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The mechanisms of diabetic retinopathy (DR), are not yet fully understood. We previously
demonstrated an upregulation of retinal bone morphogenetic protein-2 (BMP2) in
experimental diabetes and in retinas of diabetic human subjects. The purpose of current
study was to investigate the role of non-canonical inflammatory pathway in BMP2-induced
retinal endothelial cell (REC) barrier dysfunction. For this purpose, we used RT-PCR and
western blotting to evaluate the levels of BMP2 signaling components (BMP2, BMP4, BMP
receptors), VEGF, phosphorylated p38 MAPK and NFkB, and oxidative stress markers in
cultured human retinal endothelial cells (HRECs) subjected to BMP2 (50ng/ml) for up to 24 h.
Also, effect of high glucose (HG, 30mM D-glucose) on the expression of BMP2 and its
downstreamgeneswas examined inHRECs.H2-DCF is a fluorogenic dye thatmeasures the
levels of cellular reactive oxygen species (ROS) was used tomeasure the pro-oxidative effect
of BMP2. Moreover, we evaluated the effect of inhibiting p38 and VEGF signaling on BMP2-
induced HRECs barrier dysfunction by measuring the trans-endothelial cell electrical
resistance (TER) using electric cell-substrate impedance sensing (ECIS). We also tested the
effect ofHGon the integrity of HRECsbarrier in the presenceor absenceof inhibitors ofBMP2
signaling.Our data reveals thatBMP2andhighglucoseupregulatesBMPcomponents of the
BMPsignalingpathway (SMADeffectors,BMP receptors, andTGFb ligand itself) and induces
phosphorylation of p38MAPKandNFkBwith nuclear translocationofNFkB. Inhibitionof p38
or NFkB attenuated BMP2-induced VEGF expression and barrier dysfunction in HRECs.
Also, inhibition of VEGFR2 attenuated BMP2-induced barrier dysfunction. Moreover, BMP2
induces generation of ROS and endothelial nitric oxide synthase (eNOS) expression and
activity in HRECs. Finally, HG upregulated BMP2 and its downstream genes (SMAD, BMP4,
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ALKs, and TGF-b) in HRECs and BMP2 inhibitors attenuated HG-induced HRECs barrier
dysfunction. Our results suggest that in addition to the regular canonical SMAD signaling
BMP2 induces non-canonical inflammatory pathway in HRECs via activation of p38/NFkB
pathway that causes the upregulation of VEGF and the disruption of HRECs. Inhibition of
BMP2 signaling is a potential therapeutic intervention to preserve endothelial cell barrier
function in DR.
Keywords: VEGF - vascular endothelial growth factor, smad, diabetic retinopathy (DR), bone morphogenetic protein - 2,
p38 MAKP signaling
INTRODUCTION

Diabetic retinopathy (DR), a commonmicrovascular complication
of diabetes mellitus is considered the most common cause of
blindness among working-age people in the world with
deleterious socioeconomic impacts (1–3). Loss of blood-retinal
barrier (BRB) function is a key stage in the development of DR
leading to diabetic macular edema (DME) and subsequently loss of
vision (4, 5). The cellular components of inner BRB include
endothelial cells, pericytes, and glial cells (6, 7). Therefore,
integrity of retinal endothelial cell barrier is essential to preserve
normal function of BRB. Although current therapies including,
laser photocoagulation, anti-vascular endothelial growth factor
(VEGF), and corticosteroid demonstrated significant efficacy in
treating DR and prevention of its progression, they are still limited
by their significant side effects incomplete ability to eliminate the
risk of blindness, andmostly applied in late stages of the disease (8–
10).Therefore, there is a great demand for the developmentof novel
independent or complementary therapeutic approaches that target
primarily the early insults that lead to the development of
irreversible visual loss.

Bonemorphogenetic proteins (BMPs) are group of cytokines that
belong to the transforming growth factors-b superfamily and were
initially discovered and named for their ability to induce bone and
cartilage formation (11, 12), however further studies of BMPs
signaling pathway resulted in greater understanding of their crucial
role. Nowadays they are increasingly recognized as multifunctional
regulators of angiogenesis, tissue homeostasis and tumorigenesis,
with evidence of activation of BMP signaling activity in different
disease contexts (13–16). Among various members of BMPs, BMP2
has been themost studied and clinically relevantmember. BMP2was
reported as an osteo-inductive cytokine that induces the entire
cascade of cartilage and bone formation. Moreover, many studies
linked BMP2 to various organs development including lung, heart,
and central nervous system (17). However, BMP2 has been shown to
have a pathological role associated with the development of vascular
inflammation and angiogenesis (18, 19). This was confirmed by
discovering the BMP endothelial cell precursor derived regulator
(BMPER), a negative regulator of BMPs signaling. BMPER was
shown to protect against vascular inflammation and preserve
normal retinal vascular homeostasis via suppression of BMP
signaling pathway (19, 20). In addition to BMPER, BMP2 is
regulated by various extracellular BMP-regulating factors such as
noggin, chordin, and gremlin (21–25).
org 2
Similar to other TGF-b family members, BMPs act through
binding to a tetraheteromeric serine threonine kinase receptor
complex (26). BMP receptors (BMPRs) compose of two BMPR
type 1 receptors (BMPR1s) and two BMP type 2 receptors
(BMPR2s). The biological effect of BMP2 is determined by its
interaction with BMP type 1 receptor, since BMPR2 is a low affinity
receptor (27, 28). There are four BMP type 1 receptor, Alk1/Acvrl1,
Alk2/Acvr1, Alk3/Bmpr1a, and Alk6/Bmpr1b (28, 29). Affinity of
various BMPs determines their different effects on endothelial cell
function. For example, BMP9/10, which have an anti-angiogenic
effect, havehigher affinity toALK1whose deletion causes exuberant
angiogenesis, suggesting that ALK1 regulates the angiostatic effect
of BMP9/10 in endothelial cells (30, 31). On the other hand, ALK2,
ALK3, and ALK6 that bind to BMP2, BMP4, and BMP6 are
suggested to regulate their angiogenic signaling. Global deletion
of these receptors is lethal and generally there is lack of
understanding of their role in endothelial cell function in health
anddiseases suchas diabetes and itsmicrovascular complications as
diabetic retinopathy (DR). Binding of BMPs to type I and II BMP
receptors activates and phosphorylates receptor-regulated SMAD
(R-SMAD) proteins (Smad 1, 5, and 9). Activated Smad 1, 5, and 9
proteins form a complex with co-Smad 4 and then translocate into
the nucleus with subsequent interaction with other transcription
factors to induce gene expression (32).

