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Adiposity-Dependent Regulatory Effects
on Multi-tissue Transcriptomes

Craig A. Glastonbury,1 Ana Viñuela,1,8 Alfonso Buil,2 Gisli H. Halldorsson,3 Gudmar Thorleifsson,3

Hannes Helgason,3,4 Unnur Thorsteinsdottir,3,5 Kari Stefansson,3,5 Emmanouil T. Dermitzakis,2,6,7

Tim D. Spector,1 and Kerrin S. Small1,*

Obesity is a global epidemic that is causally associated with a range of diseases, including type 2 diabetes and cardiovascular disease, at

the population-level. However, there is marked heterogeneity in obesity-related outcomes among individuals. This might reflect geno-

type-dependent responses to adiposity. Given that adiposity, measured by BMI, is associatedwithwidespread changes in gene expression

and regulatory variants mediate the majority of known complex trait loci, we sought to identify gene-by-BMI (G3 BMI) interactions on

the regulation of gene expression in a multi-tissue RNA-sequencing (RNA-seq) dataset from the TwinsUK cohort (n ¼ 856). At a false

discovery rate of 5%, we identified 16 cisG3 BMI interactions (top cis interaction:CHURC1, rs7143432, p¼ 2.03 10�12) and one variant

regulating 53 genes in trans (top trans interaction: ZNF423, rs3851570, p ¼ 8.2 3 10�13), all in adipose tissue. The interactions were ad-

ipose-specific and enriched for variants overlapping adipocyte enhancers, and regulated genes were enriched for metabolic and inflam-

matory processes. We replicated a subset of the interactions in an independent adipose RNA-seq dataset (deCODE genetics, n¼ 754). We

also confirmed the interactions with an alternate measure of obesity, dual-energy X-ray absorptiometry (DXA)-derived visceral-fat-vol-

ume measurements, in a subset of TwinsUK individuals (n ¼ 682). The identified G 3 BMI regulatory effects demonstrate the dynamic

nature of gene regulation and reveal a functional mechanism underlying the heterogeneous response to obesity. Additionally, we have

provided a web browser allowing interactive exploration of the dataset, including of association between expression, BMI, and G3 BMI

regulatory effects in four tissues.
Introduction

Obesity (MIM: 601665) is a global epidemic that has been

robustly associated with a range of co-morbidities such as

cardiovascular disease, insulin resistance, type 2 diabetes

(T2D [MIM: 125853]), and increased risk of certain types

of cancer.1,2 However, at the individual level, co-morbidity

development among obese individuals is heterogeneous,

suggesting that genetics and adiposity might interact to

mediate downstream disease and complex trait develop-

ment.3 The existence of gene-by-adiposity interactions

on complex traits is supported by twin studies demon-

strating that BMI modifies the heritability of co-morbid

traits such as blood pressure and insulin sensitivity.4,5

Obesity manifests as excess adipose tissue and has a

systemic effect on bodily function. BMI-associated genetic

variants are enriched for hypothalamic processes,6 which

suggests that the variants that cause obesity exert their ef-

fects primarily in the brain. In contrast, variants for many

obesity co-morbid traits are primarily thought to regulate

genes active in certain peripheral tissues, such as adipose,

muscle, and the liver (insulin resistance),7 the heart and

endothelial cells (QT-interval, which is predictive of cardio-

vascular disease),8 and adipose (body-fat distribution ),9 for

example. Therefore, BMI could influence co-morbidity

development by modifying gene expression in relevant
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peripheral tissues directly or by interacting with regulatory

variants active in those tissues.

Gene-by-environment (G 3 E) interactions have been

identified extensively in model organisms,10–13 but identi-

fying G 3 E interactions on complex traits in humans has

proven to be difficult due to the need to obtain accurately

measured environmental exposures and large sample

sizes. In contrast, studies of G 3 E effects on the regula-

tion of gene expression, often termed context-specific

expression quantitative trait loci (eQTL) analyses, have

been more successful and can capture environments

that act on the cellular, tissue, or organismal level. Regu-

latory G 3 E effects have been discovered for various en-

vironments, including age and sex,14 in vivo and ex vivo

treatment response,15–18 and tissue and/or cell of resi-

dence.19,20 Twin studies agnostic to the underlying

environment have also identified G 3 E regulatory vari-

ants.21,22 Most genetic variants identified through

genome-wide association studies (GWASs) are thought to

be regulatory variants; thus, utilizing gene expression to

identify gene-by-environment interactions is a promising

strategy for identifying factors that interact with disease-

relevant regulatory variation.22 Because 60% of disease-

associated eQTLs are tissue dependent, it is critical to

study the genetic regulation of expression in the appro-

priate disease-relevant tissues.23
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In this study, we considered BMI as a physiological envi-

ronment and conduct a genome-wide search for gene-by-

BMI (G 3 BMI) interactions on the regulation of gene

expression by utilizing a multi-tissue (adipose, skin,

whole blood, and lymphoblastoid cell lines [LCLs]) RNA-

sequencing (RNA-seq) dataset including data collected

from 856 healthy female twins. We first demonstrated

that BMI has a pervasive effect on gene expression in pe-

ripheral tissues and that the strongest effects are observed

in adipose tissue. We then identified 16 significant cis

G 3 BMI interactions (false discovery rate [FDR] ¼ 5%)

on the regulation of gene expression in adipose tissue

and we provide evidence of replicated examples in an inde-

pendent adipose tissue cohort (deCODE, n ¼ 754). The

G 3 BMI regulatory interactions are adipose specific and

are enriched for metabolic and inflammatory pathways.

