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Binocular fusion relies on matching points in the two
eyes that correspond to the same physical feature in the
world; however, not all world features are binocularly
visible. Near depth edges, some regions of a scene are
often visible to only one eye (so-called half occlusions).
Accurate detection of these monocularly visible regions
is likely to be important for stable visual perception. If
monocular regions are not detected as such, the visual
system may attempt to binocularly fuse
non-corresponding points, which can result in unstable
percepts. We investigated the hypothesis that the visual
system capitalizes on statistical regularities associated
with depth edges in natural scenes to aid binocular
fusion and facilitate perceptual stability. By sampling
from a large set of stereoscopic natural images with
co-registered distance information, we found evidence
that monocularly visible regions near depth edges
primarily result from background occlusions.
Accordingly, monocular regions tended to be more
visually similar to the adjacent binocularly visible
background region than to the adjacent binocularly
visible foreground. Consistent with our hypothesis,
perceptual experiments showed that perception tended
to be more stable when the image properties of the
depth edge were statistically more likely given the
probability of occurrence in natural scenes (i.e., when
monocular regions were more visually similar to the
binocular background). The generality of these results
was supported by a parametric study with simulated
environments. Exploiting regularities in natural
environments may allow the visual system to facilitate

fusion and perceptual stability when both binocular and
monocular regions are visible.

Introduction

In animals with binocular vision, the two eyes’
images must be fused to obtain a single percept of the
world. Because each eye captures a slightly different
view, binocular fusion requires determining which
retinal points in the two eyes correspond to the same
physical feature in the world (Figure 1, connected
yellow squares). Due to ambiguities in this retinal
correspondence, binocular fusion is computationally
demanding. When the visual system fails to correctly
fuse the two eyes’ images, observers can experience
unstable percepts. This experience is often referred to
as binocular rivalry, because percepts can alternate
between the content visible to each of the two eyes
(Levelt, 1965). To reduce the computational complexity
of binocular fusion and obtain a stable percept of the
world, the visual system exploits statistical regularities
that are present in binocular images of natural scenes
(Burge, Fowlkes, & Banks, 2010; Burge & Geisler, 2014;
Cooper & Norcia, 2015; Cooper, Burge, & Banks,
2011; Gibaldi, Canessa, & Sabatini, 2017; Goncalves &
Welchman, 2017; Hibbard & Bouzit, 2005; Samonds,
Potetz, & Lee, 2012; Sprague, Cooper, Tošić, & Banks,
2015).
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Figure 1. Binocular and monocular retinal projections during natural vision. A stereo view of a natural scene is shown, representing
the images cast on the left and right retinas of an observer. To obtain a single percept of the world, these two views must be fused.
Examples of binocularly corresponding features are highlighted with pairs of yellow squares connected by lines. Note that these
features have variable binocular offsets and many similar features are visible to the two eyes, making fusion computationally
challenging. Isolated red squares depict monocularly visible regions associated with depth edges. (Image courtesy of Deviant Art user
aegiandyad, Creative Commons Attribution 3.0 License.)

Not all features in the world, however, create
binocularly matched retinal projections. Near depth
edges, parts of a scene are often visible to only one eye
(Figure 1, isolated red squares). If these monocular
regions are not recognized, the visual system may
attempt to fuse regions that do not binocularly
correspond, resulting in unstable percepts (Forte,
Peirce, & Lennie, 2002; Hoffman & Banks, 2010;
Shimojo & Nakayama, 1990). The visual system
should, therefore, exploit statistical regularities in
natural images that facilitate detection of monocular
features. It is likely that strong statistical regularities
are associated with monocular regions because of the
geometric constraints imposed by depth edges and the
visual properties of the surfaces on either side of the
depth edge (e.g., Anderson, 1994; Gillam & Borsting,
1988; Grove & Ono, 1999; Nakayama & Shimojo, 1990;
Tyler & Kontsevich, 1995; for an extensive review, see
Harris & Wilcox, 2009). Interestingly, although the
statistical properties of binocularly visible content in

natural scenes are under active study (Burge & Geisler,
2014; Chauhan, Masquelier, Montlibert, & Cottereau,
2018; Goncalves & Welchman, 2017; Hibbard,
2008; Iyer & Burge, 2018; Sprague et al., 2015), the
statistical properties that characterize monocularly
visible regions in natural scenes have received
scant attention. The current manuscript addresses
this gap.

Consider three illustrative geometric configurations
that can cause monocular regions in three-dimensional
(3D) scenes. The first configuration is a background
occlusion, in which a foreground surface partially
occludes an extended background surface so that
one portion of the background surface is visible
to only one eye and the other portion is visible to
both eyes. In this case, the image properties of the
monocular region should be similar to the binocular
background (Figure 2A). Another configuration is a
self occlusion, in which a foreground surface occludes
some portion of itself, rendering a portion of the
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Figure 2. Diagrams of depth edge configurations that lead to different types of monocular regions. A local area of a scene containing a
single depth edge can be subdivided into a monocularly visible region (green), the adjacent binocularly visible background (blue), and
the adjacent binocularly visible foreground (orange). Patterns above each diagram illustrate the left- and right-eye views of the scene.
Note that, in all configurations, the right eye views are the same, and the left eye views contains a monocular region. If the depth
edge is reversed, so the foreground is on the left, the monocular region will fall in the other eye. Colors are used to indicate
monocular versus binocular content, not actual color differences in the scene. (A) In a background occlusion, the left eye sees around
the corner of the foreground to expose more of the background surface. (B) In a hybrid occlusion, the left eye sees portions of the
foreground and background that are hidden from the right eye. (C) In a self occlusion, the foreground occludes itself, and the left eye
sees the side of the foreground object, but the right eye does not. Note that, in this panel, the monocularly visible surface is
contiguous with the foreground surface.

foreground surface visible to only one eye. In this case,
the image properties of the monocular region should
be similar to the binocular foreground (Figure 2C). A
third configuration is a hybrid occlusion, in which a
single monocular region can contain some portion of
the foreground directly adjacent to some portion of the
background (Figure 2B). The background-occlusion
and self-occlusion configurations shown in Figure 2A
and 2C, respectively, represent extremes along a
continuum of possible configurations. Note that hidden
surfaces may also occur at depth edges (see Appendix
Figure A1).

If the visual system is adapted to process depth edge
configurations that are most likely to be encountered
in natural scenes, then perceptual experiments may
provide clues about the corresponding statistical
regularities. For example, if background occlusions
are the most likely cause of monocular regions,
then visual systems might better process images in
which the monocular region is more similar to the
binocularly visible background than to the binocularly

visible foreground. Consistent with this hypothesis,
experiments using random dot stereograms of depth
edges have shown that depth processing is faster when
the texture of the monocular region matches the texture
of the binocularly visible background (Gillam &
Borsting, 1988; Grove & Ono, 1999). Experiments have
also shown that the perceived depth of the monocular
region tends to match the perceived depth of the
binocularly visible background (Grove, Ben Sachtler, &
Gillam, 2006; Grove, Gillam, & Ono, 2002). However,
not all such studies have produced consistent results.
In the only study to date (that we are aware of) that
has used natural images to probe the processing and
perception of monocular regions, judgments about the
depth structure of the scene were found to be faster for
self occlusions than for background occlusions (Wilcox
& Lakra, 2007).