Ourprevious studywas thefirst todemonstrate theupregulation
of BMP2 in retinas of diabetic human subjects and in experimental
mice as well as HRECs subjected to high glucose (HG). BMP2 also
increased permeability, leukostasis, and inflammatory cytokines in
HREC (33). However, the lack of understanding the molecular
mechanism by which BMP2 induces REC dysfunction is a critical
barrier in proposing it as a therapeutic target to treat DR. Thus, the
aim of the current study is to delineate the molecular mechanisms
by which BMP2 induces retinal endothelial cell barrier dysfunction
which is essential for development of diabetic macular edema and
pathological retinal neovascularization.
MATERIALS AND METHODS

Experimental Animals
We used streptozotocin (STZ)-injected C57BL/6J mice and
Ins2Akita mice (C57BL/6-Ins2Akita/J Stock No: 003548/Akita,
Jackson Laboratories) as experimental mouse models of type1
diabetes mellitus (DM), while homozygote db/db (BKS/db−/−,
January 2021 | Volume 11 | Article 568795
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Jackson Laboratories) mice were used as mouse model for type 2
DM that develops spontaneous glucose intolerance and
hyperglycemia at 4–8 weeks. Heterozygote mice (db/+), which
usually show normal body weight, blood glucose, and plasma
insulin, but have increased metabolic efficiency were also used
for comparison (34). For STZ injected mice, 6–8 weeks old mice
were injected with STZ (55mg/kg, intra-peritoneal) for 3
consecutive days as previously described (35). Mice with
plasma glucose level exceeding 250 mg/dl were considered
diabetic. All experimental procedures were performed in
accordance with the established guidelines of Association of
Research in Vision and Ophthalmology statement for the Use
of Animals in Ophthalmic and Vision Research, and were
approved by the Institutional Animal Care and Use Committee
(IACUC) of Augusta University. Blood was collected from
cardiac puncture in heparinized coated tubes and the plasma
was separated by centrifugation at 1,500 rpm for 20 min.

Cell Culture
HRECs were obtained from Cell Systems (Kirkland, WA) and
grown to 80–90% confluence in Endothelial Basal Medium-2
(EBM-2, LONZA). Cells were then serum starved for 24 h before
treatment and throughout the whole experiment (1–5 days).
HRECs were treated with rhBMP2 (50 ng/ml) with or without
inhibitors of BMP signaling: Noggin (200ng/ml): an inhibitor of
BMPs; LDN-193189 (LDN1, 200nM), a selective inhibitor of ALK2
and ALK3; LDN-212854 (LDN2, 200nM), an inhibitor of ALK2
with substantially weaker effects on ALK1 and ALK3. LDN1 and
LDN2were synthesized as previously described (36, 37).Moreover,
HRECs were subjected to BMP2 treatment for 1–5 days in the
presence or absence of various inhibitors such as inhibitors of
VEGFR2 (SU5416, 10 mM) or p38 (SB202190), tyrosine kinase
(genistein, 50µM), or ERK (U0126, 10µM) followed by assessment
of the changes in barrier function and VEGF expression.
Transfection of HRECs was done as previously described (35, 38)
to silence Smad1 using SignalSilence® Smad1 small interfering
RNA (siRNA) (catalog # 6223, Cell Signaling Technology). The
high glucose conditioned media (DG-CM) were prepared by
incubating HRECs with high glucose (25 mM) for 5 days. Control
conditioned media (LG-CM) were prepared by incubating cells
withmediumcontainingL-glucose (19.5mML-glucose, 5.5mMD-
glucose; final concentration of 25 mM) for 5 days. Conditioned
mediawere collected and concentrated 10 fold by spin-filtration (10
kDa cutoff, Millipore UFV4BK10) and added to the new
HREC cultures.

Electric Cell-Substrate Impedance
Sensing Method
Normalized transcellular electrical resistance (TER) was measured
by electric cell-substrate impedance sensing [ECIS®Zq (theta)]
instrument (Applied Biophysics Inc, Troy, NY, USA) as previously
described (35, 38, 39). Briefly, HRECs were grown in 96-wells
electrode arrays (catalog # 96W20idf PET, Applied Biophysics
Inc.) coated with 100 µM cysteine and 0.02% gelatin. After
confluence, cells were serum starved for 24 h and then treated
with various treatments (BMP2 in the presence or absence of
Frontiers in Immunology | www.frontiersin.org 3
various inhibitors as above). For high glucose treatment, we used
conditioned media (CM) that were collected from NG or HG-
treated HRECs for 5 days. Fresh HRECs, then were subjected to
these CM with or without various inhibitors (LDN1, LDN2, or
noggin). TER was measured independently in each well over the
time course of the experiment (4–5 days). Resistance values were
normalized as the ratio of measured resistance to baseline
resistance (normalized resistance) and plotted as a function
of time.