By extending the analysis in trans we were able to identify

one cis G3 BMI variant that regulates the expression of 53

genes in trans in a BMI-dependent manner. Regulatory in-

teractions such as these will have increasingly important

utility in characterizing the functionality and context

specificity of genetic variation discovered via traditional

GWAS approaches. To enable exploration of our results,

we have developed an interactive website that allows re-

searchers to model and plot data in real-time (see the

Web Resources). Using this service, users can investigate

genes and SNPs of interest for G 3 BMI effects and explore

the relationship between BMI and exon-level expression in

four separate tissues.
Material and Methods

Sample Collection
The study included 856 healthy female twins who are a part of the

TwinsUK registry and are all of European ancestry. Punch biopsies

of subcutaneous adipose tissue from a photo-protected area of the

stomach adjacent and inferior to the umbilicus were obtained

from consenting individuals. Skin from the punch biopsy was

then dissected to separate it from adipose tissue, and both samples

were weighed and immediately frozen with liquid nitrogen. Pe-

ripheral-blood samples were also collected as part of the study,

and LCLs were generated via transformation of the B-lymphocyte

fraction with Epstein-Barr virus (EBV). The European Collection of

Cell Cultures agency performed the transformation process. All

the procedures followed were in accordance with the ethical stan-

dards of the St. Thomas Research Ethics Committee (reference 07/

H0802/84) at St. Thomas Hospital in London. Volunteers gave

informed consent and signed a consent form before the biopsy

procedure. Volunteers were supplied with an appropriate detailed

information sheet regarding the research project and biopsy pro-

cedure by post before attending the biopsy.
Genotyping and Imputation
Genome-wide SNP data for the TwinsUK individuals were gener-

ated as previously described.6,25,26 In short, TwinsUK samples

were genotyped on a combination of platforms (HumanHap300,

HumanHap610Q, and 1M-Duo Illumina arrays). Quality control

and merging of the array datasets has previously been described
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in detail.25 The cleaned data were pre-phased with IMPUTE2

with no reference panel and were then imputed into the 1000 Ge-

nomes phase 1 reference panel (interim, data freeze accessed

November 10, 2010; the 1000 Genomes Project Consortium

2012).27 Variants with an INFO score >0.8 on all platforms and

a MAF >5% were retained for analysis.

Phenotype Collection
Height, weight, and visceral fat volume were measured at the time

of biopsy. Visceral fat volume was measured via dual-energy X-ray

absorptiometry (DXA; Hologic QDR 4500 Plus), according to the

standard manufacturer’s protocol.

RNA-Seq
RNA-seq data were generated as previously described.22 In brief,

samples were prepared for sequencing with the unstranded Illu-

mina TruSeq sample preparation kit and sequenced on a HiSeq

2000 machine. The 49 bp paired-end reads were aligned to the

UCSC Genome Browser GRCh37 reference genome with the Bur-

rows-Wheeler Aligner.28 GENCODE v.10 was used to annotate

genes. Samples were excluded if they failed to have more than

10 million reads map to known exons or if the sequence data

did not correspond to actual genotype data.

Exon Quantification and Normalization
To quantify exons, all overlapping exons of a gene were merged

into one meta-exon. We counted reads as mapping to a given

meta-exon if either of its start or end coordinates overlapped a

meta-exon boundary. All read-count quantifications were cor-

rected for variation in sequencing depth between samples by

normalizing the number of reads to the median number of well-

mapped reads. We only used exons that were quantified in more

than 90% of the individuals. Exon expression values were rank-

based inverse normal transformed for downstream analysis.

Transcriptome-wide Association Analysis
To determine whether expressed exons were associated to a

phenotype of interest (BMI/visceral fat), each exon was treated

as a quantitative trait in a linear mixed-effects model implemented

with the lme4 package.29 Phenotypic data were treated as contin-

uous independent traits. A full model with the phenotype fitted

(Model 1) was compared to a null model in which the samemodel

was fitted but the phenotype (BMI) was omitted. These models

were compared with a one-degree-of-freedom ANOVA. All known

technical variables were included as covariates in the model. To

model the twin structure in our data, we included two multi-level

indicator variables, termed family and zygosity, as random effects

in the model. These variables are coded as follows: if individuals i

and j are co-twins, we code familyi ¼ familyj, if individuals i and j

are monozygotic co-twins, we code zygosityi ¼ zygosityj, and if

they are dizygotic co-twins, we code zygosityi s zygosityj. The

zygosity term captures the increased genetic relatedness within

an MZ twin pair as compared to a DZ twin pair. If individuals i

and j are unrelated, familyi s familyj and zygosityi s zygosityj.

We estimated a FDR within each tissue by using the package

‘‘qvalue’’30 to obtain q values that correspond to a FDR of 5%.

Model 1 is as follows:

yi � Xbþ Zuþ ε; (Model 1)

where yi is the i
th non-PEER (probabilistic estimation of expression

residuals)-corrected exon expression vector. X is a designmatrix of
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fixed effects: phenotype (BMI or visceral fat), age, age squared,

mean GC content, and insert size mode. Z represents all random

effects: primer index, batch (blood only), family, and zygosity. ε

is a residual error term representing unaccounted for variation in

expression.

cis G 3 BMI Interaction Discovery
Expression residuals corrected for family structure and technical

variables and 50 PEER31 factors were used to identify G 3 BMI in-

teractions in all four tissues. Each exon was tested for a SNP3 BMI

interaction (Model 2) with all SNPs within 1 Mb of the transcrip-

tion start site. The interaction test was implemented with the

‘‘modellinear_cross’’ function in the Matrix eQTL R package.32

Model 2 is as follows:

y � Iþ bAþ bA2 þ bP þ bSNP þ bP 3 SNP þ ε; (Model 2)

where y ¼ expression, I ¼ intercept, A ¼ age, A2 ¼ age squared, P ¼
phenotype (BMI), SNP ¼ allele dosage, and ε ¼ residual error.

Correction for Hidden Confounders
A common approach when performing eQTL mapping has been

to adjust expression profiles for unknown latent variables. The

aim is to capture hidden factors that confound gene expression

measurements, such as unmeasured technical variables (e.g., batch

effects). However, these methods can also capture biological fac-

tors, and thus, depending on the analysis performed, might not

be appropriate. We utilized PEER, a Bayesian method similar to

surrogate variable analysis, which has been shown to increase

the ability to detect genetic and interaction effects threefold.31

We calculated latent factors by applying PEER to expression resid-

uals that had been corrected for family structure and technical

variables. PEER was run using no additional covariates and ac-

counting for mean expression. In adipose tissue, three of the first

five PEER factors were significantly correlated to BMI (jrmaxj ¼
0.52, p ¼ 1.2 3 10�51, Figure S1). We used PEER-corrected data

for cis G 3 BMI interaction analysis, but not for direct association

of BMI with expression levels or for trans G 3 BMI interaction

analysis (see below). Removing BMI-associated PEER factors max-

imizes the ability to discover interactions with BMI byminimizing

model co-linearity (Figures S1 and S2). It has also been demon-

strated that removing latent factors, even those highly correlated

with the environment of interest, results in the discovery of signif-

icantly more interactions on gene expression.20

FDR Estimation
The FDR for calling an interaction significant was estimated based

on an approximated permutation strategy as previously described

and implemented.33,34 Expression residuals were calculated in

which all main effects (BMI, SNP, and age) were regressed out.

