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Acute exercise exacerbates ischemia-induced
diastolic rigor in hypertensive myocardium
Patricia O Reger1, Stephen C Kolwicz2 and Joseph R Libonati3*

Abstract

Previous studies have shown that acute exercise preconditions the myocardium from ischemic injury. The purpose
of this study was to test whether acute exercise protects the hypertensive myocardium from ischemia-induced
diastolic rigor, and to compare the response between normotensive and uncompensated hypertensive hearts.
Hearts harvested from female Wistar-Kyoto (WKY; n = 24) and spontaneously hypertensive rats (SHR; n = 27)
(age:10–12 weeks) were exposed to ischemia (Langendorff isovolumic preparation; 22 minutes of no flow ischemia
and studied following prior conditions of: 1) no exercise (WKY-CON, n=8; SHR-CON, n=8); 2) ischemia initiated one
hour post-acute exercise (WKY-1HR, n = 8; SHR-1HR, n = 11); and 3) ischemia initiated 24 hours post-acute exercise
(WKY-24HR; n = 8; SHR-24HR, n = 8). Acute exercise consisted of one bout of treadmill running at 25 m/min for
60 minutes. Heart weight was similar between WKY and SHR despite elevated in vivo resting systolic blood pressure
and rate pressure product in SHR (P<0.05). During normoxic perfusion, left ventricular (LV) Langendorff performance
was similar between WKY and SHR over the post-exercise time course. However, during ischemia, LV diastolic rigor
was less in WKY vs. SHR (P<0.05). Acute exercise augmented ischemia-induced LV dysfunction one hour
post-exercise in SHR (P<0.05), with gradual recovery by 24 hours post-exercise. These data suggest that acute
exercise promotes ischemic diastolic rigor in SHR, even prior to the development of cardiac hypertrophy.
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Introduction
There are numerous cardiovascular health benefits asso-
ciated with regular participation in exercise and physical
activity. Growing attention, however, has been placed
on how single acute exercise sessions influence cardio-
vascular function. For example, strenuous exercise in
humans has been shown to promote cardiac fatigue
(Oxbourough et al. 2010; Starnes and Bowles 1995;
Scharag et al. 2008) and tissue damage in the heart
(George et al. 2004) with several studies showing transi-
ent cardiac functional decrements (Dawson et al. 2007)
and increased plasma concentrations of cardiac-specific
troponins following exercise (George et al. 2004; Urhau-
sen et al. 2004; Trivax et al. 2010). While factors such as
the duration/intensity of exercise (Urhausen et al. 2004),
training status (Neilan et al. 2006), gender (Scott et al.
2006; Scott & Warburton 2008), and environmental

factors (Shave et al. 2004) are all significantly involved
in the magnitude of the reported post-exercise dysfunc-
tion, the underlying cellular events remain elusive. One
hypothesis is that acute aerobic exercise promotes oxida-
tive stress and apoptosis in the heart (Huang et al. 2009;
La Gerche et al. 2007) and this contributes to post-
exercise cardiac dysfunction.
Conversely, many studies have shown that acute aer-

obic exercise protects the heart from subsequent meta-
bolic insults. For example, acute exercise has been
reported to precondition the heart from subsequent
ischemia-reperfusion injury by attenuating experimentally-
induced infarct size (Brown et al. 2005; Domenech et al.
2002; Taylor et al. 1999; Yamashita et al. 2001). Exercise
induced cardioprotection has been observed in both
rat (Brown et al. 2005; Yamashita et al. 2001) and dog
myocardium (Yamashita et al. 2002) and is temporally
associated with both early and delayed ischemic precon-
ditioning, that might be dependent upon the generation
of heat shock proteins. Thus the literature suggests that
acute aerobic exercise elicits various reponses, with
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cardioprotection juxtaposed to temporal periods of
cardiac dysfunction/damage.
We sought to examine some of these important issues