ELISA for BMP2 and VEGF
Levels of BMP2 in mouse plasma and in the cultured media
collected from HRECs subjected to VEGF (30 ng/ml) for 24 h
were quantified using ELISA kits following the manufacturer’s
protocol (R&D Systems, Minneapolis, MN). In brief, 100 ml of
Assay Diluent RD1-19 was first added to each well followed by
addition of 50 ml of the standards and samples. Plates were
incubated at room temperature for 2 h. Then, wells were washed
three times using 400 ml wash buffer for each well. Two hundred
microliters of Monoclonal antibody specific for BMP-2 was then
added perwell and kept at room temperature for 2 h. Thewash step
was repeated. Two hundred microliters of substrate solution was
added to each well, protected from light and incubated at room
temperature for 30 min. To stop the reaction, stop solution was
finally added (50 ml) to each well. Detection of the optical density
was done within 30 min, using a microplate reader at wavelength
450nmwith correction at 540nm. SimilarELISAprotocolwas used
tomeasure the levels ofVEGF in the in the culturedmedia collected
fromHRECs that were subjected to BMP2 (50ng/ml) for 24 h in the
presence or absence of p38 or NFkB inhibitors SB202190 (10mM)
and JSH-23 (20mM) respectively.

Quantitative Real-Time RNA Polymerase
Chain Reaction Arrays
TaqMan arrays were used to measure messenger RNA (mRNA)
levels of components of BMP2 signaling system in HRECs
(Applied Biosystems, Foster City, CA). First, total RNA was
extracted from HRECs subjected to rhBMP2, or HG using the
RNeasy Mini Kit (Qiagen, Valencia, CA) according to
manufacturer’s instructions. A high capacity cDNA synthesis
kit (Applied Biosystems, Foster City, CA) was then used to
synthesize cDNA. Q-PCR was performed using TaqMan Fast
Advanced Master Mix Kit (Applied Biosystems, Foster City, CA)
and PCR amplification was performed using Step One Plus Real-
time PCR System (Applied Biosystem, Foster City, CA). The
thermocycling program consisted of 50°C for 2 min and 95°C for
2 min, then 40 cycles at 95°C for 3 s, and 60°C for 3 min. Three
replicates were run for each gene in each sample with the ready-
made primer and probe sets in a 96-well plate. mRNA expression
data was normalized to HPRT1 mRNA which has been used as
the endogenous reference gene (housekeeping gene) as it does
not exhibit significant expression changes between groups of
samples. Calculations are based on the comparison of the distinct
cycle determined by threshold values (Ct) at a constant level of
fluorescence and the relative quantification of mRNA expression
was calculated with the 2^-DDCt method [Applied Biosystems
January 2021 | Volume 11 | Article 568795
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User Bulletin N°2 (P/N 4303859)]. The data were normalized
with respect to HPRT1 mRNA and relative to a calibrator
sample. LG-conditioned media-treated HRECs were used as
calibrators. DCt = (Ct target gene–Ct housekeeping gene).
DDCt = (DCt sample–DCt normal non-diabetic).

Assessment of Effect of BMP2 Treatment
on NF-kB and p-smad1/5/9 Nuclear Levels
HRECs treated with BMP2 (50ng/ml) for 30 min were harvested
and the nuclear extract was prepared using nuclear extraction kit
(Abcam Inc., Cambridge, MA, USA, ab113474). Western blot
analysis was performed to detect the NF-kB (p65) and p-smad1/
5/9 levels in the prepared nuclear extract. Briefly, equal amount
of protein was loaded on gradient gel (4 to 20%, Pierce, Rockford,
IL) and separated by sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE). Thereafter, separated proteins
were transferred into nitrocellulose membrane. The membrane
was blocked using 5% BSA (Bio-Rad, Hercules, CA), washed, and
then incubated overnight at 4°C with primary antibody for NF-
kB (Cell Signaling, Danvers, MA, USA, 1:300) and the loading
control histone deacetylase (HDAC) (Abcam Inc., Cambridge,
MA, USA). The primary antibody reaction was then detected by
membrane incubation with peroxidase-conjugated secondary
antibody. The protein bands were then visualized using
enhanced chemiluminescence (ECL) western blot detection
system (Thermo Scientific, SC. USA) and the intensity of the
immunoreactivity was measured using optical density analysis
software (Image Lab, Bio-Rad Laboratories, USA).

Immunofluorescence of smad4 and NF-kB
HRECs were stained with smad4 and NF-kB antibodies
according to our previous procedure (40). Briefly, HRECs were
fixed by using 2% paraformaldehyde followed by blockage in
normal goat serum. Thereafter, HRECs were incubated with
antibody against smad4 or NF-kB (Abcam, 1:100) overnight at
4°C followed by an incubation with Texas red labelled secondary
antibody (1:500, Invitrogen, Eugene, OR). Finally, nuclei were
stained with 4′,6 diamidino-2-phenylindole (DAPI) mounting
medium (Vector Laboratories, Burlingame, CA), and images
were taken with confocal microscopy (LSM 510; Carl Zeiss,
Thornwood, NY).

