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Cellular and molecular processes that mediate individual variability in impulsivity, a

key behavioral component of many neuropsychiatric disorders, are poorly understood.

Zebrafish heterozygous for a nonsense mutation in ache (achesb55/+) showed lower

levels of impulsivity in a 5-choice serial reaction time task (5-CSRTT) than wild type

and ache+/+. Assessment of expression of cholinergic (nAChR), serotonergic (5-HT),

and dopamine (DR) receptor mRNA in both adult and larval (9 dpf) achesb55/+ revealed

significant downregulation of chrna2, chrna5, and drd2 mRNA in achesb55/+ larvae,

but no differences in adults. Acute exposure to cholinergic agonist/antagonists had

no effect on impulsivity, supporting the hypothesis that behavioral effects observed

in adults were due to lasting impact of developmental alterations in cholinergic and

dopaminergic signaling. This shows the cross-species role of cholinergic signaling during

brain development in impulsivity, and suggests zebrafish may be a useful model for the

role of cholinergic pathways as a target for therapeutic advances in addiction medicine.

Keywords: 5-choice serial reaction time, impulsivity, acetylcholinesterase, Dopamine D2 receptor, zebrafish

Introduction

The identification of endophenotypes, as quantifiable, core components of complex behavioral
traits and disease phenotypes makes genetic analysis of the pathogenesis of neuropsychiatric
disease more tractable in both humans and model organisms (Burmeister et al., 2008). One such
potential endophenotype is impulsivity (Urcelay and Dalley, 2012). Impulsivity not only is the
hallmark symptom of a number of neuropsychiatric disorders (ADHD, addiction) but, in the case
of addiction, has been shown to predict patterns of relapse and compulsive drug seeking in rats
(Belin et al., 2008).

Despite the well-established role in a number of neuropsychiatric disorders, the cellular, and
molecular mechanisms that underlie impulsivity are not well-understood. The cholinergic system,
in particular cholinergic projections from the PFC, has long been implicated in sustained attention
(Sarter et al., 2001). For example, IgG-saporin lesions of cholinergic neurons in the basal forebrain
reduce sustained attention (Mcgaughy and Sarter, 1998), while systemic administration of the
nAChR agonist nicotine improves performance accuracy and reduces omissions on the 5-CSRTT
(Blondel et al., 2000; Hahn and Stolerman, 2002; Young et al., 2004). In addition, infusions
of scopolamine (mAchR antagonist) into the medial pre-frontal cortex (mPFC), and systemic
mecamylamine (nAchR antagonist) reduce response accuracy (Robbins et al., 1998). The effects of
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chronic elevation of ACh, however, are less clear, although
Grottick and Higgins (2000) found that improved performance
accuracy is apparent with chronic nicotine exposure. The effects
of genetic alteration of ACh activity have not previously been
tested, particularly with respect to premature responding on the
5-CSRTT.

Notwithstanding their small size, low housing costs and
prolific breeding, there now exists a number of genetic tools
for zebrafish research, including N-ethyl-N-nitrosourea (ENU)
mutagenized lines, extensive sperm libraries, and a number of
GFP/RFP lines. Despite anatomical differences between the fish
and their mammalian counterparts, key neurochemical pathways
are well-conserved between the species (Guo, 2004); for example,
the ascending and descending midbrain catecholeminergic
pathways (Guo et al., 1999).

Here, we tested the performance of ache (the gene that codes
for acetylcholinesterase; AChE) deficient (achesb55/+) zebrafish,
for performance characteristics on the 5-CSRTT, a task designed
to test aspects of impulse control through examination of
anticipatory responding. achesb55 contain a point mutation close
to the catalytic site of the enzyme resulting in a replacement
of serine 226 by an asparagine. Serine 226 is conserved in
all ache gene family members, and is important for catalytic
activity (Behra et al., 2002). Chronic alterations in cholinergic
signaling with the AChE inhibitor chlorpyrifos has previously
been demonstrated to increase impulsivity, make cholinergic
signaling an interesting target for inquiry into the molecular
mechanisms underlying impulse control (Middlemore-Risher
et al., 2010; Cardona et al., 2011; Oca et al., 2012). Zebrafish have
previously been shown to respond well on the 5-CSRTT (Parker
et al., 2012, 2013, 2014).

Materials and Methods

Ethics Statement
All experimental procedures, including drug dosing, and
behavioral testing, were carried out under the Animals (Scientific
procedures) Act (1984). The procedures carried out conformed
both to local ethical guidelines and to the terms of a project
license from the UK Home Office. In addition, all experiments
were approved by the Queen Mary Animals Welfare and Ethical
Review Board.

Subjects
Twenty-nine (n = 10 achesb55/+ (Ninkovic et al., 2006),
n = 19 Tubingen wild-type), adult zebrafish (age = 6
months; mixed sex) were selected for the first part of the
study (5-s fixed interval PSI), and 12 adult zebrafish (age =

5 months; mixed sex; n = 5 achesb55/+; n = 7 ache+/+)
were selected for the second part (Variable PSI). All were
sourced initially from the Sanger Institute (Cambridge, UK),
and bred and reared in the aquarium facility at Queen
Mary University of London according to standard protocols
(Westerfield, 1993). During the entire experimental period, fish
were fed artemia/bloodworm mix during testing trials, and this
was supplemented with flake food/artemia in the evenings and at
weekends.