Expression values were permuted for each exon while preserving

genotype structure. The interaction-term (BMI3 SNP) significance

was calculated for each exon. All p values were stored to calculate a

genome-wide FDR. Because genes vary in the number of exons

they are composed of, separate FDRs were calculated by classifying

genes based on a similar number of exons, determined from the

distribution of exons expressed in each tissue. A 5% FDR was

calculated by computing the ratio of permuted test statistics

more significant to the observed interactions, divided by the num-

ber of permutations performed (n ¼ 100). All interactions with a

corrected FDR p value <0.05 were classified as significant and

taken forward for replication.
The American
trans G 3 BMI Discovery
Given that cis effects are enriched for trans effects and we were

underpowered to perform a genome-wide trans-interaction anal-

ysis, we utilized a two-step procedure to identify trans G 3 BMI

interactions in adipose tissue. We first repeated the cis G 3 BMI

scan as described above, using expression residuals corrected

for family structure and known technical variables but not

corrected for PEER factors. PEER correction removes broadly

acting variance components, including the effects of multi-

gene trans-regulators, and is therefore not appropriate for trans

eQTL analysis. The resulting four significant non-PEER-corrected

cis G 3 BMI variants (rs1464171, rs3851570, rs113368712

and rs35662778; FDR ¼ 5%) were then tested for trans G 3

BMI effects. Trans effects were tested for all genes at a distance

greater than 5 MB from the variant or on a different chromo-

some. Trans G 3 BMI significance was assessed with a strict Bon-

ferroni correction, accounting for testing four variants against

116,643 exons and corresponding to a p value threshold of

1.1 3 10�7.
deCODE Replication Cohort
The replication cohort consists of 754 RNA-seq subcutaneous adi-

pose samples obtained from Icelandic individuals, all of whom

had imputed genotypes, as previously described.35 The sample

set is comprised of 333 males and 421 female participants with

an age 47 5 14 (mean 5 SD) and BMI 30 5 6.6. RNA-seq reads

were aligned to Homo sapiens build 38 (UCSC Genome Browser)

with TopHat36 v.2.0.12 with a supplied set of known transcripts

in GTF format (RefSeq, NCBI). TopHat was configured such that

it first attempts to align reads to the provided transcriptome,

then, for reads that do not map fully to the transcriptome, it at-

tempts to map them onto the genome. Overlapping exons were

merged into one meta-exon. Fragments were counted if they map-

ped to a meta-exon and if either read in the pair had the start or

end (aligned) coordinate overlapping a meta-exon boundary. We

excluded exons that had zero fragment counts for more than

90% of individuals. Counts were normalized for number of reads

mapped and exon lengths and were rank normal transformed.

The following covariates were used to correct for technical differ-

ences in the RNA experiments: average fragment length, exonic

rate, number of genes detected, number of mapped read pairs,

number of alternative alignments, and percentage of reads origi-

nating from coding bases (PCT), along with 50 inferred hidden

factors which were evaluated with PEER. The technical RNA-seq

quality metrics were gathered with the CollectRnaSeqMetrics

tool in Picard v.1.79 and RNA-SeQC v.1.1.6.37
Replication Analysis
The 16 cis G 3 BMI interactions (FDR ¼ 5%) were taken forward

for replication in deCODE. 13 genes were available in the deCODE

dataset. The two datasets were called with different genome builds

and gene annotation sets, preventing simple mapping of meta-

exons.We thus used liftover to map the TwinsUKmeta-exon coor-

dinates from GrCh37 to GrCh38 (UCSC Genome Browser) and

defined corresponding meta-exons as those with more than a

90% overlap in length in both annotation sets. This strategy iden-

tified corresponding meta-exons for eight genes (CHURC1 [MIM:

608577], CIDEA [MIM: 604440], ZNF117 [MIM: 194624], PEPD

[MIM: 613230], ANXA5 [MIM: 131230], HLA-DQB2 [MIM:

615161], IFNAR1 [MIM: 107450], and SCFD2). An additional three

genes (ADH1A [MIM: 103700], SPAG17 [MIM: 616554], and
Journal of Human Genetics 99, 567–579, September 1, 2016 569



ERV3-1 [MIM: 131170]) had a partial overlap, ranging from 33%–

85%, with a deCODE meta-exon Two genes (PHACTR3 [MIM:

608725] and CAST [MIM: 114090]) had minimal overlap of 4%

with a deCODE meta-exon, indicating the meta-exon does not

represent an analogous quantification. Given that multiple

TwinsUK PHACTR3 meta-exons were significant, and the second

most significant TwinsUK meta-exon (chr20: 58,349,298–

58,349,545, p value ¼ 1.7 3 10�8 in TwinsUK) exactly overlapped

a deCODE meta-exon, we used the meta-exon corresponding to

the second TwinsUK signal for the replication analysis of

PHACTR3. Exact meta-exon coordinates are provided in Table

S1. Given the low annotation overlap at CAST (4%), we tested

all CAST exons for replication and corrected for the number of

exons tested in deCODE (30). The three genes unavailable for rep-

lications were RP11-71E19.1, which was not present in the RefSeq

gene annotation used by deCODE, POU6F2 (MIM: 609062), which

did not pass quality control in deCODE (low expression), and SIK1

(MIM: 605705), which was quantified, but the corresponding SNP

rs12482956 and proxies were unavailable in the deCODE

imputation.