Assessment of Reactive Oxygen Species
DCF, the oxidation product of the reagent 2’,7’-dichlorofluorescin
diacetate (H2DCFDA; Molecular Probes), was used as a marker of
cellular ROS including superoxide (O2−), hydrogen peroxide
(H2O2) and peroxynitrite (ONOO−) according to a previous
procedure (41). Briefly, cells in 96-well plates were incubated in
50 ml of Earle’s balanced salt solution containing 5 µMH2DCFDA
for 60minand subjected to cellularDCFfluorescencemeasurement
after BMP2 treatment (50 ng/ml for 24 h). Fluorescence was
measured using a spectrofluorometer (BioTek Instruments) with
excitation at 488 nm and emission at 530 nm. Similar procedures
have been followed tomeasure the O2− using the dihydroethidium
(DHE, Sigma)which ismore specific to superoxide generation than
otherROS.The reaction intensitywasmeasure at excitation 518 nm
and emission 605 nm.
Frontiers in Immunology | www.frontiersin.org 4
Assessment of Nitric Oxide Generation
The assessment of nitric oxide (NO) was performed by measuring
the total amount of nitrate and nitrite (which are the final products
of NO) in HRECs after BMP2-treatment (50ng/ml for 18–24 h).
The measurement was done by Fluorometric Assay Kit from
Cayman Chemicals (Ann Arbor, MI, USA) in accordance with
the manufacturer’s instructions. Briefly, HRECs were cultured in a
24-well black plate and then treated with BMP2 (50ng/ml) for 18–
24 h. Thereafter, the samples were mixed with assay buffer and
nitrate reductase mixture was added and incubated for 30 min to
convert all nitrate to nitrite. To measure the total nitrite, 2,3
diaminonaphthalene reagent provided as acid solution was added
followed by NaOH to enhance the detection of the fluorescent
product. The fluorescence intensity was measured using
spectrofluorometer at the excitation and emission wavelengths of
365 nm, 430 nm, respectively.

Statistical Analysis
Differences among groups as represented by the mean ± SE were
determined by the two-tailed t test or one way analysis of variance
(ANOVA) followed by a post hoc Tukey’s test. Statistical
significance among various groups was indicated by P value
<0.05. For time-series studies, we used two ways ANOVA
followed by a post hoc Tukey’s test for multiple comparisons.
RESULTS

Effect of Experimental Diabetes on
Circulating Levels of BMP2
Our previous study showed a marked increase in retinal
expression of BMP2 in experimental diabetes as well as in
diabetic human (33). Here, we tested the changes in the levels of
BMP2 in blood samples of experimental type 1 and type 2 diabetic
mice (Figure 1). Plasma levels of BMP2 showed significant
increases in experimental mouse models of type1 diabetes; the
STZ (1,568 ± 309 versus 626 ± 130 pg/ml in control) and Akita
mice (1503 ± 335 versus 638 ± 171 pg/ml in control). The increase
in circulating BMP2 in STZ and Akita mice was reported after 6
and 12 months from the onset of diabetes, respectively. We also
measured plasma levels of BMP2 in the 6-week diabetic db/db−/−

mouse model of type 2 diabetes in which there was significant
increase (428 ± 37 versus 359 ± 40 pg/ml in control). Although we
noticed a significant difference between db/dbmice and its control,
BMP2 levels in db/db were obviously lower than in STZ and Akita
mice and no significant difference was noticed between the
homozygote (db/db) and its heterozygote group (db/+) in which
the mean of plasma BMP2 level is 401 ± 39 pg/ml.

rhBMP2 and High Glucose Upregulate
BMP Receptors and Activate Canonical
smad Pathway in Human Retinal
Endothelial Cells
Using RT-PCR we tested the effect of rhBMP2 on mRNA levels
of BMPRs (ALK2, 3, 6, and BMPR2). Our data showed that
BMP2 upregulates endothelial ALK3 and BMPRII (BMPR2)
January 2021 | Volume 11 | Article 568795
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significantly. There was also increases in the expression levels of
ALK2 and ALK6, although these increases did not reach
significant levels. rhBMP2 also upregulated the mRNA levels of
BMP2 and TGFb compared to the control (Figures 2A–F). The
increased expression of BMP2 in HRECs subjected to exogenous
rhBMP2 may establish a link between increased blood levels of
BMP2 and its upregulation in retina during diabetes.

Activation of the smad effectors represents the canonical
pathway of the BMP2 signaling and plays an essential role in
mediating various biological functions of BMP2 by first
Frontiers in Immunology | www.frontiersin.org 5
phosphorylation and assembly of smad1/5/9/4 complex then
translocation to the nucleus and initiating a transcription activity
of target genes. Here, we evaluated the effect of rhBMP2 on the
nuclear translocation of BMP-responsive smads system in
HRECs. We first analyzed the amount of phosphor-smad1/5/9
in the nuclear extract of HRECs that were subjected to treatment
with rhBMP2 or its vehicle for 30 min using western blot. While
p-smad1/5/9 was absent in the nuclear extract of the control
HRECs, we noticed a higher amount in the rhBMP2-treated
HRECs. In addition to smad1/5/9, smad 4 is also a part of smad
complex that translocates to nucleus upon activation by BMP2.
Therefore, we tested its translocation to the nucleus by
immunofluorescence (IF) that showed a marked increase of
smad4 nuclear immunoreactivity in rhBMP2-treated HRECs
compared to the control (Figures 2G, H).

We also tested the effect of hyperglycemia on various
components of BMP2 signaling pathway. RT-PCR analysis of
mRNA expression of HRECs that were subjected to LG-CM or
HG-CM treatment for 2 days showed significant increase in the
expression of BMP2, BMP4, ALK3, smad9, smad4, and TGFb
mRNA by HG-CM compared to the osmotic control LG-CM
(Figure 2I). We also noticed marked increases in ALK2, smad1,
and SMAD5mRNA although this increase did not reach statistical
significance. Interestingly, HG-CM treatment induced a significant
decrease in the expression of BMP binding endothelial regulator
(BMPER) mRNA, a known negative regulator of BMP2
functions (42).