in the present paper. For our experiments, we tested the
potential deleterious or cardioprotective influences of
acute exercise on ischemic cardiac function in normo-
tensive and hypertensive hearts. We studied hypertensive
hearts because the increased workload associated with
chronic hypertension has a profound effect on myocar-
dial metabolism and may influence post-exercise ische-
mic tolerance. Given the importance of understanding
the impact of acute exercise on intrinsic cardiac function,
we performed our studies in Langendorff-isolated hearts.
In our studies, we specifically examined; i) the temporal
effects of acute exercise on intrinsic cardiac function
under normoxic conditions, ii) the temporal effects of
acute exercise on ischemic left ventricular diastolic per-
formance, and iii) the temporal effects of acute exercise
in the hypertensive myocardium under normoxic and is-
chemia conditions. We hypothesized that a single bout
of exercise would have limited effects in altering cardiac
function under normoxic conditions, but would protect
both normotensive and hypertensive myocardium from
the development of ischemic-induced diastolic rigor.

Materials and methods
Animals and acute exercise protocol
Female Wistar-Kyoto (WKY; n = 24) and Spontaneously
Hypertensive Rats (SHR; n = 27) (age:10–12 weeks) rats
were obtained from Charles River Laboratories (Ger-
mantown, NY). All rats were housed 3 per cage, main-
tained on a 12-h light/dark cycle, and fed ad libitum
(Harlan Teklad Global Diets, 18% Protein Diet, Madison,
WI.) The animals were randomly studied under the
following conditions: 1) no exercise (WKY-CON, n=8;
SHR-CON, n=8); 2) one hour post-acute exercise (WKY-
1HR, n = 8; SHR-1HR, n = 11); and 3) 24 hours post-
acute exercise (WKY-24 HR; n = 8; SHR-24 HR, n = 8).
The acute exercise protocol consisted of the animals
running at low to moderate intensity on a motorized ro-
dent treadmill at 25 m/min at 0% grade for 60 minutes.
Animals in the 1 HR group were killed one hour after
exercise. Animals in the 24 HR group were killed 24
hours after exercise. All animals were maintained in ac-
cord with institutional standards and in accord with the
“Principles of Laboratory Animal Care” formulated by
the National Society for Medical Research and the
“Guide or the Care and Use of Laboratory Animals” pre-
pared by the Institute of Laboratory Animal Resources
and published by the National Institutes of Health.

In vivo heart rate and blood pressure measurements
In vivo heart rates (HR) (mean of 25 cardiac cycles) and
systolic blood pressures (SBP) were collected prior to

exercise and within two minutes after the completion of
the acute bout of exercise in a subset of animals, utiliz-
ing standard tail cuff techniques previously described
(MacDonnell et al. 2005).

Langendorff isolated heart preparation
Rats were anesthetized with sodium pentobarbital
(50 mg/kg; IP) and heparinized intravenously (500 U;
IV). The heart was excised, trimmed of excess tissue, and
rapidly immersed in cold (4°C), Ca 2+-free Krebs-
Henseleit buffer (KHB). Hearts were placed on a Langen-
dorff perfusion apparatus (ML785B2, ADInstruments,
Colorado Springs, CO) and perfused at 16 ml/min (STH
pump controller ML175, ADInstruments, Colorado
Springs, CO) with a modified Krebs-Henseleit solution
containing in mM; 2.0 CaCl2, 130 NaCl, 5.4 KCl, 11 dex-
trose, 2 pyruvate, 0.5 MgCl2, 0.5 NaH2PO4, 25 NaHCO3.
The buffer was equilibrated with 95% O2 and 5% CO2

which maintained the pH at 7.35-7.4 as previously
described (MacDonnell et al. 2005; Reger et al. 2006).
The coronary flow rate was selected to mimic the in