Apparatus
Figure 1 displays the 5-CSRTT tanks used in the study. The
shell of the testing tanks was constructed from opaque acrylic,
as were the central gates. The lights were LEDs (magazine
light green, stimulus aperture lights yellow). The reinforcer
used was artemia liquidized with bloodworm, suspended in
aquarium-treated water (R-O water with added salts). The food
was delivered via a plastic syringe fitted with a 1mm diameter
rubber catheter tube, which was driven by a linear stepper motor
(Figure 1).

General Procedure
The main procedure is an extension and modification of the
commonly used rodent 5-CSRTT, and has been described in
detail elsewhere (Parker et al., 2012, 2013, 2014).

Pre-training
Prior to commencing training, all subjects were habituated to
the test room for 1 week to acclimate to the conditions. All pre-
training, training and testing was carried out Monday–Friday
(0800–1800), with the exception of the final stage (Stage 8,
see Table 1), which was also carried out Saturday and Sunday.
Training was divided into eight distinct stages (see Table 1).

During stages 1–3 (pre-training) data were collected and
examined to ensure that all animals were receiving food during
training. Any that did not perform the task (e.g., froze in the tank
or did not approach the lights; n < 2 on any given session) had
their food supplemented immediately after the session. During
acclimation (Stage 1), fish were placed individually into the
test tanks for 30-mins. During this all lights were illuminated
and the gate was open. Immediately after acclimation, the fish
were trained to enter the food magazine (Stage 2). During this
stage, the gate remained closed at all times. The magazine light
was illuminated for 30-s intervals, during which entry to the
magazine resulted in the light turning off, and a small delivery
(∼20µl) of artemia/bloodworm mix. In Stage 3 the fish were
trained to approach the response apertures. Here, the gate opened
to reveal all of the response apertures illuminated, and entry
to any one of the apertures was conditionally reinforced with
illumination of the magazine light. Subsequent entry to the food
magazine was reinforced with artemia/bloodworm mix. During
Stage 3 (response aperture orientation) only fish that completed
20 or more correct trials were taken forward to 5-CSRTT
training.

Five-choice Serial Reaction Time Task: Phase 1
After a 2-min habituation period, the magazine light was
illuminated, and entry to the food magazine initiated the trial
sequence after an inter-trial interval (ITI) of 20-s1. This ITI
always followed food delivery, and allowed the fish time to
consume the reinforcer ration. After 20-s, the gate was raised,
and one of the stimulus apertures was illuminated after a pre-
stimulus interval (PSI). Entry to the correct aperture during the

1Note that in the rodent version of the 5-CSRTT, there is no gate lifted, and thus

the pause prior to the stimulus presentation is an inter-trial interval. In our version

of the task, the trial is initiated by the opening of the gate, and we refer to this as

pre-stimulus interval (PSI).
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FIGURE 1 | Five-choice serial reaction time task testing unit and the constituent parts. (A) The pneumatic gate mechanism. (B) The 5-choice apparatus

viewed from the perspective of the camera. (C) The stimulus light area. The stimuli were 5 white LEDs. (D) Food was delivered via activation of a linear stepper motor

driving the plunger of a 1.5ml plastic syringe. The food (liquidized bloodworm and brine-shrimp) was delivered to the fish through 1mm latex catheter tubing. (E) The

food delivery area and magazine. This comprised a green LED to act as a stimulus to signal food availability. Adapted from Parker et al. (2013).

TABLE 1 | Procedure for pre-training and training during 5-CSRTT.

Stage Procedure Description Timecourse

Pretraining 1. Acclimation All apparatus lights on, barrier raised Days 1–5

2. Magazine training Barrier down. Magazine light on 30-s. Food available on entry to magazine. 10-s ITI. Days 6–10

3. Response aperture orientation All stimulus lights illuminated. Barrier lifted, all stimulus lights illuminated. Entry to any hole

reinforced with illumination of magazine light. Food delivered on entry to magazine. Barrier

down after correct response. 10-s ITI (stimulus lights off, barrier down)

Days 11–15

5 CSRTT 4. 30-s stimulus training Trial commences with barrier lifted, followed by 1-s pause (ITI). Stimulus lights illuminated

in random order (30-s), followed by 1-s limited hold period (stimulus light off). Responses

during the stimulus or the limited hold conditionally reinforced with illumination of magazine

light. Food delivered on entry to magazine. Barrier down after correct response. Ten

second pause following magazine entry (stimulus lights off, barrier down). Subsequent trial

initiated following next magazine entry following this pause

Days 16–35

5. 10-s stimulus training As above (4), but stimulus light illuminated for 10-s Days 36–45

6. 5-s stimulus light, 2-s ITI As above (4), but stimulus light illuminated for 5-s, and ITI increased to 2-s Day 46–55

7. 5-s stimulus light, 5-s ITI (Baseline) As above (6), but ITI increased to 5-s Day 56–60