BMP2 Induces P38/NFkB Non-Canonical
Pathway in Human Retinal
Endothelial Cells
Activation of p38 MAPK contributes to the biological functions of
theBMP2/ALKs systemand its role inDRhas beenwell-established
(43–47). We hypothesize that in addition to smad canonical
pathway, p38 MAPK/NFkB signaling pathway also contributes to
the permeability and inflammatory effects of BMP2 in the retina. In
support to this hypothesis, analysis of the levels of phosphorylated
p38 MAPK in HRECs showed 1.5 ± 0.2 fold increase by rhBMP2
compared to the vehicle treated cells (Figure 3A). The interaction
between p38 MAPK and the transcription factor NFkB is
implicated in the regulation of several inflammatory cytokines
and oxidative stress mediators (48–51). Here, in addition to p38
MAPK activation, rhBMP2 also induced nuclear translocation of
NFkB in HRECs as shown by western blot (3.3 ± 0.5) fold increase
vs. control) and increased NFkB nuclear immunoreactivity by IF
(Figures 3B, C respectively).

Presence of a Positive Feedback Between
BMP2 and VEGF Expression in Human
Retinal Endothelial Cells
VEGF is a key player in the development of retinal endothelial
cell dysfunction in DR and has been shown to be regulated by
both smad canonical (52, 53) and non-canonical (54, 55)
pathways. We tested whether there is an interaction between
BMP2 and VEGF in retinal endothelial cells. While BMP2
induced significant increases in VEGF levels in HRECs (1,284±
A

B

C

FIGURE 1 | Measurement of circulating levels of BMP2 by ELISA. Unpaired
t-test was used to compare the plasma levels of BMP2 in streptozotocin
(STZ) or Akita diabetic mice compared to control. Data analysis showing
significant increases STZ-diabetic (A, p value=0.013), and 12-months diabetic
Akita mice (B, P=0.04). For multiple comparison, we used one way ANOVA
followed by Tukey test to analyze the difference in plasma levels of BMP2
between db/db (6 week diabetic), db/+, and control. There was significant
modest increase in the levels of plasma BMP2 in db/db compared to the
control (C, p value = 0.025). There was no significant difference between
db/db and db/+. n=8–10.
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209.9 pg/ml; mean ± SD) versus the control (686 ± 102.5 pg/ml;
mean ± SD) (Figure 4A), inhibition of p38 or NFkB by
SB202190 or JSH-2 respectively prevented this increase and
reduced the levels of VEGF in HRECs to 0.6± 0.1 and 0.4 ±
0.03 fold, respectively, versus the control (Figures 4B, C).

Interestingly, treatment of HRECs with VEGF (30ng/ml) also
upregulated BMP2 expression (2.5 ± 1.0 fold increase vs. control)
(Figure 4D) suggesting presence of a positive feedback between
BMP2 and VEGF in the retina, which could contribute to the
development of vascular abnormalities in DR.

Inhibition of smad Pathway Attenuates
rhBMP2-Induced Human Retinal
Endothelial Cells Barrier Dysfunction
Transcellular electrical resistance (TER) reflects the integrity of
cellular barrier function. To evaluate the extent to which BMPRs
contribute to the permeability effect of BMP2, we tested the effect of
specific inhibitors that target BMPRs or their binding to BMP2 on
rhBMP2-induced changes in TER of HRECs using the ECIS. For
example, we used noggin that blocks the binding of BMP2 to its
receptors and LDN1 and LDN2 that block ALK2 and ALK3
receptors. Consistent with our previous study (33), rhBMP2
disrupted the barrier function of HRECs as shown by a significant
decrease in the TER of HRECs. This disruptive effect was
significantly attenuated by noggin, LDN1, and LDN2 (Figure 5A)
supporting the role of BMPRs in mediating the permeability effect
of BMP2 inHRECs. Silencing of smad1 (Figure 5B) also preserved
HRECs barrier function under BMP2 treatment as compared to
HRECs transfectedwithmock siRNA. These findings suggest a role
for the smad pathway in BMP2-mediated HREC dysfunction.

Inhibition of p38, or VEGF Signaling
Attenuates BMP2-Induced Human Retinal
Endothelial Cells Barrier Dysfunction
In addition to the effect of BMPRs inhibition, we also tested
whether inhibition of non-canonical pathway represented by p38
and VEGF may impact the disruptive effect of rhBMP2 on
Frontiers in Immunology | www.frontiersin.org 6
HRECs TER using ECIS. Here, our experiments showed that
effect of BMP2 on endothelial TER was significantly abrogated by
inhibitors of VEGFR2 (SU5416, 10 mM) or p38 (SB202190)
(Figures 5C, D respectively) On the other hand, inhibition of
tyrosine kinase by genistein (50µM) compared to VEGFR2
inhibition or ERK by U0126 (10µM) compared to p38 MAPK
inhibition did not prevent rhBMP2-induced reduction of TER.

Inhibition of BMP2 Signaling Preserves
Human Retinal Endothelial Cell Barrier
Function Under Hyperglycemia
We also tested whether inhibition of BMP signaling offers
protection against hyperglycemia-induced barrier dysfunction
in HRECs. Barrier dysfunction usually occurs in HRECs after
several days of HG treatment (>5 days) that affect the viability of
HRECs cells and also the pH of the media. Therefore, we used
CM of HRECs subjected to NG or HG for 5 days to treat new
HRECs in the presence or absence of various BMP2 signaling
inhibitors (LDN1, LDN2, or noggin). Our data showed that
noggin LDN1and LDN2 preserve HRECs barrier function under
HG condition (Figure 5E).