Integration with GWAS
Overlap of the 16 G 3 BMI lead SNPs with GWAS variants was

determined by searching the National Human Genome Research

Institute (NHGRI) database (accessed June 19, 2015) for each

SNP or proxy SNPs (r2 > 0.6). The database was filtered to include

only genome-wide significant loci. We tested the overlap identi-

fied at ADH1A for colocalization by implementing the regulatory

trait concordance (RTC) method.53 The RTC score assesses evi-

dence for causality by testing whether the effect of a GWAS SNP

abrogates the effect of an eQTL while accounting for the local

linkage disequilibrium (LD) structure of the locus. All SNPs with

MAF> 5%were in the window 100.1–100.6 Mb, a 250 kb window

centered on the index SNP tested. For each of the 1,129 variants,

we fitted an interaction (Model 3) and main effect (Model 4)

model:

ADH1A expression � BMI3 SNPN þ BMI3 rs1693457

(Model 3)

and

ADH1A expression � SNPN þ BMI3 rs1693457; (Model 4)

where SNPN is SNP1–SNP1,129.

The results were then ranked by increasing significance of the

interaction p value (BMI3 rs1693457), and RTC scores were calcu-

lated as follows:

RTC ¼ NSNPs � RankGWAS SNP

NSNPs

(Equation 1)

where NSNPs ¼ number of SNPs tested.

RankGWAS_SNP ¼ the rank of the GWAS SNP in the full list of

ordered test statistics.

Tissue Specificity and eQTL p1 Analysis
To determine the tissue specificity of identified G 3 BMI

interactions and whether they are enriched for main-effect

eQTLs, p1 analysis was performed.30 p0 is a measure for esti-

mating the proportion of true null hypotheses. 1 � p0 ¼ p1

can therefore be used to measure the proportion of significant

(true) associations. The significant exon-SNP pairs from adipose

tissue were matched to the same exon-SNP pair in each of the
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other tissues, and a p1 value was estimated with the R package

‘‘qvalue’’30. The same method was used to determine whether

the significant G 3 BMI interactions are enriched for main-effect

eQTLs.

Gene Set Enrichment
Both cis and trans gene set enrichment analysis data were analyzed

through the use of QIAGEN’s Ingenuity Pathway Analysis (IPA).

Input consists of the gene list of interest, and to correctly control

for background genes, we used all genes expressed in our adipose

tissue expression datasets as a reference to compare against.

Benjamini-Hochberg corrected p values were calculated as speci-

fied by Ingenuity. The macrophage-enriched metabolic network

(MEMN) gene membership was tested for G 3 BMI enrichment

via p1 analysis, as above.

Trans-Network Mediation Analysis
Significant mediation was determined by computing Sobel’s test

statistic.38 To calculate the mediation score, the following four

models and equations were implemented:

y � b1Aþ b2A
2 þ b3P þ b4Gþ b5P3Gþ ε; (Model 5)

y � b1Eþ b2Aþ b3A
2 þ b4P þ b5Gþ b6P3Gþ ε; (Model 6)

Mediation score ¼ bM5 5 � bM6 6

bM5 5

; (Equation 2)

and

Z ¼ bM5 5 3 bM6 6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
M6 6 3 S2M5 5 þ b2

M5 5 3 S2M6 6

q ; (Equation 3)

where y ¼ trans gene expression, A ¼ age, A2 ¼ age squared, E ¼ cis

gene expression, P¼ BMI, andG¼ cis genotype. M5_5 is the inter-

action coefficient from Model 5. M6_6 is the interaction coeffi-

cient from Model 6. S2 is the SE of each interaction coefficient.

By conditioning on cis gene expression (the mediator, E) we can

determine whether each individual interaction detected in trans is

regulated in cis or is independent by quantifying DbP 3 G (Equa-

tion 2). We can test the significance of this change by using Sobel’s

test statistic (Equation 3).

Roadmap Epigenomics Functional Element

Enrichment Analysis
To investigate enrichment of cell-type-specific enhancers,

HaploReg v.4 was utilized.39 HaploReg takes a list of SNPs and

uses a binomial test for enhancer enrichment in different cell

types based on the SNP of interest (G 3 BMI SNP) and any

SNPs that are in high LD with the lead SNP (r2 > 0.8). These

SNPs are then compared to a background that consists of the

common variants (5%) obtained from the 1000 Genomes Proj-

ect. Enhancer annotation was obtained from the ChromHMM

15-state model.

Interactive Website
The website was designed with RMarkdown, custom CSS, and a

shiny backend server for real-time statistical analysis. All models

implemented are those described above, with additional options

given to users to allow the choice of covariate inclusion and/or

PEER correction.
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Figure 1. BMI Is Highly Associated with Gene Expression in Multiple Tissues
p value distribution of association between BMI and expression of all measured exons in each tissue.
Results

BMI Has a Pervasive Effect on Gene Expression

To characterize the effect of BMI on the transcriptome, we

utilized a multi-tissue RNA-seq dataset including data from

856 healthy female twins in the TwinsUK cohort.22 Partic-

ipants were 38–84 years old (median ¼ 60) with a BMI

range of 16–47 (median ¼ 25) at the time of biopsy

(Figure S3). As described previously,22 after quality control,

RNA-seq data and imputed genotypes from the 1000 Ge-

nomes phase 1 reference panel were available for 720 sub-

cutaneous adipose tissue samples, 672 skin samples, 765

LCLs, and 368 whole-blood samples. All analysis was based

on exon-level quantifications with 16,149 to 18,229 genes

expressed per tissue (Table S2).

We first assessed the extent of association between BMI

and gene expression in all four tissues (adipose, skin,

blood, and LCLs). BMI has a strong influence on expres-

sion in each of the primary tissues, but little to no effect

in LCLs; with a FDR of 5%, 16,818 genes, 9,216 genes,

6,640 genes, and zero genes had at least one exon associ-

ated with BMI in adipose, skin, blood, and LCLs

respectively (Figure 1). We assessed the tissue specificity

of the associations by using p1 estimates (Figure S4).