situ perfusion pressure. After coronary perfusion was
initiated, the left ventricle (LV) was immediately decom-
pressed with an apical puncture via the insertion of a
short apical drain. A balloon was inserted into the LV
and the LV balloon volume was adjusted to approxi-
mately 11 mmHg of LV end-diastolic pressure (LVEDP)
for stabilization. Following stabilization no further altera-
tions in balloon volume were made and baseline LV per-
formance was recorded. Timed measurements of LV
pressure (LVP), the maximum rate of positive and negative
change in LV pressure (± dP/dt), and coronary perfusion
pressures (CP) were continuously made via a data acquisi-
tion system (Powerlab/8SP, ADInstruments, Colorado
Springs, CO). Coronary perfusion pressure was measured
at heart level via a fluid filled pressure transducer. LVDevP
was calculated by subtracting the LV end-diastolic pres-
sure (LVEDP) from the LV systolic pressure. To assess LV
diastolic performance during ischemia, coronary flow was
stopped via a stopcock to produce no flow ischemia.
Ischemia persisted for 22 minutes and timed measure-
ments of LV pressures, the maximum rate of positive and
negative change in LV pressure (± dP/dt), and coronary
perfusion pressures were continuously made.

Tissue water content measurement
In a subset of experiments, we sought to determine
whether acute exercise induced cardiac edema. Thus we
determined myocardial tissue water content in a subset
of animals (WKYCON, N=3; WKY-1HR, N=3; SHR-
CON, N=3; SHR-1HR, N=3). After one hour of recovery
from exercise, rats were anesthetized with sodium pento-
barbital (50 mg/kg; IP) and heparinized intravenously
(500 U; IV). The heart was excised, trimmed of
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excess tissue and rinsed in cold (4°C), Ca 2+-free Krebs-
Henseleit buffer (KHB) and weighed. The heart was then
passively desiccated at 37.5°C until a stable dry weight
was achieved. Tissue water content was calculated as
([wet weight-dry weight]/dry weight) and expressed as
ml H2O/gm dry weight as previously described by our
group (Mohara et al. 2005).

Data analysis
Animal characteristics at the time of sacrifice were com-
pared with student t-tests. ANOVA followed by Tukey
post hoc analyses were used to analyze LV performance
at baseline and during ischemia, respectively. All ana-
lyses were performed using SPSS version 12.0 (Chicago,
IL). Significance was set at an alpha level of P < 0.05.
Data are reported as the mean ± SE.

Results
In vivo hemodynamics
Systolic blood pressure (SBP), heart rate (HR), and rate
pressure product (RPP) in response to acute treadmill
running are illustrated in Figure 1. At rest SBP was sig-
nificantly greater (P<0.05) in SHR compared to WKY.
After 60 minutes of exercise, SBP in SHR remained sig-
nificantly greater compared to WKY (P<0.05), despite
relative post-exercise hypotension occurring in both
groups. Resting HR tended to be elevated in SHR, with a
significant increase noted in the HR response to exercise
in both groups (P<0.05). The RPP at rest was signifi-
cantly increased in SHR relative to WKY at rest, and
tended to be higher in SHR following exercise.

Animal characteristics
The physical characteristics of the groups are presented
in Table 1. Prior to death, the body weight (BW) was sig-
nificantly less in SHR relative to WKY (P<0.0001). Heart
weight (HW), HW/BW ratio, tibial length (TL) and
HW/TL were similar between groups. Post exercise

myocardial H2O content was also comparable between
groups (Table 2).

Langendorff isolated heart performance
Normoxia
Figure 2 illustrates the normoxic Langendorff, isolated
heart performance in the WKY and SHR groups following
exercise. Cardiac function (LV DevP, LVEDP, and ± dP/dt)
was not statistically different between groups. In our
model, all hearts were perfused at a constant coronary
flow rate of 16 ml/min with a crystalloid perfusate. This
constant flow allows for differences in perfusion pressure
to be illustrative of coronary vascular resistance. In con-
trol hearts at baseline, coronary perfusion pressure (CP)
was higher in SHR-CON relative to WKY-CON indicative
of increased coronary vascular resistance (Figure 2E, P<
0.05). This observation remained in the immediate period
post-exercise as CP was significantly higher in SHR-1HR
vs. WKY-1HR (Figure 2E). Interestingly, CP was similar
in WKY and SHR 24 hours post exercise (Figure 2E).

