimental reference 
for researchers about how power varies among different 
sample size n , the number of SNPs m , and the degree of 
heritability )( 2H . As expected, the power under high 

heritability (B: 0.4=2H ) is much higher than that of the 
low heritability (A: 0.1=2H ) and the power under large 
sample size ( 500=n , blue curves ) is much higher than that 
of the small sample size ( 100=n , green curves ). Under 
high heritability ( 0.4=2H ) and a larger sample size 
( 500=n ) , the power of the multiplicity adjustment remains 
high even as the number of SNPs becomes large 
( 1,000=m ). However, in practice it is often expensive to 
collect so many sample measurements. It is worth 
mentioning that the power obtained from the GBA can 
achieve 80% for a large number of SNPs ( 1,000=m ) but 
medium sample size ( 300=n ). Moreover, even with a low 
heritability ( 0.1=2H ), the power increase of the GBA over 
the Bonferroni adjustment allows for the possibility of 
maintaining the power level of the Bonferroni adjustment 
while decreasing the sample size of the study or increasing 
the number of SNPs, a great advantage for researchers. For 
example, under many cases, the power of our improved 
approach for 1,000 SNPs is similar or larger than the power 
of the Bonferroni adjustment for 500 SNPs.

Although the power increase of our proposed method 
improves moderately over the standard Bonferroni 
adjustment for the case of low heritability ( 0.1=2H ) when 
the sample size is small ( 100=n ), the power gains are still 
comparable to seminal results found by previous multiplicity 
improvements over their competitors [35]. All in all, our 
proposed GBA method shows a substantial increase in power 
over the Bonferroni adjustment under all 12 circumstances 

Table  2. The results of the power simulation as depicted in Figure 5.

100=n 300=n 500=n

m Bon. GBA Bon. GBA Bon. GBA

0.1=H2

1 0.333 0.422 0.604 0.696 0.753 0.831

10 0.132 0.207 0.313 0.462 0.490 0.677

50 0.062 0.093 0.186 0.272 0.324 0.465

100 0.045 0.067 0.146 0.210 0.265 0.379

500 0.022 0.032 0.079 0.112 0.163 0.229

1000 0.016 0.023 0.060 0.085 0.130 0.180

0.4=H2

1 0.751 0.825 0.984 0.992 1.000 1.000

10 0.500 0.671 0.929 0.990 0.994 1.000

50 0.340 0.480 0.853 0.975 0.983 1.000

100 0.283 0.396 0.811 0.955 0.974 0.999

500 0.180 0.248 0.699 0.862 0.944 0.998

1000 0.145 0.198 0.647 0.806 0.925 0.994
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with the different combinations of sample size, number of 
SNPs, and heritability. We did not compare with permutation 
because it is computationally infeasible to compute these six
settings using permutation. In addition, permutation approach 
is designed for the one testing structure, which is not the case 
here. Finally, we firmly believe that the GBA works better in 
the LD based QTL model because of the priority order setting, 
the logical consistency, uniformly better power in theory, and
increase in computational efficiency.

Mouse HDL Cholesterol QTL Mapping Project

Epidemiological studies have consistently shown that the 
level of plasma high density lipoprotein (HDL) cholesterol is 
negatively correlated with the risks of coronary artery 
disease and gallstones [36, 41]. Because of the inverse 
relationship between HDL and cardiovascular disease, there 
has been considerable interest in understanding genetic 
mechanisms contributing to variations in HDL levels. HDL 
levels vary considerably in different people, which are 
affected by interactions of multiple genes and environmental 
factors, and up to 70% of this variation in humans is 
genetically determined [37, 42]. Because of the concordance 
between human QTLs regulating HDL and corresponding 
mouse loci and many easily controlled experimental 
advantages, mouse has become an animal model in HDL 
research. Numerous findings in HDL QTL associations are 
obtained from crosses between different inbred mouse 
strains. By crossing inbred strains that significantly differ in 
HDL levels and subsequently testing for association between 
HDL levels and genetic SNPs in the progeny, numerous 
significant QTLs involved in HDL have been identified in 
mouse [36, 41, 43, 47].