BMP2 Induces Generation of Reactive
Oxygen Species in Human Retinal
Endothelial Cells
Oxidative stress is a key player in mediating endothelial cell
dysfunction in various diseases including diabetic retinopathy
(38). Therefore, we tested the impact of rhBMP2 on HRECs
redox status. Treatment of HRECs with rhBMP2 induced
significant increase in the superoxide (O2−) generation as
measured by DHE color reaction. DHE that only labels O2−

reached the peak after 10 min followed by time-dependent
decrease although it stayed higher than control group (Figure
6A). We also assessed ROS generation using the H2-DCF a
fluorogenic dye that measures the levels of various cellular ROS
includingO2−,H2O2, andONOO−. Analysis ofH2-DCF inHRECs
showed a significant increase in ROS generation by rhBMP2.
A B

D E F

G

I
H

C

FIGURE 2 | Effect of rhBMP2 or high glucose on BMP receptors and smad system. RT-PCR analysis of the messenger RNA (mRNA) of BMP receptors Alk2 (A),
ALK3 (B), ALK6 (C) and BMPRII (D), BMP2 (E) and TGFb (F) in human retinal endothelial cells (HRECs) subjected to rhBMP2 (50ng/ml) for 24 h. There is a
significant increase in the expression of BMP receptors ALK3 and BMPRII. There was also a marked increase ALK2 and ALK6 expression although this increase did
not reach to significant levels. Also, BMP2 treatment induced significant increase in BMP2 and TGFb mRNA expression. Western blotting of HRECs nuclear extract
showing upregulation of nuclear psmad1/5/9 (G). IF of smad4 showing marked increase in nuclear (blue) immunereactivity of smad 4 (red) by rhBMP2 (H). n=6 (*P <
0.05). (I) The effect of hyperglycemia on various components of BMP2 signaling pathway. RT-PCR analysis of mRNA expression of various components of BMP2
signaling pathway in HRECs that were subjected to LG-CM or HG-CM treatment for 2 days.
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However, contrary toDHE (O2−),H2-DCF started to increase after
5 h fromadding the rhBMP2and continued to increase for several h
compared to the control (Figure 6B). This suggests that while O2−

decreases over the time, total ROS that includes also H2O2 and
ONOO− in addition to O2− continue to increase. This increase of
ROS generation by rhBMP2 was significantly attenuated by ALK
inhibitor LDN1.

We tested whether the consistent decrease of O2− is attributed
to generation of nitric oxide (NO) that reacts rapidly with O2− to
form ONOO− and in turn increases H2-DCF reaction over time.
For this purpose we tested the effect of rhBMP2 on the levels of
eNOS and its activity (nitric oxide generation) as a known source
of ROS particularly the ONOO− by its reaction with O2−. RT-
PCR of HRECs showed significant increase of eNOS mRNA by
rhBMP2 compared to the control (Figure 6C) and this was
associated with a significant increase in NO generation (Figure
Frontiers in Immunology | www.frontiersin.org 7
6D). Interestingly, the increase in NO showed a similar pattern
to O2− generation in which it decreases over time although it
consistently stays higher than the control (Figure 6F).
DISCUSSION

Our previous study (33) demonstrated upregulation of BMP2 in
retina of diabetic human subjects and experimental diabetic mice
and upregulation of inflammatory cytokines and leukostasis in
cultured retinal endothelial cells subjected to BMP2 treatment. It
was the first study to underscore BMP2 as a possible player in the
development of microvascular dysfunction in DR. The current
study extends to investigate in some details the mechanism by
which BMP2 regulates retinal endothelial cell barrier function.
The main findings of the current study are: 1) significant increase
A B

C

FIGURE 3 | Western blot analysis of the effect of rhBMP2 on p38 and NFkB. Unpaired t-test was used to compare the effect of rhBMP2 on p-p38 and nuclear
NFkB compared to control. Densitometry analysis showing significant increase in the levels of p-p38 and the nuclear NFkB in human retinal endothelial cells (HRECs)
compared to the control (A, B respectively). IF (C) also showing marked increase in the nuclear (blue) immunoreactivity of NFkB (red) in HRECs subjected to rhBMP2
compared to the control. n=5–6.
January 2021 | Volume 11 | Article 568795

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Al-Shabrawey et al. BMP Signaling System and Diabetic Retinopathy
in the circulating BMP2 in experimental models of type 1 and
type 2 diabetes, 2) induction of both canonical and non-
canonical pathways in HRECs by BMP2, 3) attenuation of
BMP2-induced permeability by inhibitors of canonical or non-
canonical pathways, 4) induction of oxidative stress in HRECs
subjected to BMP2.

The role ofBMP signaling system in endothelial cell dysfunction
has attracted several investigators who showed permeability and
angiogenic potential of the activated BMP signaling (33, 51, 56, 57).
However, the relationship between diabetes in general and its
complications in particular and activated BMP signaling has not
yet been established. Here, we provide the first evidence for the
increase in the levels of circulating BMP2 inmousemodel of type 1
(Akita and streptozotocin) and type2 diabetes (db/db mice)
compared to their controls. Although there was significant
increase in circulating BMP2 in db/db mice compared to their
control wild type, this increase was modest compared to STZ and
Akitamodels andwas not significant compared to the heterozygote
db/+ group. This raises a question regarding this difference between
type 1 and type 2 diabetes and whether relative long exposure to
hyperglycemia inSTZ(6months) andAkita (12months) versus10–
12 weeks in db/db played a role in this differential effect of diabetes
on plasma levels of BMP2. In addition, to the observed in vivo
Frontiers in Immunology | www.frontiersin.org 8
increase in BMP2 by hyperglycemia, treatment of HRECs with HG
upregulated mRNA of BMP2 and BMP4 and their downstream
effectors such as ALKs, SMADs, and TGFbmimicking the effect of
rhBMP2 treatment. Contrary, this increase of BMP2 signaling
components by HG was associated with significant reduction in
BMPER, a known negative regulator of BMP2 signaling (42). These
data suggest that the balance between BMP2 signaling system and
its negative regulators such as BMPER is important to maintain
normal endothelial cell function.