Testing 8. Long ITI training Day 1–Long ITI (as above (7; baseline), but ITI increased to 7-s). Days 2–3–Baseline (as

above (7). Day 4–Long ITI, Days 5-6–Baseline. Day 7–Long ITI

Day 61–68

stimulus illumination, or during a brief pause thereafter (limited
hold; LH), were conditionally reinforced by illumination of the
magazine light, and the trial ended when the fish collected the
food. All training sessions lasted 30-mins. For the first 4 weeks
(Stage 4) the fish were trained with 30-s stimulus duration, a
PSI of 1-s and a 1-s limited hold period. At all times during
training and testing, the magazine light remained illuminated
for 30-s following a correct response, after which magazine

entry was not reinforced. During the second stage of 5-CSRTT
training (Stage 5) the stimulus duration was reduced to 10-s,
the PSI was increased to 5-s and limited hold remained at 1-s.
The criterion for moving from each stage to the next was that
the fish had reached a steady-state response, operationalized as
completing >20 trials per session over 5-consecutive sessions.
Any fish not meeting this criterion were excluded from the
subsequent stage.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 3 October 2015 | Volume 9 | Article 271

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Parker et al. Acetylcholinesterase and impulsivity in zebrafish

Long PSI Stage
There were three long PSI sessions, during which the PSI was
increased to 7-s. All other test parameters remained the same
as during Stage 5 (stimulus duration = 10-s, limited hold =

1-s). The three long PSI sessions were interspersed by two
baseline sessions (Stage 5; PSI = 5-s, stimulus duration = 10-
s, limited hold = 1-s). During the long PSI sessions, the length
of the session was increased to 35min. The criterion for a fish
progressing to the long PSI phase of the experiment was that
they reached steady state responding, again, operationally defined
as having completed five sessions of >20 trials prior to testing.
Any fish that did not meet this criterion were excluded from the
testing phase.

Five-choice Serial Reaction Time Task: Phase 2
For the second phase of the experiment, we trained a group of
experimentally naïve fish (n = 5 achesb55/+; n = 7 ache+/+) in
an identical manner to that described above for stages 1–4. For
Stage 5, we introduced 5-s variable interval (VI) PSI. All other
timings were the same as in Phase 1, Stage 5 (stimulus duration=
10-s, limited hold = 1-s). There was no Long-PSI stage in
Phase 2.

Acute Exposure to AChe Antagonist, and nAChR
and mAChR Agonists
Trained fish (wild-type from Phase 1) were selected for the
drug administration phase. The exposure schedule was organized
according to a full crossover design, with each fish receiving
each of the drugs over a 1-week period. Fish were initially re-
trained (2-weeks) in the absence of drug to establish steady-
state baseline performance (>20 reinforced trials/session, for
5 sessions). The 5-CSRTT was as before in Stage 5 (see
above: stimulus-duration = 10-s, PSI = 5-s, LH = 1-s), except
that in this phase we employed a variable interval (VI) 5-
s PSI. During the first experiment, there was no difference
between the strains during the long PSI trials, but there was
a difference during the earlier stages of training. Therefore,
we chose to increase the complexity of the task by using a
VI-PSI during the entire training period. Immediately prior
to training, fish were immersed in a pre-treatment tank (1
L) either in the drug solution or in aquarium-treated H2O
for 20-mins. Drugs (nicotine: 1.54µM [Sigma-Aldrich, UK];
pilocarpine [Sigma-Aldrich, UK]: 8.64µM; donepezil [Sigma-
Aldrich, UK]: 2.63µM)were dissolved in aquarium-treatedH2O.
Doses of donepezil, nicotine and pilocarpine were selected based
on previous work on attention/impulsivity (Day et al., 2007;
Brembs, 2009; Cardona et al., 2011). The dose of donepezil was
also based on an initial assessment of brain levels of ACh and
AChE following drug administration to determine a dose that
best reflected the ACh and AChE levels in achesb55/+ (Ninkovic
et al., 2006).

Brain activity of AChE and brain levels of ACh were assessed
in wild-type fish exposed to 2.63µM donepezil or aquarium-
treated H2O for 20mins using a fluorescence-based approach
(George et al., 1961). Following exposure to drug fish were placed
in a recovery tank for 5-min, and then killed by immersion
in ice water. Brains were immediately removed, weighed and

homogenized in ice-cold Tris-HCl (pH 8). Samples were then
centrifuged (20-min at 13,000 rpm) and AChE and ACh was
assessed from the resulting supernatant using Amplex Red
Acetylcholine/Acetylcholinesterase assay kit (Molecular Probes,
Invitrogen Detection Technologies, Paisley, UK) according to
manufacturer’s instructions. Briefly, AChE converts ACh into
choline, which is then oxidized by choline oxidase to betaine
and H2O2. Brain activity of AChE and brain levels of ACh
were measured using 10-acetyl-3, 7-dihydroxyphenoxazine, a
flourogenic probe for H2O2. All ACh and AChE samples
were examined in duplicate against standards and fluorescence
was measured on a fluorescence microplate reader (FLUOstar
OPTIMA, BMG LABTECH, Cary, NC). Following exposure to
2.63µM donepezil, the levels of ACh were found to be higher in
the drug group [11.8 nM/g vs. 7.1 nM/g; t(8) = 2.81, P = 0.02],

which was directly comparable to levels seen in the achesb55/+

thus validating the dose used (Ninkovic et al., 2006).
The exposure schedule was as follows: Week 1: drug A, Week

2: recovery (no drug), Week 3: drug B, Week 4: recovery, Week 5:
drug C. As stated, each fish was tested in the presence of each of
the three drugs, the order of which was counterbalanced across
weeks.