Approximately half of the associations detected in adipose

were observed in the other two primary tissues (skin p1 ¼
0.53, blood p1¼ 0.54), whereas adipose captured over 75%

of the associations detected in skin (p1 ¼ 0.78) and blood

(p1 ¼ 0.76). There was no enrichment for shared effects

in LCLs (p1 ¼ 0 for all tissues), which is consistent with a

lack of LCL expression and whole-body trait associations

seen for multiple traits,21 suggesting the transformation

process or subsequent cell culture has removed the in vivo

physiological environmental effects captured by profiling

primary tissue. Our estimates of a pervasive and tissue-spe-

cific influence of BMI on expression are consistent with

previous estimates from microarrays40 and confirm that

BMI acts as a strong physiological influence on gene

expression. Full summary statistics for the association be-

tween BMI and exon-level expression in all four tissues

can be found at our website (see Web Resources).
The American
Identification of cis G 3 BMI Regulatory Variants

To identify BMI-dependent regulatory effects, we per-

formed a global cis scan for G 3 BMI eQTLs in each tissue

by using PEER-corrected expression residuals. Significant

G 3 BMI effects (FDR ¼ 5%) were called with a per-tis-

sue FDR, determined by permutation (see Material and

Methods). Our FDR method ensures we penalize against

genes with more exons given that, statistically, they are

more likely to show association by chance. We identified

16 G 3 BMI regulatory effects in adipose (Table 1,

Table S3, Figure 2) and none in the other three tissues.

The 16 genes regulated by a G 3 BMI effect in adipose

are ADH1A, ANXA5, CAST, CHURC1, CIDEA, ERV3-1,

HLA-DQB2, IFNAR1, PEPD, PHACTR3, SCFD2, SPAG17,

and ZNF117. 12 of the 16 G 3 BMI variants also had

a significant main effect (eQTL) on adipose expression

when tested without the interaction term (Table 1,

Table S3).

We sought replication in an independent dataset of

subcutaneous adipose tissue biopsies (Icelandic cohort,

deCODE genetics, n¼ 754), which included quantification

of 13 of the 16 genes. Because TwinsUK and deCODE used

different alignment strategies, genome builds, and gene

annotation versions, some exons did not directly map be-

tween the two datasets. We identified corresponding exons

with a greater than 90%overlap in annotation in bothdata-

sets forninegenes (Table S1).Of thesenine, threewere repli-

cated and eight showed a consistent direction of effect be-

tween the studies (Figure 3A). The replicated genes were

PEPD (pTwinsUK ¼ 4.8 3 10�10, pdeCODE ¼ 4.2 3 10�6),

PHACTR3 (pTwinsUK ¼ 1.6. 3 10�8, pdeCODE ¼ 1.1 3 10�4),

and CHURC1 (pTwinsUK ¼ 2.0 3 10�12, pdeCODE ¼ 8.5 3

10�4) (Table 1). Another four genes showed partial overlap

with a deCODE exon: ERV3-1 (85% overlap), SPAG17

(69% overlap), ADH1A (33% overlap), and CAST (4%

overlap). None of these replicated and only CAST had a

consistent direction of effect, with p ¼ 0.053. Given the

low annotation overlap at CAST (4%), we examined all

other CAST exons in deCODE, and the exon in chr5:

96,076,448–96,076,487 was associated in a consistent

direction at nominal significance (p ¼ 0.001, p ¼ 0.03
Journal of Human Genetics 99, 567–579, September 1, 2016 571



Table 1. Significant cis G 3 BMI Regulatory Interactions in Adipose, FDR ¼ 5%

Gene SNP EA EAF TwinsUK b

TwinsUK
p Value deCODE b deCODE p Value

Main-effect eQTL
(FDR ¼ 1%) Enhancer

CHURC1 rs7143432 A 0.78 0.026 2.0 3 10�12 0.011 8.5 3 10�4 adipose, skin, blood, LCLs –

CAST rs13160562 G 0.69 �0.032 3.9 3 10�12 �0.004 0.053a adipose, skin, blood, LCLs adipocyte

CIDEA rs7505859 C 0.62 �0.028 3.1 3 10�11 �0.004 0.21 adipose, skin adipocyte

ZNF117 rs6948760 T 0.40 0.039 4.4 3 10�11 0.0009 0.79 adipose, skin, blood, LCLs –

ADH1A rs1693457 C 0.18 0.034 5.9 3 10�11 �0.0015 0.85a adipose adipocyte

RP11-71E19.1 rs1980140 A 0.79 �0.058 6.1 3 10�11 NA NA adipose adipocyte

PEPD rs10415555 A 0.81 �0.044 4.8 3 10�10 �0.014 4.2 3 10�6 adipose, skin adipocyte

ANXA5 rs2306420 G 0.71 0.022 1.4 3 10�9 0.001 0.52 adipose, skin, blood, LCLs adipocyte

SIK1 rs12482956 A 0.71 0.058 3.0 3 10�9 NA NA – blood

HLA-DQB2 rs114370295 T 0.27 �0.050 3.5 3 10�9 �0.004 0.45 adipose –

ERV3-1 rs11979998 C 0.52 0.032 8.4 3 10�9 �0.0008 0.84a adipose, skin, blood, LCLs blood

POU6F2 rs34792397 G 0.75 �0.041 9.9 3 10�9 NA NA adipose –

IFNAR1 rs2834098 C 0.78 �0.047 1.4 3 10�8 0.002 0.58 – stem cells

SCFD2 rs7687982 A 0.75 �0.059 1.5 3 10�8 �0.006 0.26 – aMSC

PHACTR3 rs6070866 G 0.51 �0.044 1.7 3 10�8 �0.020 1.1 3 10�4 adipose brain

SPAG17 rs9661038 G 0.64 0.043 2.8 3 10�8 �0.004 0.083a – –

Exact exon coordinates are listed in Tables S1 and S3. The main-effect column lists the TwinsUK tissues where the listed gene-SNP pair has a main-effect cis eQTL
when tested without the interaction effect (a dash denotes no eQTL in any tissue). All interaction effects were adipose specific. If a SNP or its proxy (r2 > 0.8) falls
within an enhancer as defined by ENCODE, the cell type that enhancer is primarily active in is listed in the Enhancer column. EA, effect allele; EAF, effect-allele
frequency in the TwinsUK discovery sample.
adeCODE exons with less than 90% overlap with the corresponding deCODE exon (see methods, Table S1).
corrected for 30 CAST exons). Overall, the replication dem-

onstrates the robustness of our findings and the discovery

and independent replication of regulatory variants whose

effects are influenced by adiposity.