Since our previous study showed upregulation of the retinal
BMP2 (33) and the current one showing upregulation of the
circulating BMP2 in diabetes, we suggest presence of a positive
feedback between the circulating BMP2 and the retinal BMP2.
Moreover, increases in the circulating BMP2 was reported here at
early and late stage of diabetes, 6 week–12 months from onset of the
experimental diabetes leading us to hypothesize that the circulating
level of BMP2 could be a biomarker in the diabetic patients. This
may correlate the circulating levels of BMP2 with development of
diabetic complications such as DR. Further investigations are
needed to prove this hypothesis in the diabetic patients.

BMP2 mediates its biological functions through activation of
two independent or linked pathways, the smad (canonical) and
p38 MAPK (noncanonical) pathways. Activation of both
A B

DC

FIGURE 4 | ELISA of VEGF and BMP levels lin human retinal endothelial cells (HRECs). One-way ANOVA followed by a post hoc Tukey’s test was used to compare
the effect of BMP2 on VEGF levels in the presence or absence of p38 or NFkb inhibitors in cultured HRECs. Data analysis are showing significant increases in the
expression of VEGF by BMP2 (50ng/ml) treatment for 24 h compared to the control (A). This increase is inhibited by p38 inhibitor (SB202190, 10mM) (B) or NFkB
inhibitor (JSH23, 20 mM) (C). Furthermore, ELISA of BMP2 levels in the condition medium of VEGF-treated HRECs is showing a significant increase by VEGF
(30ng/ml for 24 h) compared to the control (D). Analysis of the difference between control and VEGF treatment was done using unpaired t-test.
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pathways is downstream from BMP2 binding to its receptors.
The biological effect of BMP2 is determined by its interaction
with BMPR1 particularly (ALK2, 3, and 6), since BMPR2 is a low
affinity receptor (27, 28). Treatment of HRECs with rhBMP2
upregulated expression of BMPR mRNAs particularly ALK3 and
BMPRII that showed significant increases. There was also
Frontiers in Immunology | www.frontiersin.org 9
marked increase in ALK2 and ALK6 although this increase did
not reach significant levels. In agreement with previous reports
(29, 58), endothelial ALK2, 3, and 6 as well as BMPRII are
implicated in BMP2 signaling in retinal endothelial cells.
Moreover, the disruptive effect of rhBMP2 on HRECs barrier
function as demonstrated by a significant decrease of the TER
A B

D

E

C

FIGURE 5 | Effect of BMP2 on trans-endothelial electrical resistance (ECIS). ECIS analysis showing significant decreases in the trans-endothelial cell electrical resistance
(TER) of human retinal endothelial cells (HRECs) treated with rhBMP2 (50ng/ml for 4–5 days). Effect of rhBMP2 was significantly attenuated by the inhibitors of BMP
receptors, LDN1 and LDN2 as well as by the noggin that prevents BMP2 from binding its receptors (A). Effect of rhBMP2 on the TER of HRECs was also attenuated by
silencing smad1 using smad1 small interfering RNA (siRNA) compared to the mock siRNA (B). Inhibition of VEGFR2 by SU5416, 10 mM (C), or p38 by SB202190,
10 mM (D) showing significant attenuation of the rhBMP2-induced reduction of the TER in HRECs. However, inhibition of tyrosine kinase by G-6055 9Genistein 10µM
(C) or MERK by U0126 10µM (D) did not prevent the effect of BMP2-induced changes in the TER of HRECs. Similarly, incubation of HRECs in CM of HG-treated
HRECs induced significant decrease in TER over time and this effect was attenuated by noggin, LDN1, and LDN2. (E) Data points represent the mean of 4–6 wells at the
same time point+SE. Two way ANOVA followed by a post hoc Tukey’s test. It was used to compare different treatments over time.
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was prevented by the BMPR inhibitors, noggin, LDN1, and
LDN2. ALK2 and 3 have been shown to play important role in
the proangiogenic effect of BMP2 and thus suggested to be
selective target for the antiangiogenic therapy (51). A recent
report has emphasized both ALK2, ALK3, and BMPRII in
BMP2-induced retinal vascular development and targeted
deletion of any of them in endothelial cells led to significant
impairment of normal vascular development in retina (59).

We next investigated the impact of rhBMP2 on the nuclear
translocation of smad complex which is required to induce the
transcription activity of BMP2-dependent genes. Our
experiments using western blot analysis of the HRECs nuclear
extracts or immunofluorescence showed nuclear translocation of
smad1/5/9 and smad4 respectively by rhBMP2 treatment. We
then, asked if smad activation contributes to the permeability
effect of BMP2. For this purpose, we tested the effect of smad1
silencing on rhBMP2-induced barrier dysfunction in HRECs.
Smad1 siRNA preserved the TER of HRECs in the presence of
rhBMP2 compared to the MOCK siRNA suggesting involvement
of the smad system in the BMP2-induced retinal endothelial
cell dysfunction.