Gene Expression Changes in achesb55/+

We collected embryos from 4 × achesb55/+ in-crosses. All
homozygous individuals were removed at 72 hpf (easily
identifiable by morphological features and lack of motor activity)
leaving petri dishes with∼2/3 heterozygous individuals. We also
collected embryos from 4 × ache+/+ in-crosses for comparison.
Reference genes used were β-actin, ef1α, and rpl13α based on
previous findings findings (Tang et al., 2007). Target genes used
are listed in Table 2. All embryos were manually sorted to ensure
all were at the same developmental stage over the first 72 hpf, and
grown to 9 dpf in petri dishes (∼40/dish) in an incubator (28◦C).
At 9 dpf embryos were terminally anesthetized in MS-222, and
placed in RNAlater until assay (4◦C). Eight batches of n = 3
embryos per strain (achesb55/+ and ache+/+) were lysed in 200µl
Lysis buffer with 2µl Proteinase K for 30–45min (55◦C). mRNA
was isolated using 40µl Dynabeads R© Oligo(dT)25 according
to manufacturer’s instructions. Ten adult (6 months) brains
(n = 5 achesb55/+; n = 5 ache+/+) were homogenized in 400µl
Lysis buffer with 4µl Proteinase K for 30-min (55◦C). mRNA
was isolated using 80µl Dynabeads R© Oligo(dT)25 according to
manufacturer’s instructions. All qPCR reactions were carried
out in triplicate. 1µl of cDNA and 1.5µl each of forward and
reverse primers (see Table 2) were added to 5µl SYBR R© Green
PCR Master mix and run in a 384-well plate format (Roche
Diagnostics). Method reported in full elsewhere (Gemenetzidis
et al., 2010) (Teh et al., 2013).

Data Analysis
5-CSRTT data were fitted to general linear models (fit by
REML), with time (5-CSRTT phases 1–5) and strain (either
achesb55/+ vs. ache+/+ or achesb55/+ vs. wild-type) as fixed
effects. In the drug administration phase, drug (four-levels,
nicotine, pilocarpine, donepezil, and control) was added as a
fixed factor, with ID and day as random effects. In each case,
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TABLE 2 | Primer pairs for all reference and target genes examined in

quantitative real-time PCR analysis.

Primers Gene name

REFERENCE GENES

β-actin-F CGA GCT GTC TTC CCA TCC A

β-actin-R TCA CCA ACG TAG CTG TCT TTC TG

rpl13a-F TCT GGA GGA CTG TAA GAG GTA TGC

rpl13a-Ft AGA CGC ACA ATC TTG AGA GCA G

eF1a-F CTG GAG GCC AGC TCA AAC AT

eF1a-R ATC AAG AAG AGT AGT ACC GCT AGC ATT AC

TARGET GENES

adora2aa-F CTT GAG CGC AGG AAC CAG AG

adora2aa-R CGC GCA CTG AGA GAT GAC AG

chma2-F GCG GAAAAC CGG ATA AAA ACA CTC

chrna2-R AGT TTG TCC TCT GCG TGT GCA T

chma3-F TGT ACA TCC GCC GAT TAC CGC T

chma3-R TCC GCA GTC GGA GGG CAG TA

chma4-F TTA CAA GAG GTT TGG GCG CT

chrna4-R ACA GAC CAG TAG ATC ATC ACT CC

chrna5-F GGC TCC CAG GTC GAC ATT

chrna5-R AAC CCC GGT TAC CAG TGG CCT

chrna6-F CTT TGG GCC TCT TCC TGC AA

chrna6-R TCA GAG TCT TGA TGT AGT GAC GG

chrna7-F ACC GTG TCA CAT TGT TCA TTC TC

chma7-R ACA GGT CTC TCC AGT GGG TTA

chrnb2-F GGC TGC CTG ATG TTG TTC TT

chrnb2-R TGG TGG CAA CCA GAA GAC ACT T

chrnb3-F CAG GAG TCA ACC TCC GCT TT

chrnb3-R TGA ATC TGA ACG CAC TGG CT

chrnb4-F TGA TCA CAT GAT GGG GAA TGA CG

chrnb4-R CAC CAC ACA CAC GAT CAC AAA G

drd1-F TGG TTC CTT TCT GCA ACC CA

drd1-R AGT GAT GAG TTC GCC CAA CC

drd2-F TCC ACA AAA TCA GGA AAA GCG T

drd2-R CAG CCA ATG TAA ACC GGC AA

drd3-F ATC GAG TTT CGC AGA GCC TT

drd3-R TCC ACA GTG TCT GAA AGC CG

htr1aa-F GGA GCC CGC CAT GCG TCT T

htr1aa-R CGT CGC GTT CCC GCT CCA A

oprm1-F CCG TAT GTG ACA GGA CGC CA

oprm1-R TTT CCC ACC AGT CCC ATC ACA

slc6a2-F AGG TGA CAT TGT TTG AGA TGT CTT

slc6a2-R TGT CTT GGT AGT GTC AAG TTG T

slc6a3-F TAT GTG GTC CTG ACC GTG CT

slc6a3-R CAC ATG TGT AGG CGC AGG AA

slc6a4-F GCC ACA GGC CCC GCT GTT A

slc6a4-R ACC AGG GGC GAA GCC AAG CA

the dependent measure was calculated from performance in the
5-CSRTT:

• Correct; calculated as: correct
(correct + incorrect)

• Omissions; calculated as: omissions
(correct+incorrect + omissions)

• Premature; calculated as:
premature

(correct + incorrect + omissions + premature)

Post-hoc Tukey tests were carried out to examinemain effects and
interactions of 5-CSRTT data.