Tissue Specificity of G 3 BMI Regulatory Effects and

Expression

The G 3 BMI regulatory effects are highly tissue specific.

None of the 16 G 3 BMI interaction effects are present in

the other TwinsUK tissues (Table S3). Although 11 G 3

BMI regulated genes showed multi-tissue expression, five

genes (PHACTR3, ADH1A, RP11-71E19.1, POU6F2, and

SPAG17) have adipose-specific expression within TwinsUK

but no detectable expression in blood, skin, or LCLs. The

G3 BMI variants are enriched for tissue-specific regulatory

potential; we tested the 16 variants for enrichment in

enhancer activity in the 127 Roadmap Epigenomics cell

types and found an enrichment only in purified adipocytes

(mesenchymal-stem-cell-derived adipocytes, p ¼ 0.028).

Nine G 3 BMI variants disrupt specific or multiple

transcription factor binding motifs, and eight SNPs or

their proxies (r2 > 0.8) have a significant evolutionary

GERP conservation score (Table S3). The tissue specificity

of G 3 BMI effects, expression of the genes they act on,

and regulatory annotation of the G 3 BMI variants high-

lights the importance of studying gene regulation in the

appropriate tissue for a disease of interest.
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G 3 BMI Regulatory Variants and Genes Link to

Related Traits

Wenext investigated links between the G3 BMI genes and

variants and related traits. CAST (calpastatin) is a ubiqui-

tously expressed endogenous inhibitor of the calpains

(calcium-dependent cysteine proteases). The calpastatin-

calpain system has been extensively implicated in cardiac

remodeling and heart failure and has been proposed as a

potential therapeutic target for heart disease.41 CAST is

implicated in modulating the immune response in certain

cell types,42 including inhibition of macrophage hyperac-

tivation under inflammatory conditions,43 which could

be linked to the varying degrees of systemic inflammation

seen in obese individuals.

Another intriguing signal is at PEPD (peptidase D).

PEPD’s function is the recycling of proline, and it has

also been shown to be essential for collagen production.

Variants intronic to PEPD are associated with T2D, adipo-

nectin, triglyceride levels, and fasting insulin;44–47 how-

ever, the lead GWAS SNPs are in low LD with the G 3

BMI regulatory variant (r2 ¼ 0.145, D
0 ¼ 1). PEPD’s link

to T2D and adiponectin, although not fully understood,

is interesting in the light of BMI’s relationship with T2D

development and adiponectin regulation.

CIDEA (cell death activator) function has been studied

extensively in model organisms, and CIDEA-knockout

mice show higher basal metabolic rates, lipolysis, and
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Figure 2. Example of Three FDR ¼ 5%
Significant Adipose cis G 3 BMI Regula-
tory Interactions
The vertical axis represents expression of a
given gene and the horizontal axis repre-
sents BMI. Each point represents an indi-
vidual. Each plot is split on allele dosage
to show how the relationship between
expression and BMI is dependent on geno-
type (OA, other allele; EA, effect allele; cor-
responding variants and alleles are listed in
Table 1). A change in the slope of the asso-
ciation between BMI and expression asso-
ciation across genotypic classes indicates
a genotype-dependent response to BMI,
or G 3 BMI interaction. For example,
CHURC1 expression decreases with BMI
in individuals homozygous for the effect
allele, but increases with BMI in other
allele homozygotes regardless of the
mean change in gene expression (main-ef-
fect eQTL).
higher core body temperatures.48 Mice without functional

copies of CIDEA are resistant to both diet-induced obesity

and T2D.49,50 Similar evidence has been observed in hu-

mans.51 In our data, CIDEA expression has a strong nega-

tive correlation with BMI (p value ¼ 8.1 3 10�54). How-

ever, individuals with the minor allele of rs7505859

show the opposite relationship (CIDEA is positively corre-

lated with BMI). Again, this is an interesting relationship

in the light of BMI’s contribution to T2D development.

We integrated the 16 G 3 BMI variants with the NHGRI

database of GWASs to determine whether the G3 BMI reg-

ulatory effects are linked to common traits or disease.

A proxy SNP (rs1229977, r2 ¼ 0.63) for the G 3 BMI

variant regulating ADH1A (alcohol dehydrogenase 1A),

rs1693457, is associated with esophageal cancer (MIM:

133239) in a large GWAS.52 The GWAS association at this

locus covers several ADH family genes; however, we

show that, in addition to the G 3 BMI effect, rs1693457

is a main-effect eQTL (b ¼ �0.89, p ¼ 2.9 3 10�41) for

ADH1A. To formally test for colocalization between the

regulatory variant and the GWAS signal, we implemented

the regulatory trait concordance method (RTC).53 The

esophageal cancer GWAS SNP (rs1229977) had an RTC

score of 0.98 when tested with either the interaction or

main-effect model, indicating that the regulatory and

GWAS signals are tagging the same underlying variant.

There is prior evidence for a G 3 E interaction at

rs1229977—the association to esophageal cancer is modi-
The American Journal of Human Gene
fied by alcohol consumption.52 Given

the complicated links between BMI,

alcohol intake, and smoking, it is

possible that BMI is acting as a proxy

for correlated external environmental

factors at this locus, which could

also explain the lack of replication of

the ADH1A G 3 BMI effect in the
Icelandic data, given that external environments can

vary between countries.

Detection of trans G 3 BMI Effects in Adipose Tissue

Evidence frommodel organisms suggests that trans (distal)

regulatory variants are more likely to mediate the effects of

the environment and are thus strong candidates for G 3 E

interaction effects.10 In contrast to cis eQTLs, trans eQTLs

have been difficult to identify in humans because of

smaller effect sizes and the increased burden of multiple

testing in a genome-wide scan. Given that cis eQTLs are en-

riched for trans-eQTL effects,54 we utilized a two-step strat-

egy to identify transG3 BMI interactions in adipose tissue,

first identifying cis G 3 BMI interactions and then testing

the identified cisG3 BMI variants for transG3 BMI effects

with all adipose-expressed exons. For trans discovery, both

steps were performed with non-PEER-corrected expression

residuals because correction for latent factors can remove

broadly acting trans effects. This strategy identified four

cis G 3 BMI variants (Table S4), one of which, rs3851570

(cis G 3 BMI interaction on ALG9 expression [MIM:

606941], p value ¼ 2.03 10�8), is associated with 53 genes

in trans (Bonferroni corrected p value threshold of p <

1.1 3 10�7) (Figure 4A, Table S5, Figure S5).