In a complementary line of research, computational
studies have been used to examine statistical regularities
in monocular regions. For example, simulations of
3D scene geometry have shown that the probability
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of a point being monocularly visible varies as a
function of distance in scenes composed of cluttered
surfaces (Langer & Mannan, 2012; Langer, Zheng, &
Rezvankhah, 2016). However, the image cues that may
be available to the visual system for identifying these
monocular regions in typical natural environments have
not been examined. Thus, given the current literature,
we do not yet fully understand the visual processing
and perception of monocular regions near depth edges,
particularly in natural scenes.

In recent decades, a substantial literature has
developed that links the statistics of natural images
and the geometry of natural scenes to the structure
and function of the human visual system (for an
extensive review, see Geisler, 2008). Here, we investigate
the hypothesis that depth edges in natural scenes
contain statistical regularities that the visual system
capitalizes upon to facilitate perceptual stability. We
sampled and analyzed a large set of stereoscopic image
patches containing depth edges from a natural image
database with co-registered distance measurements
(Burge, McCann, & Geisler, 2016). Our analysis
suggests that the vast majority of these natural depth
edge configurations are background occlusions. In
two perceptual experiments, human observers viewed
the sampled patches and rated the visual stability of
the depicted scene near each depth edge. The results
suggest that perception was relatively more stable when
the image properties of the depth edge were statistically
more likely—that is, when monocular regions were
more visually similar to the binocular background.
These conclusions were supported by a computational
study of simulated 3D environments. Together, our
results suggest that the visual system can exploit
regularities in natural image and scene statistics to
achieve perceptual stability at depth edges.

Methods

All aspects of the natural scene analyses, perceptual
experiments, and modeling were performed using
MATLAB (MathWorks, Natick,MA). In the perceptual
experiments, stimulus presentation was controlled using
the Psychtoolbox-3 extensions (Brainard, 1997; Kleiner,
Brainard, & Pelli, 2007; Pelli, 1997).

Stimulus sampling

Stimuli for the scene statistics analyses and for
the perceptual experiments were sampled from the
natural scene dataset described in Burge et al. (2016).
This dataset is composed of ∼100 stereo images of
natural scenes with precisely co-registered distance
data. The stereo images were photographed with an

inter-camera separation of 6.5 cm, similar to a typical
human interocular separation. The goal of the stimulus
sampling was to select a set of stereo-image patches
containing depth edges with relatively large monocular
regions that could be (1) used to investigate the visual
content and surrounding binocular context in a natural
scene statistics analysis, and (2) used as stimuli in
perceptual experiments.

To determine whether each pixel in a scene from
the dataset was monocularly visible, we computed
the ground truth horizontal disparity gradients at
each image pixel directly from the distance maps
(Iyer & Burge, 2018). It has been shown mathematically
that if the disparity gradients—the change in disparity
divided by the change in visual angle—all exceed a value
of 2.0 then the pixel is visible to only one eye (Bülthoff,
Fahle, & Wegmann, 1991). Visual inspection of the
results confirmed that this procedure was accurate on
the current range maps. Stereo-image patches (3.8° ×
1.5°, 195 × 78 pixels) centered on monocularly visible
points at depth edges were sampled randomly. To
ensure uniqueness, we selected patches that did not
overlap with each other by more than 0.2°.

We vetted the sampled patches using an automated
process followed by additional manual processing.
To make sure the monocular region had sufficient
area for analysis, the central row in the patch was
constrained to contain a set of monocularly visible
points between 0.3° and 0.7° wide. In all other rows,
the monocularly visible region was constrained to be
at least 0.1° wide. To make sure the binocular regions
were sufficiently large to analyze, the monocular
region was constrained to be neighbored by at least
0.5° of relatively contiguous binocular background
and foreground regions (see below for details). These
criteria were chosen in order to obtain patches with
monocular regions that were large enough to facilitate
an informative analysis of visual patterns and binocular
context (foreground/background) in natural scenes, but
small enough that the neighboring binocular disparities
would cause minimal diplopia during the perceptual
experiments. Additionally, some patches contained
local lowlights or highlights that resulted in luminance
clipping. If more than 25% of the pixels either had
no light recorded or were saturated, the patch was
discarded. This sampling process resulted in 215 patches
for analysis.

Figures 3A and 3B show two examples from the final
patch set. Each example consists of a stereo-image
patch and co-registered distance values at each pixel
(top and middle rows), as well as binary masks labeling
each pixel that was monocularly visible (bottom rows).
In these binary masks, we removed minor artifacts
that resulted from the range scanner, as well as small
regions of adjacent monocular pixels that intruded
on the background. For example, if a tree or bush
was visible in the background adjacent to a depth
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Figure 3. Examples of stereoscopic patches containing depth edges. (A) Left and right eye views are shown from one of the sampled
depth edges. Rows contain the luminance images (top), distance maps (middle), and monocular region binary masks (bottom).
Luminance images have been histogram-adjusted for visibility. Grayscale values in the distance maps represent distance from the
camera in meters, scaled to fill the full range from white (near) to black (far). Across all patches used, the distance from the cameras
to the foreground region ranged from 3.1 to 11.1 meters (average: 5.4 meters), and the distance from the cameras to the background
ranged from 4.3 to 127.5 meters (average: 23.8 meters). The monocular region mask indicates a single region in the left eye,
consistent with the left eye seeing more of the background to the left of the tree. (B) Same as A, but in this case the monocular region
appears in the right eye. (C) The five spatial regions of interest used for analysis are illustrated for both patches.

edge, there might be small speckles of monocular
pixels associated with small partial occlusions.
These were removed by manually editing the binary
mask.

Natural scene statistics

To organize our analysis of the statistics of depth
edges in natural scenes, we defined five regions of
interest (Figure 3C). These regions were the monocular
region (green), the adjacent binocular foreground
(orange), the adjacent binocular background (blue), and
two transition regions from the binocular background
to the monocular region and from the binocular
foreground to the monocular region (black lines). The
binocular regions consisted of the 0.5°-wide image
areas neighboring the monocular region to the left or
right. The transition regions contained 0.4°-wide image
areas centered on the transition between the monocular
region and the binocular background or foreground

regions. The forthcoming results are similar for other
region sizes.

From the distance maps, we calculated the mean
distance of the surfaces in the monocular region, the
adjacent binocular foreground region, and the adjacent
binocular background region. From the luminance
images, we computed the mean luminance and the
mean contrast (i.e., square root of the mean squared
luminance deviation) within each of these regions, as
well. In the binocular–monocular transition regions, we
focused on analyzing the changes in image properties
associated with transitions between surfaces. For
example, a large horizontal luminance derivative would
reflect a strong vertical edge, suggesting a transition
between two surfaces with different patterns. To
quantify the strength of the vertical luminance edge
between the monocular region and adjacent binocular
regions, we used 5-tap derivative filters to compute the
mean magnitude of the horizontal luminance derivative
(Farid & Simoncelli, 2004). As a control measure, we
repeated this analysis for vertical derivatives, which are
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not expected to be particularly strong at horizontal
surface transitions.

Prior to statistical analyses, all of the image-based
measurements described above were normalized;
specifically, the mean luminance within each region
and the mean magnitude of luminance derivatives
within each transition region were normalized by
the mean luminance of the entire patch. The mean
contrast within each region was normalized by the
mean contrast of the entire patch. Two-tailed Wilcoxon
signed-rank tests were used to examine statistically
significant differences in the visual properties of
different regions. Non-parametric effect sizes for these
tests were calculated as z/

√
n, where z refers to the

z-score of the Wilcoxon test statistic and n refers to the
number of differences used to calculate the test statistic
(Fritz, Morris, & Richler, 2012).