Finally, to test the difference between levels of mRNA
expression in larvae and adult achesb55/+ and ache+/+ siblings,
we carried out a series of Mann–Whitney U-tests, with strain
(achesb55/+ vs. ache+/+) as the independent variable and target
gene expression, relative to reference genes, as the dependent
variables. For mRNA expression data, P values were estimated
following Bonferroni correction for multiple comparison. Effect
sizes for all differences in expression were also calculated using
the Grissom and Kim (2012) method. Descriptive statistics are
reported as mean ± SEM unless otherwise stated. A type-1
error rate of α = 0.05 was adopted for all statistical tests.
All data were analyzed using IBM SPSS Statistics v.21 for
Macintosh.

Results

achesb55/+ Show Higher Levels of Responding
during Pre-training
The achesb55/+ heterozygotes were selected by systematic in-
crosses, the mutation being homozygous-lethal. There was a
main effect for day, F(4, 35) = 3.42, P < 0.02. Post-hoc pairwise
comparisons revealed that there was a significant increase after
Day 1 (Ps≤ 0.05), but no change thereafter (Ps > 0.6). There was
also a significant main effect for strain, F(1, 85) = 5.61, P < 0.01,

with the achesb55/+ making significantly more response than the
wild-type (Figure 2A). There was no day × strain interaction
(F < 1). Of the original 39 fish, 3 of the achesb55/+ (30%) and 8 of
the 19 wild-type (42%) failed tomeet criteria (i.e.,<20 reinforcers
were received).

achesb55/+ Show Lower Levels of Premature
Responding in Long Fixed-interval and
Variable-interval PSIs
The rates of correct responses, omissions and premature
responding were comparable with our previously published work
with zebrafish (Parker et al., 2012, 2013, 2014). There was a
significant main effect of phase for correct responses, F(4, 24) =

23.61, P < 0.01. Post-hoc tests revealed that the proportion of
correct responses increased after phase 1 (phase 1 < phases 3, 4
and long-PSI, Ps < 0.01, but not phase 2, P = 0.06) and phase 2
(phase 2 < phases 3, 4 and long-PSI, Ps > 0.01), but there was no
difference between phases 3, 4 and long-PSI (Ps > 0.14). There
was no main effect of strain (achesb55/+ = 0.52 ± 0.02, wild-
type = 0.52 ± 0.02), F < 1, nor a significant phase × strain
interaction, F < 1.

The rates of premature responding were comparable with our
previous studies (Parker et al., 2012, 2013, 2014). There was a
significant effect of phase, F(4, 20) = 37.17, P < 0.01. Post-hoc test
revealed that phase 1 < phases 2, 3, 4 and long-PSI (Ps < 0.01),
phase 2 < phases 3, 4 and long-PSI (Ps < 0.01), phase 3 = phase
4 (P = 0.3), and subjects performed more premature responses
in the long-PSI phase than phases 3 and 4 (Ps < 0.05). There was
also a significant main effect of strain (Figure 2B), F(1, 28) = 5.07,

P = 0.03, with the achesb55/+ performing a lower proportion of
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FIGURE 2 | Five-choice serial reaction time task data. (A) ache sb55/+ receive more reinforcers in the stimulus-light training session that TU wild-type fish;

(B) achesb55/+ perform a lower proportion of anticipatory responses during 5-CSRTT training than TU wild-type; (C) ache sb55/+ perform a lower proportion of

anticipatory responses in 5-CSRTT than ache +/+; (D) 1.54 uM nicotine increases proportion of correct responses during 5-CSRTT in TU wild-type fish. Note:

*P < 0.05; **P < 0.01.

premature responses than the wild-type. There was no significant
phase× strain interaction, F(4, 20) = 2.11, P = 0.12.

Rates of omissions were again comparable with our previous
study (Parker et al., 2012, 2013, 2014). There were significant
main effects of phase, F(4, 27) = 22.02, P < 0.01. Post-hoc tests
revealed that phase 1 < phases 2, 3, 4 and long-PSI (Ps < 0.01),
and phase 2 > phases 3 and 4 (Ps < 0.04), but not long-PSI
(P = 0.3). Phase 3 was not significantly different from phase 4
(P = 0.14) but was significantly lower than long-PSI (P < 0.03).
There was no significant effect of strain (achesb55/+ = 0.32±0.02,
wild-type = 0.31 ± 0.01), F < 1, nor was there a significant
phase× strain interaction, F(4, 27) = 1.85, P = 0.14.

There was a significant effect of phase on the latency to
approach the stimulus for correct responses, F(4, 23) = 26.91,
P < 0.01, with subjects taking longer to approach the stimulus
in Phase 1 (12.69 ± 0.77 s) than in phases 2 (4.51 ± 0.27 s), 3
(5.31 ± 0.21 s), 4 (5.45 ± 0.19 s) or the long PSI phase (6.0 ±

0.18 s). There was no significant effect of strain, F < 1, nor was
there a phase× strain interaction, F(4, 23) = 1.18, P = 0.35.

The number of trials completed in each session during
5-CSRTT training changed significantly according to phase,
F(4, 30) = 7.96, P < 0.01, characterized as fish completing the
most trials in phase 3 (40.76 ± 1.23 trials; P < 0.01), and fewer
trials in the long-PSI phase (31.06 ± 1.29 trials) than in phase 4
(34.89± 1.29 trials; P < 0.01). There was nomain effect of strain,
F < 1 nor a phase× strain interaction, F < 1.