Ischemia
Figure 3 illustrates the LV diastolic response during no
flow ischemia. Relative to WKY-CON, peak contracture
was significantly greater in SHR-1HR and SHR-24HR
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Figure 1 Blood pressure, heart rate and rate pressure product. Open bars represent pre-exercise conditions. Closed bars represent
post-exercise conditions. Wistar Kyoto (WKY), SHR Spontaneously Hypertensive (SHR). Data are mean ± SE. * P < 0.05 vs. WKY-Pre, # P < 0.05 vs.
SHR–Pre, † P < 0.05 vs. WKY–Post.

Table 1 Animal characteristics

WKY SHR

N = 24 N = 27

BW (g) 174 ± 2.2 159 ± 1.6*

HW(mg) 941 ± 39 914 ± 22

HW/BW (mg/g) 5.4 ± 0.2 5.7 ± 0.1

TL (mm) 31.6 ± 0.3 31.0 ± 0.2

HW/TL (mg/mm) 27.4 ± 1.1 29.4 ± 0.7

Data are presented as mean ± SE. Abbreviations; WKY Wistar Kyoto; SHR
spontaneously hypertensive rat ; N no. of animals; BW Body Weight; HW Heart
Weight; TL Tibial Length.
* Significantly different from WKY, P<0.0001.
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(P<0.05), with a tendency (P=0.10) to be greater in
WKY-1HR and SHR-CON (Figure 3A). Additionally,
the time of onset to ischemic contracture occurred
significantly earlier in SHR vs. WKY in control, 1HR,
and 24HR hearts (Figure 3B). Likewise, the ischemic
time required to reach 15 mmHg occurred earlier in
SHR-24HR vs. WKY-24 HR (Figure 3C,P<0.05).

However, during the early course of ischemia (i.e.,
LVEDP at 5 min), there were no statistical differences
among groups (Figure 3D).

Discussion
Our findings suggest that acute exercise does not induce
intrinsic cardiac dysfunction in Langendorff isolated hearts

Table 2 Myocardial water content

WKY-CON WKY-1HR SHR-CON SHR-1HR

N = 3 N = 3 N = 3 N = 3

Water Content (ml/gram dry wt) 3.1 ± 0.01 3.1 ± 0.08 3.2 ± 0.06 3.1 ± 0.04

Data are presented as mean ± SE. Abbreviations; WKY Wistar Kyoto; SHR SHR; CON Control; 1HR hearts harvested one hour after exercise.

Figure 2 Post-exercise Langendorff performance during normoxia. Data are presented as mean ± SE. Abbreviations; WKY, Wistar Kyoto;
SHR, SHR; CON, Control; 24HR, hearts24 hours after exercise; 1HR, hearts one hour after exercise; LVDevP, left ventricular developed pressure;
LVEDP, left ventricular end diastolic pressure; LV+dP/dt, rate of force development; LV-dP/dt, rate of relaxation; CP, coronary perfusion pressure.
* Significantly different from SHR-CON, P<0.05.
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during normoxic perfusion. However, when coronary flow
was compromised during global ischemia, left ventricular
(LV) diastolic performance was impaired in SHR follow-
ing exercise. This is evidenced by increasing the magni-
tude of rigor development one hour post exercise. The
time to onset of rigor was also reduced in SHR at all
study intervals relative to WKY. These data suggest that
low to moderate levels of acute aerobic exercise do not
impair intrinsic cardiac function when coronary blood
flow is well maintained, but potentiates diastolic dysfunc-
tion during ischemia in hypertensive hearts, even without
evidence of compensatory hypertrophy.
Hypertension is a well-established risk factor for the de-

velopment of coronary artery disease, ischemia, and heart
failure. Sustained elevations in arterial blood pressure re-
sult in the development of left ventricular hypertrophy
and apoptosis (Kolwicz et al. 2009), and have been asso-
ciated with an increased myocardial vulnerability to meta-
bolic stress (Taegtmeyer and Overturf 1988). It is well
documented that ischemia induces functional impairments
in cardiomyocyte relaxation. This impairment, known as