It is important to note that the natural scene dataset
used here does not contain objects that are closer than
3 m. This limitation of the dataset should be considered
when interpreting the results of our analysis, because
prior work suggests that the prevalence of monocularly
visible regions depends on the distribution of object
distances in a scene (Langer & Mannan, 2012).
That said, we later report the results of a geometric
simulation that parametrically examined how object
distance affects the geometric causes of monocular
regions (see Results). The findings from the simulation
suggest that the main conclusions of this natural
scene analysis are likely to hold not only for surfaces
that are far away but also for surfaces that are up
close.

Perceptual experiments

Two perceptual experiments were conducted to
examine how the visual properties of natural depth
edges affect perceptual stability. Experiment 1 was
conducted in an exploratory manner and was used to
develop a set of hypotheses and appropriate statistical
tests. Experiment 2 tested these hypotheses with a
second set of observers; a larger, more diverse set of
stimuli; and a higher dynamic range display. We first
describe the methods in the two experiments that were
the same, and then indicate the differences between
them.

General methods
Observers. All observers had normal or corrected-
to-normal visual acuity and normal stereoacuity, as
determined by the Randot Stereotest (detection of 70
arcseconds or less). Observers gave informed consent
prior to starting the experiment. The procedures were
approved by the institutional review board at the
University of California, Berkeley, and were consistent

with the tenets of the Declaration of Helsinki.
Experiment 1 had 10 observers (five females; mean age
31.0 ± 2.6 years) and Experiment 2 had 15 observers
(nine females; mean age 27.7 ± 5.4 years).
Stimulus Presentation. Patches from the dataset
described above were presented to observers
stereoscopically on gamma-linearized displays.
Observers were positioned via a forehead and chin
rest at a viewing distance of approximately 60 cm
(1 pixel subtended ∼0.02°–0.03°). The stimulus was
designed to simulate viewing a portion of a natural
scene through a window (Figure 4). Specifically,
stereoscopic scene patches were viewed through a
virtual window that was specified by disparity to
be at the display distance. The window subtended
the same visual area as each patch (3.75° × 1.5°).
Using recently developed techniques described in
Iyer & Burge (2018), left and right eye image patches
were cropped at corresponding points such that the
depth edge had 5 arcminutes of uncrossed disparity
with respect to the screen. This procedure ensured that
all depicted surfaces in the scene were stereoscopically
defined to be behind the plane of the display and the
frame of the window.
Trials. On each trial, observers viewed a patch for 5
seconds through the virtual window and were then
asked on a separate response screen to evaluate the
visual stability of the patch using a continuous slider
response. To explain the task, they were shown an
example of a rivalrous stimulus and given descriptions
of types of visual instability (e.g., shimmering or
alternating between two states). Each response was
recorded on a 100-point scale, with 100 indicating the
most unstable. We refer to these responses as instability
ratings. Pilot testing confirmed that, even if there was
local instability at the depth edge, observers could
fuse these stimuli as a whole and experience depth
percepts of the foreground and background (White
& Burge, 2019). For the current study, we chose a
visual stability rating task, because previous work
suggests that stability is a salient aspect of perception
when binocular fusion fails (Hoffman & Banks, 2010;
Shimojo & Nakayama, 1990). Because this task requires
participants to rate the stimuli on an absolute scale,
we included a practice session prior to starting the
experiment. This practice session allowed participants
to calibrate their use of the visual stability scale by
exposing them to the range of stability levels they would
see during the experiment. Data from the practice
session were not analyzed. For Experiment 2, this
practice session included all stimuli in order to facilitate
better response reliability during the main task.
Following the practice session, observers completed
two repetitions per patch. Patches were not repeated
until all stimuli had been seen once. We calculated
the test–retest reliability via the squared Pearson
correlation coefficients (r2) between each observer’s
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Figure 4. Example stimulus. Left and right eye views are shown (oriented for crossed fusion in the upper row and uncrossed fusion in
the lower row). Each stereoscopic patch was placed in a window surrounded by 1/f noise on an uncrossed disparity pedestal so that
all content appeared behind the window frame. Stimulus is shown as presented in Experiment 1, and the surrounding background is
cropped for visibility. Images have been histogram-adjusted for visibility.

ratings from the first and second presentations of each
patch. Observers with r2 values below 0.1 were excluded
from further analysis (three observers in Experiment 1
and none in Experiment 2).

Experiment 1 stimuli
We selected a subset (n = 92) of the patches from the

natural scene statistics analysis for an exploratory study.
To reduce the number of features that varied across
different patches, the mean luminance and contrast of
each patch were fixed prior to displaying them to the
observers. The mean luminance of each patch was set to
30% of the maximum luminance output of the display.
The normalized root-mean-square (RMS) contrast of
each patch when presented onscreen was fixed to 0.25.
Note that the luminance and contrast within and across
the regions of interest still varied in the patches—fixing
the global mean luminance and global mean contrast
simply allowed us to concentrate our analyses on the
impact of local image properties. Stimuli were presented
stereoscopically on a ViewSonic V3D231 liquid crystal
display (LCD; 50.9 × 28.6 cm, 1920 × 1080 pixels;

ViewSonic Corporation, Brea, CA), which supports
passive stereoscopic presentation via polarizing filters.
Observers wore polarizing glasses so that stimuli could
be viewed dichoptically (specifically, alternating rows of
pixels on the screen were visible to each eye). In this
experiment, the viewing window was surrounded by
a 1/f noise field. The maximum luminance through
the filters was approximately 63 cd/m2, and stimulus
settings were selected to eliminate any visible crosstalk.

Experiment 2 stimuli
In this second experiment, we used a larger set of

patches to obtain a more diverse set of stimuli (n= 125).
In addition, we did not fix the mean luminance or mean
contrast of the stimuli, as we did in Experiment 1. By
allowing these values to vary, we could test whether the
findings from Experiment 1 generalized to more diverse
stimuli (i.e., they are not specific to the luminance
and contrast values selected for that experiment).
The results were highly similar across experiments.
Stimuli were presented stereoscopically on a mirror
haploscope with two LG 32UD99-W LCD monitors
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to provide a higher luminance range (69.6 × 39.3 cm,
1920 × 1080 pixels, maximum luminance of
approximately 330 cd/m2; LG Electronics, Seoul, South
Korea). The stimulus was adjusted so that the vergence
demand of the virtual window was equal to the monitor
distance. The virtual window was surrounded by a 1/f
noise field, as in Experiment 1, but the texture was
removed from the area immediately around the window
in order to reduce visual clutter.

Modeling instability ratings

We used the same statistical analysis in both
experiments. First, we defined a set of image features,
the values of which varied across the stimuli. Then,
we defined a set of linear mixed models that used
these features as predictors for patch instability
ratings. In each model, different observers were
modeled with random intercepts, and the usefulness
of different features for predicting the responses was
examined (see Results for details). Initial analyses
of Experiment 1 were conducted in an exploratory
manner based on the results of the scene statistics
analysis. Based on these exploratory analyses, we
hypothesized that the strength of the vertical edges at
the binocular–monocular transition regions modulated
the perceptual stability of the depth edges. We then
conducted a second experiment to test this hypothesis
on a larger independent sample of perceptual data.