Finally, we carried out a replication with achesb55/+

heterozygotes and ache+/+ wild-type siblings. First, fish were
trained for 20 sessions (1 s fixed interval PSI), and finally with six,
5 s variable-interval (VI) PSI trials included. achesb55/+ showed a

significantly lower proportion of premature responses during the
VI-PSI trials, F(1, 18) = 10.48, P = 0.03 (Figure 2C). There were

no differences in correct responses (achesb55/+ = 0.66 ± 0.03;
ache+/+ = 0.61 ± 0.02; P = 0.13), nor omissions
(achesb55/+ = 0.34± 0.05; ache+/+ = 0.24± 0.03; P = 0.1).

Acute Manipulation of Cholinergic Activity
Increases Performance Accuracy but has No
Effect on Anticipatory Responding in Adult
Wild-type Zebrafish
Figure 2D shows the results of drug administration on 5-CSRTT
performance in wild-type fish. There was a significant main effect
of drug on correct responses, F(3, 75) = 4.01, P = 0.01. Post-hoc
pairwise comparisons (α-adjusted formultiple tests) revealed that
there was a significant increase from control in correct responses
during the nicotine (P = 0.02) but not pilocarpine (P = 0.19) or
donepezil (P = 0.85). There were no differences between nicotine
and donepezil (P = 0.07), nicotine and pilocarpine (P = 0.68) or
pilocarpine and donepezil (P = 0.53). There were no differences
between the drugs’ effects in terms of premature response rates
(control = 0.126 ± 0.02; nicotine = 0.104 ± 0.03; pilocarpine
= 0.103 ± 0.03; donepezil = 0.13 ± 0.03; F < 1), nor in terms
of omissions (control = 0.08 ± 0.03; nicotine = 0.1 ± 0.04;
pilocarpine= 0.1± 0.04; donepezil = 0.13± 0.04; F(3, 79) = 1.22,
P = 0.3). There were no differences in the total number of trials
completed in each session (control = 21.4 ± 0.52; nicotine =

19.2 ± 0.94; pilocarpine = 21.7 ± 0.94; donepezil = 21.4 ± 0.94;
F(3, 80) = 1.77, P = 0.16). Finally, there was no effect of drug
on approach latency (control = 8.6 ± 1.3; nicotine = 8.8 ± 1.5;
pilocarpine= 9.1± 1.5; donepezil= 9.1± 1.5; F < 1).
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achesb55/+ have Down Regulation of chrna2,
chrna5, and drd2 mRNA at 9dpf, but no
Detectable Differences in Adult Expression
Finally, to help understand the mechanisms by which
developmental reduction in AChE affected the observed
reduction in anticipatory responding, we characterized the gene
expression profile of achesb55/+ focussing on neural circuits
known to be involved in impulse control. Table 3 summarizes
the differences in mRNA expression for achesb55/+ heterozygotes
vs. ache+/+ wild-type siblings. We found that in the achesb55/+

heterozygotes, there was robust downregulation in chrna2,
chrna5, and drd2 mRNA, the genes that code for the alpha-2,
alpha-5 receptor subunits (nAChRa2, nAChRa5), and the
dopamine d2 receptor subunit (DRD2), respectively. In the
adults, there was no difference in expression of any of the genes
we observed.

Discussion

The aim of this experiment was to test the hypothesis that
developmental alterations in cholinergic signaling affect impulse
control using a zebrafish model of the commonly used 5-
CSRTT with a strain heterozygous for a missense mutation
in ache (achesb55/+). We found that achesb55/+ showed a
lower proportion of premature responding than achesb55/+

siblings and wild-type zebrafish. There were no significant
differences in either the number of correct responses, latency
to respond, number of trials or the number of omissions,
although the achesb55/+ appeared to learn faster, collecting
more reinforcers during pre-training. Acute reductions of AChE
(donepezil) had no significant effects on premature responding,
or other 5-CSRTT parameters, and acute administration of a
nAChR agonist significantly increased performance accuracy,
while having no effect on premature responding. Finally,
achesb55/+ have a down regulation of chrna2, chrna5, and drd2
mRNA expression at 9 dpf, but no difference in expression
in any of the genes we examined in adulthood. Previous
studies have shown that high levels of AChE inhibition
during development (e.g., with the organophosphate weedkiller
chlorpyrifous Middlemore-Risher et al., 2010; Cardona et al.,
2011; Oca et al., 2012) increase impulsivity in later life.
Collectively, these data suggest the intriguing theory that
variation in AChE during development may follow a J-curve
with respect to its effects on impulse control, potentially
through downstream effects on cholinergic and dopaminergic
pathways.