ischemic contracture, occurs as the actin-myosin cross-
bridges fail to dissociate, their attachments persist, and
tension is therefore maintained throughout diastole result-
ing in increased diastolic stiffness (Jennings and Reimer
1981, Libonati et al. 1997). The contracture that develops
during ischemia is, in part, thought to result from low
ATP concentrations. When ischemia persists, further
declines in intracellular ATP [ATP]i precipitates a rise in
intracellular calcium ([Ca2+]i) which in turn leads to add-
itional rigor and signals for cell damage (Allen and Or-
chard 1983, Allen and Smith 1985, and Cobbold and
Bourne 1984). In our studies, hypertensive hearts showed
increased myocardial workloads, i.e. rate pressure product
with exercise, which may be associated with increased
[ATP]i turnover and may underlie the worsened ischemic
diastolic dysfunction.
The increased workload associated with chronic

hypertension has a profound effect on myocardial me-
tabolism. It has been reported the myocardial PCr/ATP
ratio determined at rest is below normal when LV mass
is increased (Neubauer et al. 1997; Zhang et al. 1993;

Figure 3 Post -exercise Langendorff performance during ischemia. Data are presented as mean ± SE. Abbreviations; WKY, Wistar Kyoto; SHR,
SHR; CON, Control; 24HR, animals sacrificed 24 hours after exercise; 1HR, animals sacrificed one hour after exercise;. *Significantly different from
WKY-CON, P<0.05. † Significantly different from WKY-1HR, P<0.05. ‡ Significantly different from WKY-24, P<0.05. # Significantly different from SHR-
CON, P<0.05. $ Significantly different from WKY-Control, WKY-1HR, and WKY24 HR, P<0.05.
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Zhang et al. 1995). In fact, even in the absence of LVH,
overloaded hearts demonstrated abnormalities in high
energy phosphate metabolism (Lortet et al. 1993). It has
been suggested that these alterations in high energy
phosphate metabolism are due to decreases in creatine
kinase (CK) activity (Smith et al. 1990). Moreover, an
intact CK system has been identified as being critical in
the maintenance of calcium homeostasis and LV function
under metabolically stressed conditions (Spindler et al.
2004). Chronic hypertension also impacts the fuel selec-
tion of the heart as decreased fatty acid oxidation and
increased rates of glycolysis have been observed in the
hypertrophied myocardium (Kolwicz et al. 2012, Raizda
et al. 1993; Yonekura et al. 1985). Similar findings have
been reported in experiments from non-hypertrophied,
hypertensive hearts in which a preferential use of glucose
in comparison to fats, increases in glycolytic enzymes,
and decreases in ketone metabolic enzymes have been
noted (Taegtmeyer and Overturf 1988).
Myocardial ischemic preconditioning has been shown

to profoundly protect the heart from post-ischemic myo-
cardial dysfunction and infarction during a subsequent
ischemic episode (Yellon and Downey 2003). Similarly,
some studies, although limited in number, have shown
that exercise can protect the heart against ischemia-
reperfusion injury in a matter similar to that of ischemic
preconditioning (Brown et al. 2005; Domenech et al.
2002; Taylor et al. 1999; Yamashita et al. 2001). These
studies demonstrated that exercise results in both early
and delayed exercise-induced preconditioning as evi-
denced by a reduction in myocardial infarct size in rats
(Brown et al. 2005, Yamashita et al. 2001), and dogs
(Domenech et al. 2002) as well as enhanced myocardial
performance 24 hours after exercise (Taylor et al.
1999). Conversely, (Locke et al. 1995) failed to observe
improved post-ischemic LV contractile performance
24 hours after a single bout of exercise, while (Huang
et al. 2009) showed that exhaustive endurance training
impaired LV function and promoted apoptosis in rats.
In our study, a single bout of exercise was not only