In a follow up analysis, we asked whether higher
contrast in the patches was associated with higher
perceptual instability, based on predictions from
previous work (Liu, Tyler, & Schor, 1992). For each
observer, we converted instability ratings to z-scores
by subtracting the mean response and dividing by the
response standard deviation. We calculated Pearson
correlation coefficients between the contrast in each
region and the mean z-score for each patch. For
correlation values, 95% confidence intervals (CIs) were
calculated via bootstrapping.

Results

Natural scene statistics

We analyzed the statistical regularities of scene
and image properties in the immediate vicinity of
depth edges in natural scenes, with an emphasis on the
transitions between monocular and binocular regions.
If robust regularities are present, the visual system
might exploit these regularities to determine which
regions of the scene are monocularly and binocularly
visible.

First, we analyzed the difference between the mean
distance to the surfaces in the monocularly visible
region and the mean distances to the surfaces in the
adjacent binocularly visible background and foreground
regions. This analysis was possible because each image
in the dataset had laser-based distance measurements
co-registered to each image pixel (Burge et al., 2016).
When a monocular region primarily consists of the
background occluded by the foreground (Figure 2A),
the distance of monocularly visible points from the
camera, on average, should be similar to the distance
of the binocular background. Conversely, when a
monocular region primarily consists of a self occlusion
(Figure 2C), the average distance of the monocularly
visible points should be nearer than the distance of
the binocularly visible background and farther than
the distance of binocularly visible foreground. We
found that the distance of surfaces in the monocular
regions tended to be substantially more similar to
the adjacent binocular background. Figure 5A shows
histograms of the distance between each monocular
region and the adjacent binocular foreground (orange)
and the adjacent binocular background (blue)—that
is, the mean distance in the monocular region minus
the mean distance in the adjacent binocular regions.
A value of zero indicates that points in the monocular
region had the same average distance as points in the
relevant binocular region. Positive and negative values
indicate that the distances of points in the monocular
region were farther and closer, respectively, than the
distances of points in the binocular region. The median
absolute distance of points in the monocular region
from the binocular foreground was 9.59 m, whereas the
median absolute distance of points in the monocular
region from the binocular background was 0.10 m. The
absolute distance of points in the monocular region to
points in the binocular background was significantly
smaller than the distances to points in the binocular
foreground (p � 0.001, z = 12.71, effect size = 0.87).
This result suggests that, in this dataset, the vast
majority of monocular regions were caused primarily
by background occlusions.

We reasoned that if a monocular region associated
with a depth edge is caused by a background occlusion,
then there should be reliable image-based information
about this fact in the luminance pattern within the
transition regions (see Figure 3C) (Liu, Cormack, &
Bovik, 2009). Specifically, when a monocular region is
an extension of the neighboring binocular background
there should be a relatively strong vertical luminance
edge at the foreground–monocular transition region,
because this will coincide with the depth edge. Relatedly,
there should be a relatively weak vertical edge at the
background–monocular transition region, because
the binocular background and the monocular region
are likely to contain the same surfaces. On the other
hand, if the foreground surface occludes itself—a self
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Figure 5. Properties of monocular regions and the surrounding binocular context. Histograms show the frequency of (A) the distances
between binocular foregrounds/backgrounds and monocular regions within a patch, (B) the vertical luminance edge strength at the
transitions from binocular foregrounds/backgrounds to monocular regions, (C) the horizontal luminance edge strength at the
transitions from binocular foregrounds/backgrounds to monocular regions, (D) the differences in luminance between binocular
foregrounds/backgrounds and monocular regions, and (E) the differences in contrast between binocular foregrounds/backgrounds
and monocular regions. Distance was calculated in units of meters. Vertical and horizontal edge strengths represent the normalized
magnitude of the derivative filters in the respective transition regions (i.e., foreground–monocular and background–monocular).
Luminance is represented in arbitrary units, and contrast is represented as normalized RMS pixel luminance. A.U. indicates arbitrary
units.

occlusion (Figure 2C)—there will be no depth edge in
the foreground–monocular transition region, and there
should therefore be a relatively weak vertical luminance
edge in the foreground–monocular transition region.
A stronger luminance edge would be expected in the
background–monocular transition region (Figure 2C).
Note that these inferences are based on the assumption
that background and foreground surfaces have
visually distinct textures and that the statistics of these
textures are relatively stationary within a surface.
These assumptions have not been previously tested
empirically.

The current data suggest that these assumptions
are sufficiently accurate for natural image patches

to meet these expectations. The vertical luminance
edge strength (calculated as described in the Methods
section) in the foreground–monocular transition
region tended to be higher (0.09) than at the vertical
luminance edge strength in the background–monocular
transition (0.05; p � 0.001, z = 10.7, effect
size = 0.73) (Figure 5B). If this pattern is tied to the
surface in the monocular region, we hypothesized that
this pattern should be specific to vertical luminance
edges, because edges that are vertical indicate a
horizontal transition between surfaces. To test this
hypothesis, we repeated this analysis for horizontal
luminance edge strength. With horizontal luminance
edges, we found a small but statistically significant
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difference in the opposite direction. The horizontal
edge strength at the foreground–monocular transition
was slightly but significantly lower (0.057) than
the horizontal edge strength at the background–
monocular transition (0.064; p � 0.001, z = 3.43,
effect size = 0.23) (Figure 5C). We speculate that this
effect occurs because the abrupt transition between
surfaces at the foreground–monocular transition
precludes any strong horizontal continuity. Importantly,
with these analyses, we cannot rule out the possibility
that some of these monocular regions were caused
by hybrid occlusions—for example, a background
occlusion combined with a thin self occlusion at the
curved edge of a foreground object. Such hybrid
occlusions would still provide a vertical luminance edge
within the defined transition region. In the forthcoming
geometric simulation, we examine the prevalence of
hybrid occlusions directly.

To further test the conclusions of the distance
analysis and the transition analysis (i.e., that monocular
regions tend to primarily belong to the binocular
background and therefore share similar visual features),
we examined the luminance and contrast within the
monocular regions relative to the binocular regions
(Figures 5D and 5E). Consistent with the previous
analysis, the results showed that these visual properties
were more similar to the binocular background
than to the binocular foreground. Specifically, the
median absolute luminance difference from the
background (0.08) was approximately ten times lower
than the median difference from the foreground
(0.74; p � 0.001, z = 11.6, effect size = 0.79). Recall
that luminance is represented in arbitrary linear units.
The median absolute contrast difference between the
monocular region and the background (0.10) was
more than three times lower than the median absolute
contrast difference between the monocular region and
the foreground (0.36; p � 0.001, z = 8.95, effect size
= 0.61). Indeed, the strength of the vertical luminance
edge between two regions was highly correlated with
both the luminance difference (r = 0.57; 95% CI,
0.49–0.64; p � 0.001) and the contrast difference (r
= 0.51; 95% CI, 0.42–0.61; p � 0.001). We speculate
that these measures are highly correlated because they
all reflect the same underlying image structure in the
neighborhood of depth edges.

Collectively, these natural scene analyses suggest
that monocularly visible regions in natural scenes are
associated with robust statistical regularities. The results
suggest that monocular regions in natural scenes are
most likely to be composed primarily of an occluded
extension of the binocularly visible background
than an occluded portion of the binocularly visible
foreground, at least within scenes that are similar to
those in this particular dataset (e.g., relatively far object
distances, relatively sparse object density). Accordingly,
the monocular regions we analyzed tended to be

visually similar to the adjacent binocular background.
In particular, the transition from the foreground to
the monocular region was associated with a strong
vertical luminance edge, whereas the transition from
the monocular region to the background was not.
Although this pattern of visual similarity is true for the
majority of the depth edges in our dataset, the dataset
contained a good amount of variability in the vertical
edge strength (Figure 5B). We thus observed a range of
similarity levels: Most monocular regions were highly
similar to the binocular background, but some were less
similar.