IPA of the 53 genes in the ALG9 G 3 BMI trans-network

revealed enrichment for inhibition of matrix metallopro-

teases (Benjamini-Hochberg corrected p ¼ 3.6 3 10�8),

oxidative phosphorylation (Benjamini-Hochberg corrected
tics 99, 567–579, September 1, 2016 573
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Figure 3. Replication, Location, and Validation of cis G 3 BMI Interactions
(A) Comparison of G 3 BMI interaction coefficients (FDR ¼ 5%) in the TwinsUK discovery (horizontal axis) and deCODE replication
dataset (vertical axis). 9 out of 13 interactions show a consistent direction of effect across cohorts.
(B) The lead G 3 BMI SNPs all cluster at the TSS. Location of the lead SNPs for the 127 G 3 BMI interactions with p < 10�6 are plotted
with respect to the TSS of the corresponding gene. Lead SNPs for the 26 significant G3 BMI interactions (FDR¼ 5%) are labeled with the
corresponding gene name.
(C) Comparison of p values of G3 BMI interaction andG3 visceral-fat interaction for the same SNP gene pairs. All 127 interactions with
G 3 BMI p < 10�6 are plotted. All 16 G 3 BMI (FDR ¼ 5%) show a G 3 visceral-fat interaction, three of which increased 2–5 orders of
magnitude in despite the smaller sample size in the visceral fat analysis (n ¼ 682).
p ¼ 3.1 3 10�4), and gene membership of a cardiovascular

disease network (Figure 4B), indicating that BMI-dependent

regulatory effects at rs3851570 have a wide-ranging role in

metabolism and structural remodeling of adipose tissue.

ALG9 itself catalyzes lipid-linked oligosaccharide assembly

in the N-glycan biosynthesis pathway. Statistical mediation

analysis supports amediator role ofALG9 expression in regu-

lation of the trans G 3 BMI network (Sobel’s mediation

pvalue%0.001,Table S6) (seeMaterial andMethods).Given

that ALG9 has no known regulatory role on transcription,

the regulation of the trans genes most likely functions via

regulation of signaling cascades or other complex indirect

processes. We note that the most significant trans G 3 BMI

gene is the transcription factor ZNF423 (p ¼ 8.2 3 10�13)

(Figure 4C). ZNF423 regulates pre-adipocyte determination

and expression of PPARG (MIM: 601487), a master regulator

of adipocyte differentiation,55 and could be a candidate for

mediating the widespread trans effect, although this would

require further investigation. We investigated the trans G3

BMI effect in a second population by testing rs3851570

against all measured exon expression amounts (n ¼
168,951) in the deCODE dataset. Although the 53 trans

genes did not replicate in the deCODE dataset, transcrip-

tome-wide we see a significant enrichment for low p values

(p1¼ 0.14), demonstrating that rs3851570 has broad effects

on adipose gene expression in a BMI-dependent manner in

multiple populations. This is consistent with previous

studies, wherein transcriptome-wide regulatory behavior of

the multi-gene trans variants replicate across cohorts but

the top genes associated with such trans networks do not.23

General Properties of cis G 3 BMI Regulatory Effects

and Variants

To investigate the common properties of G 3 BMI regula-

tory effects and the genes they act upon, we next focused
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on the 127 adipose G3 BMI cis effects that passed a relaxed

threshold of p< 1.03 10�6 (Table S7). All 127 G3 BMI in-

teractions show an opposite direction of effect between

expression and BMI in the two-homozygote classes (for

example, PHACTR3, Figure 2). This high prevalence of

opposing direction of effect most likely reflects our power

to detect opposing effects rather than the true distribution.

Consistent with main-effect eQTL variants, G 3 BMI vari-

ants are enriched for proximity to the transcription start

site, most noticeably when looking at genome-wide

significant G 3 BMI variants (median distance, 38 kb)

(Figure 3B). The 127 G3 BMI variants show significant ad-

iposemain effects when tested without an interaction with

BMI (number of eQTLs (FDR ¼ 1%): adipose ¼ 20, blood ¼
8, LCLs ¼ 10, and skin ¼ 10) (Figure S6). Whereas main-

effect eQTL enrichment was observed in other tissues,

the G 3 BMI effect is adipose-tissue specific, with p1 ¼
0.038 in skin and p1 ¼ 0 in blood and LCLs. G 3 BMI

variants are not directly associated with BMI, and no sig-

nificant enrichment was seen in a BMI GWAS of 339,224

individuals6 (p1 ¼ 0), suggesting the G 3 BMI effects are

not the result of indirectly measured gene-by-gene effects.

G 3 BMI Are Enriched for Key Metabolic Processes

To elucidate the biological consequences of BMI-dependent

regulation, we investigated the 127 genes regulated by a

G3BMI interaction at p< 1.0310�6 for functional enrich-

ment byusing IPA. The 127 genes are enriched for keymeta-

bolic processes, including LXL and RXR activation (p ¼
6.1310�3) anduptakeof cholesterol (p¼9.1310�5) (Table

S8). LXL and RXR are part of the insulin-signaling pathway

and are the target of severalwidely used T2Dmedications.56

Additionally, the 127 genes are enriched for the antigen-

presentation pathway (p ¼ 2.0 3 10�4) and quantity of

macrophages (p ¼ 5.8 3 10�3). We do not see evidence for
er 1, 2016



Figure 4. rs3851570 Has a trans G 3 BMI Effect on 53 Genes
(A) Circos plot displaying the location of rs3851570 and trans G 3 BMI associations. Each line represents a trans association originating
from rs3851570. Green lines indicate a positive beta, and red lines represent a negative beta. The outer circle delineates chromosomes,
including cytogenetic bands.