ineffective in protecting the myocardium from rigor
development during ischemia, but it also reduced LV
tolerance to ischemia one hour after exercise in SHR.
The compromised ischemic tolerance after exercise and
the lack of exercise-induced protection is difficult to
explain, as it is in conflict with the majority of the afore-
mentioned ischemic preconditioning studies and is con-
trary to our initial hypothesis. It should be noted that
the term “preconditioning” generally refers to hearts are
that are exposed to ischemia and reperfusion with the
subsequent assessment of myocardial damage. In the
current study we only examined diastolic performance
during prolonged ischemia without reperfusion. Thus dif-
ferences in experimental paradigms and animal models

are important to appreciate in comparing our results
to the existent literature. It should also be noted that
the exercise modality (treadmill running), intensity (15–
30 meters/min in previous reports), and duration (up to
60 minutes in previous reports) was similar between
the present study and prior reports (Brown et al. 2005,
Yamashita et al. 2001, Taylor et al. 1999, Locke et al. 1995).
Even though the young SHR hearts in our study did

not show compensated hypertrophy, other intrinsic
metabolic and humeral factors may have predisposed
these hearts to post-exercise diastolic rigor during ische-
mia. For example, SHR animals have high levels of sym-
pathetic tone (Kuo et al. 2012), which can prompt an
elevated myocardial oxygen consumption during and fol-
lowing acute exercise relative to WKY. Thus underlying
metabolic differences with pressure overload may be
unveiled with a metabolic stress like post exercise-
induced ischemia. However, one interesting result of this
study is the finding that acute exercise reduced the
systolic blood pressure in SHR rats. This effect was not
related to the ex vivo cardiac function which was modi-
fied neither by the strain nor by acute exercise in pre-
ischemic conditions. A reduction in peripheral resistance
was likely involved in the relative hypotension in SHR
immediately post exercise. In the present study we deter-
mined whether acute exercise, caused myocardial edema.
Our results showed that neither WKY nor SHR tissue
water content was increased immediately post exercise;
thereby edema does not seem to underlie the increased
ischemic diastolic rigor in SHR. More work is needed to
establish the underlying mechanisms.
Strenuous exercise in humans has been shown to pro-

mote cardiac fatigue (Oxbourough et al. 2010; Starnes
and Bowles 1995; Scharag et al. 2008) and tissue damage
in the heart (George et al. 2004, Urhausen et al. 2004;
Trivax et al. 2010). While increasing attention has been
placed on how single acute exercise sessions influence
cardiovascular function, little work has been done in
hypertensive hearts. Our findings are significant in that
while factors such as the duration/intensity of exercise
(Urhausen et al. 2004), training status (Neilan et al.
2006), gender (Scott et al. 2006: Scott & Warburton
2008), and environmental factors (Shave et al. 2004) are
all involved in the magnitude of post-exercise cardiac
dysfunction, pathological heart phenotypes, i.e. hyper-
tension, also need to be considered.
The SHR model was chosen for our study because it

closely mimics the clinical course of untreated hyperten-
sion in humans. It has been documented that concentric
hypertrophy happens in SHR between 4 and 12 months
of age, decompensating to heart failure at approximately
15 months (Boluyt et al. 1994). We chose to study these
animals at 10 weeks of age because hypertension is
established yet no significant compensatory hypertrophy
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is present. Thus our results suggest that factors unrelated
to cardiac hypertrophy underlie the increased post exer-
cise diastolic impairments during ischemia in hyperten-
sion. The limitations to the SHR model are two-fold; 1)
the causes of hypertension in SHR are polygenic and do
not necessarily reflect the genetic anomalies associated
with hypertension in humans and 2) we did not account
for the hormonal influence of estrogen. Despite these
limitations, the present data suggest that there appears
to be a temporal component to the physiological stress
of exercise, which includes a period of increased sus-
ceptibility to myocardial ischemic injury, and that this
increased vulnerability is greater in the young female SHR
uncompensated heart. We propose that this response
may be metabolic in nature, but more work is needed to
identify the underlying mechanisms.
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