If the visual system is adapted to leverage these
statistical regularities in the natural environment,
how might that manifest when viewing depth edges?
The visual similarity of the monocular region with
the binocular background, and perhaps the visual
dissimilarity of the monocular region with the binocular
foreground, may be associated with increased perceptual
stability. Assuming the standard cross-correlation
model of binocular correspondence—which uses
visual similarity to determine whether two features are
binocularly matched—features in monocular regions
would be expected to produce low-confidence binocular
matches. That is, although these features may bear
some visual similarity to features in the other eye, this
similarity should tend to be relatively low because
there is no true binocular correspondence. The visual
system may make one of two possible inferences when it
encounters a monocular region: (1) there is a matching
feature in the other eye (this would constitute a false
match), or (2) there is no matching feature in the other
eye. The former case is an inaccurate inference and the
latter case is an accurate inference. We conjecture that
when possibility 1 is accepted, perceptual instability
is more likely to result. We also conjecture that when
possibility 2 is accepted, perceptual instability is
reduced or eliminated: the resulting visual percept
reflects a combination of stable fused binocular features
and unfused monocular features. The scene statistics
results suggest that, when the monocular region is
visually similar to the binocular background, possibility
2 should be more strongly favored and percepts should
be more stable. Conversely, when the monocular region
is more visually similar to the binocular foreground,
we predict that percepts will tend to be less stable (i.e.,
possibility 1). To test these predictions, we performed a
pair of perceptual experiments.

Perceptual experiments

As a reminder, we conducted two perceptual
experiments in which observers viewed a subset of
the natural stereo-image patches from the previous
analysis and rated the perceived instability of the depth
edge. The perceptual experiments were designed to
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Figure 6. Instability ratings for each natural stereoscopic patch stimulus in both experiments. Each bar represents the mean z-score
for a patch across observers, ordered from lowest to highest. Error bars represent the standard deviation of the mean.

determine whether the statistical regularities in the
image properties associated with depth edges in natural
scenes predict perceptual instability. Before examining
this question, we first established the consistency of
ratings within and across observers (recall that each
observer rated each patch twice). The mean correlation
of the observer ratings from the first and second
stimulus presentations was 0.45 in Experiment 1 and
0.61 in Experiment 2, suggesting reasonable consistency
within observers. To obtain mean instability ratings
for each patch, we thus averaged the first and second
ratings of each observer. Figure 6 shows the mean
and standard deviation of these z-scored ratings
across observers for each patch, ranked from lowest to
highest. Across patches, the perceived stability varied
considerably. The standard deviation of instability
ratings across observers was relatively consistent across
patches and was also relatively small compared to the
change in stability across the patch ensemble. Together,
these results suggest that meaningful comparisons of
perceived stability can be made across this stimulus
ensemble.

Now, we turn to an analysis of the factors that may
contribute to perceptual instability. Before examining
the impact of image-based properties on perceptual
instability, we first determined how much of the
variation in perceived instability could be attributed
to the relative disparity between the foreground
and background surfaces. Depth edges with a large
binocular disparity between the foreground and
background may tend to appear unstable when they
exceed Panum’s fusional area, for the simple reason
that they are difficult to fuse. With large disparities,
the background is likely to appear diplopic when the
foreground is fused and vice versa. In the stimulus
set, the magnitude of the depth steps across the edges

corresponded to relative disparities ranging from 0.3° to
0.8°. We found that relative disparity was significantly
correlated with the mean instability ratings in both
experiments (Experiment 1: r= 0.54, 95%CI, 0.32–0.70,
p � 0.001; Experiment 2: r = 0.59, 95% CI, 0.47–0.70,
p � 0.001), accounting for 29% and 34% of the total
variance in mean instability ratings, respectively. Hence,
as expected, larger relative disparities are associated
with greater perceptual instability.

To model the effects of the image-based properties
on instability ratings, we fit the raw response data
with a set of mixed linear regression models. Based on
the analyses of natural scene statistics, we formulated
two nested models: the Disparity-Only model and the
Edge model. The Disparity-Only model included the
magnitude of relative disparity as the only predictor.
The Edge model included the vertical luminance edge
strength in each of the two binocular–monocular
transition regions as two additional predictors. We
chose these two predictors because the natural scene
statistics analysis suggested that a strong vertical
luminance edge at the foreground–monocular transition
is likely in natural depth edges, and a strong vertical
luminance edge at the background–monocular
transition is less likely. We thus hypothesized that
strong foreground–monocular vertical edges should
be associated with higher perceptual stability but that
background–monocular vertical edges should not. This
expectation follows from the observation that the depth
edges in our natural scene database primarily contained
background occlusions.

The results suggest that higher perceptual stability
is associated with image patterns that are more likely
given the natural image and scene statistics. Table 1
summarizes these results for each experiment. The
observed versus the fitted ratings are plotted in Figure 7.
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Fixed effects Coefficient estimate T statistic p r2

Experiment 1
Disparity-Only model 0.23
Intercept 10.9 (0.7, 21.0) 2.1 0.04
Disparity range 73.3 (58.2, 88.5) 9.5 �0.001

Edge model 0.30
Intercept 10.0 (–1.0, 21.1) 1.8 0.08
Disparity range 78.8 (64.3, 93.3) 10.7 �0.001
Background–monocular transition 560.4 (423.5, 697.2) 8.0 �0.001
Foreground–monocular transition –334.6 (–490.4, –178.8) –4.2 �0.001

Experiment 2
Disparity-Only model 0.27
Intercept 11.8 (6.3, 17.4) 4.2 �0.001
Disparity range 77.7 (70.0, 85.4) 19.8 �0.001

Edge model 0.35
Intercept 5.9 (0.3, 11.6) 2.1 0.04
Disparity range 81.8 (74.4, 89.1) 21.9 �0.001
Background–monocular transition 175.9 (148.5, 203.4) 12.6 �0.001
Foreground–monocular transition –55.8 (–83.1, –28.5) –4.0 �0.001

Table 1. Regression model results. For each experiment, results are shown for the two nested models: the Disparity-Only model and
the Edge model. The 95% CIs on each of the coefficient estimates are indicated in parentheses. T statistics were used to assess
whether these estimates were significantly different from zero. Significance values less than 0.05 are bolded. Random intercepts were
fit per observer in each experiment, with standard deviations of 9.1 and 8.0 in Experiments 1 and 2, respectively.

The Disparity-Only model and the Edge model both
indicate a significant effect of disparity magnitude.
In the Edge model, vertical luminance edge strength
in the binocular–monocular transition region was
also a significant predictor of the ratings: Stronger
vertical edges in the foreground–monocular transition
region were associated with greater perceptual stability
(lower ratings), and stronger vertical edges in the
background–monocular transition region were
associated with greater perceptual instability (higher
ratings). A vertical edge at an atypical location relative
to the monocular region may cause the visual system to
misinterpret monocular regions as being binocular, and
the increased instability may thus result because the
visual system tries and fails to fuse monocular regions
with binocular regions.