Lesion, neuropsychological, and pharmacological studies have
demonstrated that cortical cholinergic projections to mid-brain
regions are strongly implicated in sustained attention and in
general top-down cognitive control (Sarter et al., 2001). In
particular, during 5-CSRTT performance rats display elevated
ACh release from the medial pre-frontal cortex (mPFC), and
phasic increases in ACh release when a visual distracter was
introduced to increase task complexity (Passetti et al., 2000).
We did not see any differences in the number of correct
responses in our version of the task, but more of the achesb55/+

met criteria to move to the 5-CSRTT stage of training, and
of those that met criteria, overall performance in terms of
reinforcers gained was significantly greater than the wild-
type. This finding replicates assessment of this strain’s learning
previously demonstrated in a T-maze task (Ninkovic et al., 2006).
During this initial training stage, despite the strain difference,
there was no day × strain interaction, suggesting that achesb55/+

learnt at the same rate. It may be that the achesb55/+ were more
motivated to perform, or habituated faster than the wild-type.
This effect was transient, however, disappearing once training
started on the 5-CSRTT. We did, however, find evidence for
the role of nAChR in task performance, with acute exposure to
nicotine (nAChR agonist) increasing the proportion of correct
responses in the task. This supports previous data from rodents
(Blondel et al., 2000; Hahn and Stolerman, 2002; Young et al.,
2004).

A potential mechanism for the observed differences in
premature responding may relate to the role of nAChR during
early brain development and patterning. nAChR subtypes, in
particular α4, α5, α7, β2, and β4, are found early in brain
development, and have been suggested to play a role in
modulating and mediating early patterning, dendritic outgrowth
and synaptogenesis (Hellström-Lindahl et al., 1998). It is possible
therefore that reduction in AChE levels, as is characteristic of
the achesb55/+ heterozygotes, during early brain development
alter the distribution of nAChRs thus causing differences in
patterning and dendritic morphology. Indeed, in zebrafish, AChE
enzymatic activity has been shown to be important for both axon
outgrowth and synapse stability, albeit within the neuromuscular
projections of the nervous system (Behra et al., 2002; Downes and
Granato, 2004).

Chronic reductions of AChE in adult rats with donepezil
increases expression of α4 and α7 nAChR (Kume et al., 2005),
and ACh-modulated reductions in impulsive action in the 3-
CSRTT are mediated by α4 nAChR (Tsutsui-Kimura et al., 2010).
Although we did not observe differences either in chrna4 or
chrna7 here, we did observe robust down regulation of chrna2
and chrna5mRNA expression in the achesb55/+ heterozygotes at
9 dpf, but no differences in adulthood. CHRNA2 and CHRNA5
variants have been shown to predict impulsive responding in
response-inhibition in humans (Rigbi et al., 2008), and transgenic
mice overexpressing the Chrna3, Chrna5, Chrnb4 gene cluster
show a reduction in impulsivity (Viñals et al., 2012). However, the
differences in behavior observed in the achesb55/+ heterozygotes
demonstrate haploinsufficiency of the AChE gene, and thus
has implications for the impact of AChE mutations within the
human population. Although we are yet to understand the
mechanism, this may inform our exploration of potential targets
for therapeutics in the future.

The functional properties of nAChRs on catecholaminergic
(in particular, dopaminergic) axonal terminals alter during
development, highlighting their role in the development of
the dopamine system (Azam et al., 2007). It is clear that
over-activation of nAChR during early development, e.g.,
from maternal smoking during pregnancy, can result in an
increased risk for impulse control disorders (Button et al.,
2007). In addition, as discussed above, excessive inhibition
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TABLE 3 | mRNA expression for achesb55/+ vs. ache+/+ at 9dpf and 6 months of age.

Gene U N(a) N(b) Uncorrected P-value Corrected P-value Effect Size (Grissom and Kim, 2012) Direction of change in mRNA

expression

ADULT (6 MONTHS)

adora2aa 9 4 5 0.9 1 0.45 –

chrna2 17 5 5 0.42 1 0.68 –

chrna3 17 5 5 0.42 1 0.68 –

chrna4 12 4 5 0.73 1 0.6 –

chrna5 18 5 5 0.31 1 0.72 –

chrna6 11 4 5 1 1 0.55 –

chrna7 14 4 5 0.41 1 0.7 –

chrnb2 9.5 4 5 0.9 1 0.475 –

chrnb3 8 4 5 0.73 1 0.4 –

chrnb4 10 4 5 1 1 0.5 –

drd1 9 4 5 0.9 1 0.45 –

drd2 11 4 5 1 1 0.55 –

drd3 10 5 5 0.69 1 0.4 –

htrlaa 12 4 5 0.73 1 0.6 –

optm1 13.5 4 5 0.41 1 0.675 –

slc6a2 14 4 5 0.41 1 0.7 –

slc6a3 14 5 5 0.85 1 0.56 –

slc6a4 16 5 5 0.55 1 0.64 –

9dpf

adora2aa 51 8 8 0.05 0.9 0.797 –

chrna2 47 8 6 0.001 0.02 0.979 achesh55/+

chrna3 33.5 8 8 0.9 1 0.523 –

chrna4 46 8 8 0.16 1 0.719 –

chrnaS 94.5 8 8 0.003 0.05 1.477 achesh55/+

chrna6 50 8 8 0.065 1 0.781 –

chrna7 50 8 8 0.065 1 0.781 –

chrnb2 52 8 8 0.038 0.68 0.813 –

chrnb3 28 8 8 0.72 1 0.438 –

chrnb4 50 8 8 0.065 1 0.781 –

drd1 54 8 8 0.02 0.36 0.844 –

drd2 53 8 7 0.002 0.036 0.946 achesh55/+

drd3 57 8 8 0.007 0.126 0.891 –

htrlaa 54 8 8 0.02 0.36 0.844 –

optm1 53 8 8 0.03 0.54 0.828 –

slc6a2 55.5 8 8 0.01 0.18 0.867 –

slc6a3 45 8 7 0.054 0.972 0.804 –

slc6a4 25 8 6 1 1 0.521 –

Downward arrows represent down-regulation of expression, “–” represents no change. Significant differences indicated by Bold type. All expression ratios are reported relative to bact,

rpl13a, and eF1a.