(legend continued on next page)
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G 3 BMI effects in the BMI-associated MEMN of co-ex-

pressed adipose genes.40,57 The 553 MEMN genes show no

enrichment for G 3 BMI effects (p1 ¼ 0.021), and there is

not a significant overlap between the 127 G 3 BMI genes

and MEMN genes (binomial p ¼ 0.78). However, we do

note that of the four G 3 BMI genes in the MEMN

(ICAM3 [MIM: 146631], TBX3 [MIM: 601621], CIDEA,

and ADH1A), two do have genome-wide-significant G 3

BMI effects (CIDEA and ADH1A).
BMI Accurately Captures the Effects of Adiposity

BMI is an easily measured anthropometric trait that is

commonly used as a surrogate for overall adiposity. It has

been noted that BMI can potentially misclassify an indi-

vidual as obese, for example, when a subject has a large

lean-muscle mass (typical of athletes). Additionally, BMI

measurements do not capture differences in body-fat dis-

tribution. Fat accumulation in the abdominal region,

particularly of visceral fat, is predictive of multiple adverse

health outcomes independent of overall BMI.58 We thus

sought to validate our G 3 BMI findings by performing

the same analysis on a subset of the TwinsUK cohort that

had DXA-measured abdominal visceral fat volume. Within

this subset (n ¼ 682), visceral fat ranges from 78 to 1,542 g

(mean ¼ 627 g) and, as expected, broadly correlates with

BMI (Figure S7). All 16 G 3 BMI interactions (FDR ¼ 5%)

showed a similar effect in the G 3 visceral fat analysis,

and despite the drop in sample size, some interactions

increased in significance by four orders of magnitude

(CAST p ¼ 3.0 3 10�16, PEPD p ¼ 3.0 3 10�15)

(Figure 3C), potentially due to the increased sensitivity

gained from an accurate machine-measured phenotype.

This provides evidence that G 3 BMI can capture real

adiposity effects and suggests that, although more difficult

to obtain, power to detect interactions increases dramati-

cally with phenotypic measurement accuracy, such as in

measurements obtained by DXA.
Discussion

Here, we describe the pervasive effect BMI has on periph-

eral-tissue gene expression and identify robust examples

of BMI-dependent regulatory variants. We characterize the

properties of G 3 BMI regulatory variants, showing that

they typically have strongmain effects and are highly tissue

specific. Additionally, we identify a G 3 BMI interaction

that regulates an adipose-specific trans-network of 53 genes.

Although twin and family studies estimate that ~60% of
(B) Trans genes are enriched formembership in a cardiovascular diseas
network. Genes highlighted in red are present in the trans-network, an
represent their regulatory relationship. Solid lines represent direct evid
evidence. The shape of each node denotes the gene’s primary known
(C) A signal plot of the most significant G 3 BMI trans-association
expression of ZNF423 and the horizontal-axis is BMI. Each point rep
according to their allele dosage for SNP rs3851570.
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expression heritability acts in trans,23,24 trans effects have

beendifficult to identify inhumans.Given thehighcontext

specificity of trans effects in model organisms,10 trans eQTL

discovery efforts in humans might be more fruitful when

accounting for environmental interactions.

These findings suggest that identifying G 3 E interac-

tions on gene expression is possible with significantly

smaller sample sizes, compared to complex traits. How-

ever, we note that the current study is underpowered,

and we expect more G 3 BMI interactions to be identified

with larger sample sizes. Extrapolating from empirical

investigation of the power to detect cell-type-specific inter-

actions in whole-blood transcriptomes,20 we expect that

power to detect G3 BMI effects on expression should scale

linearly with sample size. Increasing sample size will most

likely necessitate combining data across populations,

which can confound G3 E analysis if the environment dif-

fers across study populations. Using a physiological vari-

able such as BMI should mitigate this caveat, however,

we acknowledge that BMI could also be acting as a surro-

gate for a highly correlated cofactor, such as diet, which

might vary across populations and thus complicate replica-

tion or meta-analysis efforts. Body-fat traits have been

shown to be sexually dimorphic. It is therefore important

to point out that although we demonstrated replicated

examples of G 3 BMI effects in a separate adipose tissue

cohort, the discovery sample was an all-female cohort,

whereas 44% of the replication cohort were men, poten-

tially reducing our replicative power.

It is well documented that increasing BMI induces

changes in the cell-type composition and inflammation

of adipose tissue.59–63 Changes in cell-type composition

could be the underlying mechanism of some of our identi-

fied G 3 BMI interactions. This is an intriguing possibility,

and we are actively investigating methods to deconvolve

cell-type expression data from whole-tissue expression

profiles to address this. Enrichment for G 3 BMI genes in

immune response pathways could also represent a change

in the activation state of cells already present in adipose

tissue or in the genetic control of inflammation suscepti-

bility that takes place under weight gain, during which

some individuals, due to their genotype, could undergo

less inflammation in an obese state. Given the enrichment

for genes involved in metabolic processes, other poten-

tial mechanism include BMI-driven changes in meta-

bolism,64 adipocyte size65 (a consequence of having to

store more lipid droplets in an obese state),66 increased

vascularization as a result of hypoxia,67 and changes in

overall energy expenditure.68
e network (IPA). Plot displays all genes in the cardiovascular disease
d non-trans network genes are shown in gray. Lines between genes
ence of interaction,while dashed lines indicate indirect interaction
function (protein kinase, transcription factor, complex, etc).
to rs3851570, at the gene ZNF423. The vertical axis represents

resents an individual; individuals are grouped into the three boxes
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Discovery of G 3 BMI effects on gene expression has

broad applicability. Characterization of G 3 BMI regula-

tory variants and the genes they act upon will help eluci-

date the downstream consequences of obesity and the

molecular pathways leading to associated diseases. Similar

to the widespread use of main-effect eQTLs to interpret

GWAS loci, context-specific eQTLs can be used both to

identify the molecular mechanism of GWAS loci and to

identify relevant, interacting environments or risk factors.

To facilitate this, we havemade the full results of this study

freely available in an interactive web service. Finally, iden-

tifying individuals whose genotypes predispose them to

BMI-specific outcomes could enable targeted interventions

for those most likely to respond and could improve accu-

racy in assessing genotypic risk of obesity-related diseases.
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