Compared to the inbred mice strains with coarse mapping 
resolution, the QTL research on wild-caught and commercial 
stocks of outbred mice, as resources for genetic fine 
mapping, is far under developed. Zhang et al. published an 
open resource outbred mouse database with 288 Naval 
Medical Research Institute (NMRI) mice and 44,428 unique 
SNP genotypes (available at http://cgd.jax.org/datasets/ 

datasets.shtml) [48]. Three hundred 4-to-6-week-old male 
NMRI mice were purchased and individually housed with 
the same diet and environmental conditions. The blood 
samples of each mouse were measured by submandibular 
puncture after a 4-hr fast. Then plasma samples were frozen 
for measurement of HDL cholesterol. There were 10 mice 
removed because the standard deviation of individual blood 
pressure is greater than two. Another two mice were also 
discarded for their 99% identity of SNP genotypes. This 
caused the final sample size to be 288. A total of 581,672 
high density SNP were initially genotyped by the Novartis 
Genomics Factory using the Mouse Diversity Genotyping 
Array [49]. In order to guarantee promising data for 
association mapping studies [50], only polymorphic SNPs 
with minor allele frequency greater than 2%, Hardy-
Weinberg equilibrium 20<2� , and missing values less than 
40% were retained. Moreover, identical SNPs within a 2Mb 
interval were collapsed. This left 44,428 unique SNP 
genotypes for their resulting analysis using three analysis 
methods, linear trend test, two way ANOVA, and EMMA 
[51]. From Zhang's work , adjustments for multiplicity at the 
genome-wide association level were made using a simulation 
approach [52] as well as the permutation approach [53].
They identified three loci as significant, with two loci on 
Chromosome1 (Chr1) and a single locus on Chromosome5 
(Chr5) (see Fig. 3 of [48]). However, after a closer 
investigation, Zhang et al. reported that the significant 
findings in Mb182 of Chr1 is spurious. 

We applied the introduced LD based QTL model [13] and 
the proposed GBA multiplicity correction approach to this 
outbred mouse HDL cholesterol genome data to compare our 
findings with the highly validated discoveries in current 
literature. Recalling the detailed adjustment structure of the 
GBA, it can be seen that the adjusted p -value obtained from 

GBA for the test of DH0 will never be smaller than that of 
LH0 . Hence, reporting the significant adjusted p -values for 
DH0 is sufficient for demonstrating those SNPs that show 

Fig. (5). Power comparison between the graphical Bonferroni approach (GBA) and standard Bonferroni adjustment under different sample 

size, number of SNPs, and heritability (A: , B: ).0.1=H2 0.4=H2
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strong evidence of linkage to a significantly existed QTL. 
(Fig. 6) depicts the negative log of the adjusted p -values for 

DH0 for each SNP as a function of the location (in Mb) of 
each SNP for 19 chromosomes. The threshold for the 
adjusted p -values of 2.9957(0.05)log �� supports two 
dramatically significant findings, on Chr1 at Mb173 and 
Chr5 at Mb125. These two significant discoveries are the 
same as the findings in current outbred mouse literature, 
compare to Fig. 3 of [48], but with an even stronger signal.

In Table 3 we notice that all significant QTLs detected 
from outbred mouse by our model are confirmed from 
reported findings obtained from inbred mouse crosses using 
very different approaches. Two QTLs have been reported 
coincident with candidate genes. Chr1 locus at Mb173, the 
highest peak in Fig. 6, is the major determinant of HDL, 
which has been detected as QTL Hdlq15 in inbred mouse 
strains multiple times (as referenced in Table 3). Combining 
mouse crosses with haplotype analysis for the HDL QTL 
located on Chr 1 locus at Mb173 reduced the list of 
candidates to a small amount. Numerous mouse crosses have 
linked HDL to this region, and Apoa2 has been identified as 
the gene underlying the QTL [38, 40, 41, 43, 46]; this gene 
has been highlighted in Nature Reviews Genetics [54]. Chr5 
locus at Mb125, the second highest peak in Fig. 6, is located 
in the same locus as QTL Hdlq1 found by [46] and [44] (as 
referenced in Table 3). In addition, they conclude that Scarb1
(a well known gene involved in HDL metabolism) is the 
causal gene underlying Hdlq1 by haplotype analysis, gene 
sequencing, expression studies, and a spontaneous mutation 
[45, 47].