of AChE during development, resulting from exposure to
the organophosphate insecticide chlorpyrifos, results in higher
impulsivity (Middlemore-Risher et al., 2010; Cardona et al.,
2011; Oca et al., 2012). Although this shows a clear link
between developmental effects of cholinergic-system disruption
and impulsivity, it is not clear at this stage the mechanisms
by which subtle alterations, such as are seen with achesb55/+,
subsequently reduces impulsivity. It is possible that this reflects
species-specific differences in patterning during early brain

ontogeny, although this seems unlikely based on documented
similarities between fish and mammalian cholinergic system
development (Xie et al., 2000; Behra et al., 2002).

During development, AChE is transiently involved with
aspects of neural patterning and hodological development. For
example, during cortical synaptogenesis and development of
thalamo-cortical pathways, AChE activity is recorded in various
brain regions (Button et al., 2007). The cholinergic system
interacts with mid-brain dopamine activity in a number of ways.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 8 October 2015 | Volume 9 | Article 271

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Parker et al. Acetylcholinesterase and impulsivity in zebrafish

First, the nucleus accumbens (NAc) is densely innervated by
cholinergic projection neurons (Meredith et al., 1989; Woolf,
1991). Second, cholinergic receptors [both muscarinic (mAChR)
and nicotinic (nAChR)] are found on ventral tegmental area
(VTA) dopamine neurons, suggesting dopaminergic control of
cholinergic activity (Clarke and Pert, 1985). Third, mesolimbic
cholinergic projection neurons are abundant with dopamine
receptors, suggesting cholinergic mediation of dopamine activity
(Gronier et al., 2000), creating a feedback loop. Rats characterized
as high trait impulsivity based on baseline performance on
the 5-CSRTT show a greater tendency for elevated cocaine
self-administration (Dalley et al., 2007), increased compulsive
cocaine seeking (Belin et al., 2008) and increased relapse
to compulsive cocaine seeking following punishment-induced
abstinence (Economidou et al., 2009). In addition, high impulsive
rats show a reduction in DRD2/DRD3 in the ventral striatum,
suggesting a potential biomarker for the addiction phenotype
(Dalley et al., 2007). Interestingly, achesb55/+ have previously
been characterized as showing a decrease in conditioned
place preference (CPP) for amphetamine (Ninkovic et al.,
2006). It is well-established, through the therapeutic efficacy
of dopamine agonists such as methylphenidate in reducing
impulsivity in ADHD patients (Barkley, 1997), that impulsivity
is, at least in part, related to a reduction in availability
of dopamine (Li et al., 2006). It is possible that genetic
impairment of AChE in achesb55/+ – which results in higher
levels of circulating ACh and desensitization of AChRs (Ninkovic
et al., 2006) – may act to stabilize dopamine activity (Zhou
et al., 2001), thus decreasing impulsive responding. However,
although we observed downregulation in drd2 mRNA in 9 dpf
achesb55/+ embryos, there was no significant differences in the
adults. This requires further exploration in order to elucidate
the mechanism.

In rodents, low levels of premature responding in the 5-
CSRTT are predictive of animals that show resistance to
developing compulsive drug seeking (Belin et al., 2008) and
relapse following abstinence (Economidou et al., 2009), and this
has been interpreted as these animals showing low levels of trait
impulsivity affecting top-down cognitive control (Dalley et al.,
2011). The neural circuits of impulsivity are currently not well-
understood (Brown et al., 2006; Chang et al., 2012), but these
findings suggest that zebrafish, an established genetic model
system, offer a means for exploration of this.

Gaining a better understanding of the etiology of psychiatric
disease is currently a priority area of research (Campbell,

2010), and with current advances in neuroimaging and huge
increases in genetic sequencing power this aim is beginning
to be realized. For example, genome-wide association studies
(GWAS) are making progress in this regard (Sullivan, 2010),
but are limited by uncontrollable factors such as environmental
influences and heterogeneity of diseases (Burmeister et al.,
2008). Animal models have proved useful in terms of
identifying molecular mechanisms of many psychiatric diseases,
as symptoms consistent with DSM-IV (APA, 2000) diagnoses
of psychiatric disorder have been characterized in many models
(Gould and Gottesman, 2006). A better understanding of the

molecular mechanisms will be helpful in tailoring treatment
options for patients, but also for early identification of at-risk
individuals to allow preventative measures to be adopted in
the early stages of the disorder (Uhl et al., 2008). Progress in
identifying molecular mechanisms, however, has remained slow.
This study showsmore evidence that zebrafishmay be very useful
in expediting this process.

In conclusion, this study has found that alterations in Ache
reduce premature responding in zebrafish on the 5-CSRTT.
This effect appears to relate specifically to developmental effects
of reduced AChE, as acute exposure to an AChE antagonist
had no effect on premature responding in the task. Molecular
analyses suggest that the route of action may be through
cholinergic interactions with midbrain dopamine systems during
development. This study opens the door for potential large-
scale forward genetic population screening of mutagenized lines
of zebrafish to identify novel alleles for phenotypes such as
impulsivity, which is crucial in the search for novel therapeutics
and individualized medicine (Jain et al., 2011).
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