A likelihood-ratio test indicated that the Edge
model was a significantly better fit to the data
(Experiment 1: LR = 61.61, � df = 2, p � 0.001;
Experiment 2: LR = 194.52, � df = 2, p � 0.001).
This result was supported by a comparison of each
model’s Akaike information criterion (AIC), which
accounts for the increased number of parameters
in the Edge model (Experiment 1: Disparity-Only
model = 5922.9, Edge model = 5892.1; Experiment 2:
Disparity-Only model = 16649, Edge model = 16458).
We also computed the proportion of the response
variance explained by the Edge model as compared to
the Disparity-Only model. The Edge model explained

30% and 35% of the response variance in Experiments 1
and 2, respectively, whereas the Disparity-Only model
explained 23% and 27%, respectively. These percentages
should be interpreted relative to the expected amount
of explainable variance in the modeled data, which
is limited by the variability in repeated presentations
of the same stimulus to the same observer. Using
the method described in Hsu, Borst, & Theunissen
(2004), we estimated that the explainable variance in
the mean responses in the first experiment was 50% and
in the second experiment was 62% (see also Holdgraf,
Rieger, Micheli, Martin, Knight, & Theunissen, 2017).
These results are approximate, because we only had
two repeats per observer, but we can conclude that
the Edge model captures a reasonable portion of the
explainable variance within and across observers in
the current data. Thus, the results of this analysis
suggest that image cues at the binocular–monocular
transition regions of a depth edge affect perceptual
stability, and that this effect is consistent with observed
statistical regularities in real depth edges from natural
scenes.

To further explore this result, we examined to what
extent luminance or contrast differences between the
monocular and binocular regions contributed to the
mediating effects of transition region vertical edges on
perceptual stability. We created two additional models,
each with two predictors in addition to disparity
magnitude: the Luminance model and the Contrast
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Figure 7. Actual versus fitted instability ratings for the Disparity-Only model (A) and Edge model (B). Each panel shows the instability
ratings of all observers on the abscissa and the ratings produced by the best fit model on the ordinate. The top row shows the data
from Experiment 1, and the bottom row shows the data from Experiment 2.

model. In the Luminance model, we used the luminance
difference between the monocular region and the
background and between the monocular region and the
foreground (Figure 5D) as predictors. In the Contrast
model, we replaced these with the contrast differences
(Figure 5E). Both of these signals can contribute to
the strength of the vertical edge. The results suggest
that the luminance differences, and to some extent
contrast differences, contributed to the influence of
binocular–monocular vertical edges on perceptual
stability. Specifically, greater luminance differences
between the monocular region and the binocular
foreground were associated with greater stability (lower
ratings), and greater luminance differences between
the monocular region and the binocular background
were associated with greater instability (higher ratings).
Greater contrast differences between the monocular
region and the binocular background were associated

with greater instability (this effect was only statistically
significant in Experiment 2). The full results are reported
in Table 2. In practice, the identification of binocular
corresponding and non-corresponding points is likely
to also rely on higher order image features; however,
these results provide some insight into the nature of
the surface differences that may facilitate binocular
fusion.

In a final analysis, we examined how perceptual
instability experienced by our observers when viewing
natural depth edges relates to stimulus features that
are known to exacerbate binocular rivalry in simple
stimuli. Previous studies on binocular rivalry that
used synthetically mismatched stimuli (e.g., sinusoidal
gratings with different orientations in the two eyes),
have reported that low-contrast stimuli tend to be
more perceptually stable than their high-contrast
counterparts. Sometimes, stimuli that cause unstable



Journal of Vision (2020) 20(8):10, 1–21 Başgöze, White, Burge, & Cooper 14

Fixed effects Coefficient estimate T statistic p r2

Experiment 1
Luminance model 0.31
Intercept 23.53 (12.60, 34.45) 4.23 �0.001
Disparity range 71.78 (57.34, 86.22) 9.76 �0.001
Background–monocular difference 37.10 (17.93, 56.28) 3.80 �0.001
Foreground–monocular difference –42.63 (–53.78, –31.49) −7.51 �0.001

Contrast model 0.24
Intercept 7.46 (−3.20, 18.12) 1.37 0.17
Disparity range 76.71 (61.36, 92.06) 9.81 �0.001
Background–monocular difference 8.00 (−0.43, 16.43) 1.86 0.06
Foreground–monocular difference 1.45 (−4.16, 7.05) 0.51 0.61

Experiment 2
Luminance model 0.29
Intercept 15.51 (9.80, 21.22) 5.33 �0.001
Disparity range 74.97 (67.37, 82.57) 19.35 �0.001
Background–monocular difference 9.98 (6.64, 13.32) 5.86 �0.001
Foreground–monocular difference –5.50 (–7.22, –3.78) –6.27 �0.001

Contrast model 0.28
Intercept 10.21 (4.55, 15.88) 3.53 �0.001
Disparity range 78.27 (70.60, 85.94) 20.02 �0.001
Background–monocular difference 5.74 (1.96, 9.52) 2.98 0.003
Foreground–monocular difference 0.64 (1.97, 3.25) 0.48 0.63

Table 2. Regression model results for luminance and contrast differences. Data are formatted the same as in Table 1.

percepts at high contrast are fused into stable
unified percepts at low contrast. For example, when
orthogonal gratings are dichoptically presented at
high contrast, they cause strikingly unstable percepts
that alternate between the two grating orientations.
When the same orthogonal gratings are presented
at low contrast, they are perceived as a stable plaid
(Liu et al., 1992). Does the relationship between
contrast and perceptual instability hold in natural
images when monocular regions are caused by depth
edges? First, we examined the correlation between
the instability ratings and the image contrast in the
binocular background, monocular, and binocular
foreground regions in Experiment 2. As expected,
binocular instability tended to be higher when contrast
was higher. Higher instability ratings were associated
with higher contrast in the monocular region (r
= 0.20; 95% CI, 0.07–0.33; p = 0.02) and with
higher contrast in the adjacent binocular foreground
(r = 0.31; 95% CI, 0.15–0.45; p � 0.001). This
relationship was weaker and not statistically significant
in the binocular background (r = 0.17; 95% CI,
0.04–0.30; p = 0.06). Next, we examined the correlation
between instability ratings and contrast in the transition
regions. Instability ratings were higher with higher
contrast in the background–monocular transition
region (r = 0.19; 95% CI, 0.05–0.32; p = 0.03), but
the same was not true for the foreground–monocular

transition region (r = –0.097; 95% CI, –0.25 to 0.09;
p = 0.28). The absence of a correlation between
perceptual instability and contrast in the foreground–
monocular transition region may be connected to the
natural scene statistics. Because dissimilarity between
the monocular region and the binocular foreground is
highly likely, a high contrast in this transition region
provides information about the existence of an edge
in the natural environment, which may facilitate rather
than impede fusion.

Taken together, these results suggest that depth
edges with features that are statistically more likely
are also likely to be more perceptually stable. Because
monocular regions tend to be similar to the adjacent
binocular background than to the adjacent binocular
foreground in natural scenes, the visual system
might be inclined to correctly identify these regions
as monocular when they share features that are
similar to the binocular background instead of the
foreground.