There are a total of two significant detections from a 
large pool of 44,428 candidate SNPs from our model, with 
the findings confirmed by inbred mouse findings. Zhang et

al. worked on exactly the same data, adjusting for 
multiplicity at the genome-wide association level using a 
simulation approach [52] as well as the permutation 
approach [53]. They made the same two significant 
detections with less significance level than our p-values, and 
they also find one spurious QTL. Therefore, our proposed 
approach brings a useful alternative approach for SNP 
selection literature.

DISCUSSION

Detecting significant genes that cause disease (for 
example the inverse relation between human cholesterol and 
cardiovascular disease) or regulate biological traits through 
LD based QTL mapping has been popular in many 
disciplines [1-13]. The new techniques can simultaneously 
consider tens of thousands of SNPs and hence bring big 
challenges to multiple testing. In addition, high dimensional 
biological traits, often reduced to multiple PC components, 
have been widely used and add yet another demand for a 
powerful and computationally efficient approach to adjust 
for multiple tests [13, 55-57].

These multiple tests require an adjustment on the 
resulting p -values in order to preserve control of the 
familywise error rate (FWER) at a pre-specified level � . In 
some cases, follow up work on the significant findings may
justify using the false discovery rate (FDR) as the error rate 
of interest. Typically however, the significant results are 
directly reported and therefore the FWER is the more 
desirable form of error rate to control. The current standard 
approach in LD based QTL mapping is to apply a Bonferroni 
adjustment to correct for multiplicity and preserve the 
FWER. As is well known, the Bonferroni correction is 
overly conservative for large numbers of tests, but the 

Fig. (6). The negative log of the GBA-adjusted -values for for each SNP in the mouse HDL cholesterol QTL mapping project. The 
red reference line corresponds to a 0.05 familywise error rate.

Table  3. The significant results of the outbred mice HDL cholesterol QTL mapping project depicted in Figure 6. SNPs are ordered 
by significance level. Corresponding concurrence candidate gene and QTL from previous inbred crosses studies are 
shown.

Chr Position (Mb) 5pt Adjusted P 5pt Raw P 5pt Raw P Candidate Inbred Ref.

( DH0 ) ( LH0 ) ( DH0 ) Gene QTL

1*** 173,155,512 5.7� 10 � 15 1.3� 10 � 19 3.0� 10 � 30 Apoa2 Hdlq15 [38,41,46,47,54]

5*** 125,530,593 5.2� 10 � 10 1.2� 10 � 14 2.0� 10 � 83 Scarb1 Hdlq1 [37,40,44-47]

*** Significant at the FWER 1010*5 � level.
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advantages of simplicity without independence assumptions
on the corresponding family of tests continue to make it 
popular.

In this article, we tailored a multiple correction approach, 
based on graphical weighted-Bonferroni methods [25], 
which allows for the logical order among the two hypotheses 
to be structured into the multiplicity correction. As in the LD 
based QTL mapping model of [13], we need to test two 
hypotheses for each SNP, one with LH0 about whether or 
not an association exists between QTL and phenotype, and 
the other with DH0 about whether or not LD exists between 
SNP and QTL. Among these two tests, the QTL existence 
test has higher priority because the LD test will not be 
applicable if a QTL does not exist, and the existence of QTL 
is the ultimate goal in real applications. Although the logical 
structure of the two tests is known , none of the current LD 
based QTL literature considers this priority structure when 
performing these two tests [13, 23, 24, 27]. By the structure 
of graphical weighted Bonferroni, the quantitative trait loci 
test and linkage disequilibrium test are integrated into a 
combined multiple testing correction framework [58]. As a 
result, GBA approach has more potential applications in 
QTL studies. For example, in a haplotype study, we can put 
QTL test, dominant or additive effect test into one multiple 
testing correction framework. Hence, if QTL test is not 
significant, we don't have to test dominant or additive 
effects.

The significance of the power advantage of the proposed 
method, established through simulations, and finally on real 
data, is such that we advocate its use whenever multiple tests 
are needed for the LD based QTL mapping design, where 
both LH0 and DH0 tests are considered.
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