In addition to the smad system, activation of the non-canonical
pathway as represented by p38MAPK/NFkB and dependent genes
have also been shown to contribute to the biological effects of BMP2
(48–51). Therefore, we evaluated the hypothesis that this non-
canonical pathway also contributes to the disruptive effect of
rhBMP2 on the HRECs barrier function. To test this hypothesis,
Frontiers in Immunology | www.frontiersin.org 10
we examined the direct effect of rhBMP2 on the phosphorylation/
activation levels of p38, nuclear translocation of NFkB as well as
VEGF expression as one of the essential molecules that could be
regulated by activated p38/NFkB signaling. Our experiments
demonstrated a significant increase in the levels of
phosphorylated-p38 MAPK and the nuclear translocation of
NFkB. In addition, inhibition of p38 or NFkB significantly
attenuated the rhBMP2-induced upregulation of VEGF, a key
player in endothelial dysfunction in diabetic retinopathy. We next
investigated if the activated non-canonical pathway contributes to
rhBMP2-induced HRECs barrier dysfunction using specific
inhibitors of p38 MAPK. Inhibition of p38 MAPK preserved the
TER in the rhBMP2-treatedHRECscompared to theERKinhibitor.
Our findings also suggest that p38/NFkB is implicated in BMP2-
induced endothelial dysfunction probably via a VEGF-dependent
mechanism. In agreement to our data, BMP receptor activation has
been reported to selectively induce activation of the p38 mitogen-
activated protein kinase (MAPK) in contrast to the ERK1/2 MAP
kinases to promote tumor angiogenesis (60).

The potential role of VEGF signaling in BMP2-induced
HRECs barrier dysfunction was demonstrated by the
significant improvement of the HRECs TER by the VEGFR2
inhibition. VEGF has been shown to induce BMP2 expression in
the microvascular endothelial cells (61). Our experiments using
HRECs also showed an upregulation of BMP2 expression by
VEGF treatment, suggesting presence of a positive feedback
between VEGF and BMP2 in the retinal endothelial cells. We
A B
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C

FIGURE 6 | Measurement of intracellular reactive oxygen species by dihydroethidium or DHE (A) and H2-Dichlorofluorescine or DCF (B) showing significant
increases in the superoxide and other ROS, respectively by BMP2. The increase in ROS was prevented by the pharmacological inhibitor of BMPR (LDN1). RT-PCR
(C) showing significant increases in the levels of eNOS messenger RNA (mRNA) in the human retinal endothelial cells (HRECs) by BMP2. *p < 0.05. Finally,
measurement of the eNOS activity by measuring nitric oxide (NO) generation using the fluorescence reaction (D) showing significant increases by the BMP2.
Differences among groups as represented by the mean ± SD were determined by the two-tailed t test or two way ANOVA followed by a post hoc Tukey’s test.
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previously established a positive cross talk between BMP2 and
VEGF to enhance the osteogenesis and angiogenesis in the
critical size bone defect model (62, 63). VEGF and BMP2 have
shown to have a synergistic effect in inducing osteogenesis,
angiogenesis, and metastasis, therefore, administration or
inhibition of both VEGF and BMP2 was suggested as a
possible strategy to enhance bone healing or decreasing the
incidence of cancer metastases respectively (56, 57). We
previously showed that BMP2 also upregulate VEGF
production in the retinal Müller cells. Current and previous
data may establish an interesting relation between VEGF and
BMP2 especially in diabetes in which increased circulating
BMP2, retinal BMP2 and VEGF elicit positive feedback in both
endothelial and Müller cells to contribute to the retinal
microvascular dysfunction in diabetes. VEGF has been
established as a downstream target from smad system and p38/
NFkB (54, 55), thus we conclude that activation of the canonical
and non-canonical pathways in HRECs by rhBMP2 converges at
VEGF signaling to induce HRECs barrier dysfunction. In
addition to studying the direct effect of rhBMP2 on HRECs
barrier integrity in the presence or absence of its signaling
inhibitors, we also evaluated the effect BMP2 signaling
inhibitors on HG-induced barrier dysfunction. Our data
showed preservation of HRECs barrier under hyperglycemic
insult by BMP2 signaling inhibitors suggesting inhibition of
BMP2 signaling as potential therapeutic intervention to protect
blood-retinal barrier in diabetes.

We and others have reported the critical role of ROS such as
O2−, ONOO− and H2O2 in inducing endothelial permeability
and angiogenesis in DR (64–66). We tested if the BMP2 elicits
any effect on redox status of the retinal endothelial cells. Our
data, showed significant increases of ROS generation in HRECs
over an extended period of time by the rhBMP treatment. This
effect was attenuated by pharmacological inhibition of BMPR
using the LDN1 and LDN2. The peak of increased superoxide
as measured by DHE staining was noticed after 10 min from
adding rhBMP2 followed by a consistent decrease over time.
Contrary the total amount of ROS generation (O2−, ONOO−,
and H2O2) as measured by H2DCF continued to increase by
the rhBMP2 treatment over time. This led us to test the effect of
BMP2 on eNOS, a known source of ROS and NO. There was a
significant increase in the mRNA of eNOS by rhBMP2. This
was associated with a significant increase in NO generation
that showed a similar pattern to superoxide generation in
which NO continued to decrease over time. This led us to
suggest that the generated O2−, and NO combine to generate
ONOO− and this was reflected on the consistent increase of the
H2DCF reaction opposite to the consistent decrease in both
superoxide and NO. Of note, increased oxidative stress leads to
NOS uncoupling and NO-quenching by excess superoxide to
form ONOO− (67). This may explain the inverse relationship
noticed between the total ROS and both O2− and NO over an
extended period.

In conclusion, the current study underscores the circulating
BMP2 in addition to the retinal BMP2 as a potential player and
probably a biomarker in diabetes complications such as DR. The
Frontiers in Immunology | www.frontiersin.org 11
study also characterizes the signaling mechanisms by which
BMP2 may contribute to the retinal endothelial cell
dysfunction especially hyperpermeability in DR. The
underlying mechanism involves BMPRs and subsequent
activation of canonical and non-canonical pathways.
Downstream from these signaling pathways, VEGF and
oxidative stress are probably contributing factors to BMP2-
induced retinal endothelial cell dysfunction. Hence, the use of
BMP signaling system inhibitors alone or in conjunction with
anti-VEGF could be a novel approach to prevent the
microvascular dysfunction in DR.
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