Geometric simulation

The results from the natural scene statistics analysis
suggest that natural depth edges have robust statistical
regularities that could be exploited by the visual
system (i.e., monocularly visible regions tend to share
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visual properties with the binocular background). The
perceptual studies suggest that stimuli adhering to this
statistical regularity are more likely to be perceived
as stable, and stimuli that violate it are more likely to
be perceived as unstable. One potential caveat with
these results is that the sampled patches used in this
study were drawn from a set of outdoor scenes that
were photographed such that the closest objects were
3 meters away. If the results depend on viewing distance,
these may not generalize to near viewing distances.
In scenes with objects close by, it is possible that
self occlusions and hidden surfaces may occur more
frequently than in the scenes that we analyzed. If so,
the conclusions that we have drawn may apply only to
distant visual scenes.

Prior work has used geometric modeling as
an additional tool to explore potential statistical
regularities in binocular and monocular visibility
in 3D scenes (Hansard, 2012; Langer & Mannan,
2012; Langer et al., 2016). This approach is appealing
because it allows the modeler to parametrically vary
properties of a scene (e.g., object distance and clutter).
For example, Langer and colleagues asked how the
probability of points that are visible only monocularly
varies as a function of object distance (Langer &
Mannan, 2012; Langer et al., 2016). They found that
the probability that a given point is monocularly visible
increases monotonically as a function of its distance
from the viewer, and that this increase in probability
is more rapid when the objects are smaller. However,
because the simulated scenes were populated only
with identical planar surfaces, self occlusions were
not present in these simulations. Thus, the relative
frequency of the different causes of monocular regions
(the topic of the current investigation) could not be
examined. Building on this prior work, we performed
a parametric study of simulated 3D scenes populated
with objects capable of self occlusions. Specifically,
we examined how changes in viewing distance and
the properties of the 3D environment change the
proportion of monocular regions that tend to be due
to background occlusions, self occlusions, or hidden
surfaces. This simulation also allowed us to explore the
prevalence of hybrid occlusions that contain multiple
monocularly visible surfaces.

Each simulation included a binocular observer
positioned within a different environment. Each
environment was parameterized in terms of its scale
(i.e., maximum object distance), its density (i.e.,
total number of objects), and the size of the objects
within it (as a proportion of the scale). Objects
were defined as polygons with a random number of
sides (up to seven) and were positioned randomly
within the virtual observer’s central visual field.
Ray tracing was used to determine whether each
visible scene point was binocularly or monocularly
visible. We limited our analyses to the horizontal

plane of regard. Figure 8A illustrates two example
simulations.

In each simulation, we identified all monocular
regions occurring at depth edges within the observer’s
central visual field (40°) and categorized each
monocular region as being a background occlusion,
self occlusion, hidden surface, or hybrid occlusion
(see Figure 2 and Appendix Figure A1). A hybrid
occlusion was defined as a continuous monocular
region that contained less than 80% of any of the three
other categories. The results indicate that monocular
regions are most likely to be background occlusions
across diverse environments with different scales, object
densities, and object sizes. Each subpanel of Figure 8B
summarizes the results for a given environment scale
(columns) and object density (rows), and the abscissa
of each panel depicts variations in object scale.

We start by examining the results from the simulated
large-scale environments, which are most similar to
the scenes populating the database that we used to
compute the natural scene statistics (left column).
Consistent with the results from our analysis of natural
stereo images, the majority of monocular regions in
these simulated environments tended to be background
occlusions (solid lines). Other types of occlusions were
present but were highly infrequent by comparison.
These results suggest a strong constraint on the content
of monocular regions when objects are relatively far
away from the observer. It would be plausible for this
constraint to weaken or reverse when objects are nearby;
however, the observation that most monocular regions
were background occlusions generalized to smaller
scale environments in this simulation as well (right and
center columns). These smaller environments produced
more monocular regions overall, with background
occlusions still being consistently the most prevalent.
Not surprisingly, however, the relative proportion of
other types of occlusions was higher in the small-scale
environments compared to larger scale environments.
For example, for small-scale environments with many
objects, background occlusions and hybrid occlusions
had relatively similar frequency. Naturally, as the
number of objects increased (upper to lower row),
the number of self occlusions, hidden surfaces, and
hybrid occlusions also increased. Hidden surfaces and
hybrid occlusions were often more frequent than a
self occlusion in this simulation. Pure self occlusions
rarely occur because monocularly visible regions of
foreground surfaces result from areas that tend to have
high surface slants and thus project to relatively small
retinal angles (Figure 8A). Thus, pure self occlusions
would be relatively rare compared to hybrids that
include a substantial number of both self-occluded and
background-occluded points.

Last, our results are consistent with the simulations
presented by Langer & Mannan (2012), in that
we observed more monocular regions when the
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Figure 8. Geometric simulation. (A) Example diagrams of two simulated environments are shown in a top-down view. The small circles
at the bottom illustrate the location of a virtual observer’s eyes (interpupillary distance of 6.5 cm), and the shaded area represents
the visible environment. Object size was first specified as the diameter of a circle bounding a polygon, as a proportion of the
maximum distance in the current environment (0.1 in upper, 0.3 in lower panel). Random vertices were then placed along each circle,
so the final sizes of the objects varied depending on the vertex locations. The number of vertices was randomly selected to be
between two and eight, resulting in polygons with between one and seven sides. A minimum object distance was set as 20% of the
maximum distance for each environment. The number of objects for each simulation was varied, as well. (B) We ran 200 simulations
per parameter combination and determined monocular pixels by ray tracing over the central 40° field of view at a resolution of 60
rays per degree. We identified all unique monocular regions and categorized each region as being a background occlusion, self
occlusion, hidden surface occlusion, or hybrid occlusion. A hybrid occlusion was one that contained less than 80% of any of the three
other categories. The effect of environmental scale (maximum distances of 10, 1, and 0.5 meters) is shown in different columns, and
the number of objects (one, five, and 10) are shown in different rows. Each panel shows the percentage of monocular regions in each
category, as a function of object scale (0.1, 0.2, and 0.3). These scales correspond to sizes that range from 1 to 3, 0.1 to 0.3, and 0.05
to 0.15 meters for the large-, medium-, and small-scale environments, respectively. Data points at 0% are not plotted. Across all
parameter combinations, 95% CIs, as determined by the binomial distribution, ranged from 6% to 11% (not plotted). The different line
styles correspond to the four different kinds of monocular regions: background occlusion, self occlusion, hidden surface occlusion,
and hybrid occlusion.

environments were populated with smaller objects
(Langer & Mannan, 2012). For example, in the
small-scale environments with the many small objects,
over 30% of visible points were monocular, whereas
in the large-scale environments fewer than 3% of
visible points were monocular. The assumptions made
for these simulations clearly do not fully capture the

complex structure of natural scenes. Nevertheless,
the assumptions allowed us to parametrically
explore how different environmental factors may
affect the prevalence and properties of monocularly
visible surfaces. These simulations suggest that the
monocularly visible regions of real-world scenes are
much more likely to belong to background surfaces.
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Discussion

The images that are cast on the retinas during
natural viewing carry incomplete information about
the three-dimensional scene in front of the observer;
however, the visual system often exploits statistical
regularities in these images to achieve accurate
percepts of the environment. The perception of depth
edges may be facilitated by assumptions about the
configurations that are likely to occur in natural scenes.
The current work provides evidence that there are
indeed strong statistical regularities near depth edges
in natural scenes and shows that these regularities
are associated with systematic changes in perceptual
stability.

The current work focused on understanding the
natural scene statistics of monocularly visible regions
and how they relate to neighboring binocularly visible
regions. The analyses focused on the differences in
distance and the differences in image properties between
the regions. The distance statistics suggest that the
vast majority of monocularly visible regions in natural
scenes result from background occlusions. The image
property statistics indicate that monocularly visible
regions tend to have visual features similar to those of
the adjacent binocularly visible background. Despite
these strong statistical regularities, the image properties
associated with depth edges in our dataset contained
variability in how visually similar a monocular region
was to the adjacent binocular background region.
What causes this variability? We suspect that the most
important factor is that the image properties associated
with surfaces in natural scenes have some degree of
variability across space; for example, textural features
or lighting could differ slightly in the monocular region
relative the adjacent binocular background, even if
they belong to the same surface. A monocular region
may also appear more different from the binocular
background if portions of the foreground or a hidden
surface are also visible in the monocular region (i.e., a
hybrid occlusion). Because of these considerations, our
measures of visual similarity might be related to the
average distance between the monocular region and the
adjacent binocular background (i.e., larger distances
may be associated with larger differences in image
properties). In an exploratory analysis, we investigated
this possibility. Monocular regions with larger average
distances from the adjacent binocular background were
associated with larger differences in visual contrast (r
= 0.16, p = 0.02) and with larger differences in mean
luminance (r = 0.25, p < 0.001), but not with a stronger
vertical edge at the transition (r = 0.02, p = 0.82). Even
though these correlations are significant, they indicate
that distance differences do not explain a large amount
of the variation in visual similarity across depth edges
in this dataset.

In our perceptual studies, we measured human
perceptual stability in two experiments using stimuli
taken from natural scenes and analyzed the results
with mixed linear regression models. Models that
included image features (e.g., edge strength, luminance
differences) in addition to disparity as predictors for
perceptual instability explained 7% to 8%more variance
than a Disparity-Only model. This is a promising
result given the relatively small total effect size and
the limitations of the current approach. For example,
it is likely that there are stimulus factors (e.g., higher
order textural properties) that are useful for predicting
instability and are not well captured by the current set
of predictors. In addition, in the current perceptual
experiment, all stimuli were presented at a fixed distance
(relative to the foreground), even though the natural
scene patches were sampled from a range of distances.
An exploratory analysis suggested that patches derived
from farther distances may tend to be more perceptually
stable, perhaps because of differences in textural or
perspective cues. The interaction between binocular
disparity and textural cues at depth edges represents an
interesting direction for future work.

Our current set of models explained only around
one-third of the variance in mean instability ratings,
leaving a substantial proportion of the variance
unaccounted for. Indeed, repeated presentations of
the same stimulus could elicit quite variable instability
ratings within observers. With additional training
procedures or a two-alternative forced choice design,
this stimulus-independent variability in our response
measure may be further reduced. Another potential
next step might be to employ more complex textural
descriptors derived from natural scenes or to use
automatic techniques for finding the most useful image
features for the task (Burge & Jaini, 2017; Geisler,
Najemnik, & Ing, 2009; Jaini & Burge, 2017). Doing so
may reveal additional stimulus factors that are useful
for predicting perceptual instability. Finally, image
manipulation may also be used to causally manipulate
perceptual instability—for example, by introducing
luminance and contrast differences between adjacent
image regions. However, locally manipulating natural
images without producing visible artifacts can be
challenging.

The current work has focused on local statistics and
low-level image features. In addition to these local
statistics, the global structure of a scene is likely to
play a role in the perceptual stability of depth edges.
For example, a previous study that used photographs
of real-world objects as stimuli (tabletop scenes with
boxes) suggested that correct depth ordering judgments
were facilitated for self occlusions as compared to
background occlusions (Wilcox & Lakra, 2007). Such
stimuli may produce a strong expectation that the
side of the object should be visible. Recent work also
suggests that the detection of depth edges in natural
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images may be facilitated by taking global layout
information (e.g., elevation) into account (Ehinger,
Graf, Adams, & Elder, 2017). More global contextual
cues may thus lead the visual system to interpret a
given scene as more likely to contain one type of
occlusion over another, but a thorough understanding
of local image cues is clearly important. Early
feedforward stages of visual processing rely on localized
computations that are likely made more informative
by incorporating low-level statistical regularities
from the environment. For example, Anderson and
Nakayama (1994) proposed that binocular combination
relies on both disparity-tuned receptive fields and
receptive fields tuned to detect monocular regions at
depth edges at the earliest stages of visual processing.
In the search for neural correlates of binocular
combination, it has been demonstrated that binocular
populations in primary visual cortex include neurons
that are sensitive to interocular differences that
do not typically occur for binocular points during
natural vision (e.g., phase disparities) (Ohzawa,
DeAngelis, & Freeman, 1990; Read & Cumming,
2007). However, the ability of these populations to
detect monocular points is unknown. Recent work
on the natural statistics of depth edges may provide
guidance for investigating the predicted properties
of neurons optimized to encode the combination of
monocular and binocular features at depth edges
(Iyer & Burge, 2018).

Inspired by the proposed mechanisms for biological
vision, some computer vision approaches also aim to
simultaneously estimate the disparity of binocular
points and locations of monocular points (Wang
& Zickler, 2019; Weng, Ahuja, & Huang, 1988).
In the field of computer vision, monocular regions
have been of interest for their role in facilitating
detection of object boundaries when stereo-image
pairs are available. Recent work in this area has
begun to incorporate assumptions about typical
scene geometry into this procedure (Wang & Zickler,
2019); however, they have only considered variations
of background occlusions rather than detecting self
occlusions or hidden objects. Based on the primary
results presented in the current study, it seems
probable that this approach from computer vision
would work well on natural stereo images, given that
background occlusions are the most likely type of
occlusion. Nonetheless, the results of our simulation
suggest that hidden object scenarios may also contain
useful cues to depth edges, particularly in cluttered
scenes.

Looking forward, a systematic exploration of
how visual context across multiple scales impacts
binocular combination may improve the ability to
predict when natural stimuli are most easily fused.
In addition, a complete understanding of binocular
fusion during natural vision should take into account

complex local depth relationships, which can include
nested monocular regions associated with multiple
half-occluded surfaces (Assee & Qian, 2007). This
understanding would be facilitated by additional
datasets from a wider variety of natural scene types
(e.g., indoors, outdoors, natural, manmade). Finally,
the temporal dynamics of natural vision, which are
caused by object and observer motion, are likely to
have a strong modulatory effect on both visual statistics
and perceptual stability. As we learn more about the
these topics, we can expect that additional sources of
information may be discovered that facilitate stable
percepts.

Keywords: binocular fusion, perceptual stability,
natural image statistics

Acknowledgments

The authors thank Steve Cholewiak for equipment
assistance. EAC and ZB were supported by Google.
JB and DNW were supported by a National Institutes
of Health grant (R01-EY028571) from the National
Eye Institute and the Office of Behavioral and Social
Sciences Research. JB was also supported by startup
funds from the University of Pennsylvania.

Commercial relationships: none.
Corresponding author: Zeynep Başgöze.
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Appendix

Figure A1. Diagrams of depth edge configurations that lead to hidden surfaces (rather than background or self occlusions). In these
examples, the monocularly visible surface in the scene is not continuous with either the adjacent binocular foreground or the
adjacent binocular background; the features in the monocular image region are thus likely to be dissimilar to those in the image
regions corresponding to the binocularly visible foreground and background. (A) In a pure hidden surface occlusion, there is an object
or surface that the foreground hides from one eye (right), but the other eye (left) can see it. (B) In a background/hidden surface
hybrid occlusion, the background is interrupted by a hidden surface, which is also monocularly visible.


