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Accurate neuron morphologies are paramount for computational model simulations of
realistic neural responses. Over the last decade, the online repository NeuroMorpho.Org
has collected over 140,000 available neuron morphologies to understand brain
function and promote interaction between experimental and computational research.
Neuron morphologies describe spatial aspects of neural structure; however, many
of the available morphologies do not contain accurate diameters that are essential
for computational simulations of electrical activity. To best utilize available neuron
morphologies, we present a set of equations that predict dendritic diameter from other
morphological features. To derive the equations, we used a set of NeuroMorpho.org
archives with realistic neuron diameters, representing hippocampal pyramidal, cerebellar
Purkinje, and striatal spiny projection neurons. Each morphology is separated into initial,
branching children, and continuing nodes. Our analysis reveals that the diameter of
preceding nodes, Parent Diameter, is correlated to diameter of subsequent nodes for all
cell types. Branching children and initial nodes each required additional morphological
features to predict diameter, such as path length to soma, total dendritic length,
and longest path to terminal end. Model simulations reveal that membrane potential
response with predicted diameters is similar to the original response for several tested
morphologies. We provide our open source software to extend the utility of available
NeuroMorpho.org morphologies, and suggest predictive equations may supplement
morphologies that lack dendritic diameter and improve model simulations with realistic
dendritic diameter.

Keywords: dendritic diameter, neuron simulation, multi-compartmental model, python software, neuronal
morphology, neuron reconstruction

INTRODUCTION

Neuronal morphology is the foundation for computational models which integrate molecular
and cellular processes to understand brain function and behavior (Fan and Markram, 2019).
Realistic neural modeling requires comprehensive biological description of neurons and
synapses (D’Angelo et al., 2013), while simulation of neural networks may utilize heterogenous
neural populations (Einevoll et al., 2019), including heterogeneity in neuronal morphology.
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Individual neuron morphologies are the basis for computational
simulation of neural response, branching (Cuntz et al., 2007,
2010; Donohue and Ascoli, 2008), and growth (Koene et al.,
2009). Neuron model simulations have shown that neuronal
morphology may affect firing response (Chen, 2010), either due
to branching complexity (van Elburg and van Ooyen, 2010),
channel arrangement (Zhou et al., 2015), or dendritic length
(Li et al., 2015).

The diameter of neuronal branches is particularly important
for controlling the flow of ionic current and signaling molecules,
and thus is critically important for simulating neuron electrical
activity. In his landmark study (Rall, 1962), Rall showed that
if the diameter of the parent branch (raised to the 3/2 power)
was equal to the sum of diameters of the child branches
(raised to the 3/2 power) then the two child branches could
be replaced by an equivalent cylinder (providing a few other
conditions were met). Since then, reconstructions of neuronal
morphology have shown that this diameter relationship does
not always hold (Cullheim et al., 1987; Scorcioni et al.,
2004; Krichmar et al., 2006; Zomorrodi et al., 2010; Kubota
et al., 2011), and dendrites taper between branch points in
some neuron types. Nonetheless, changes in dendritic branch
diameter can maximize current transfer (Bird and Cuntz,
2016) and influence Ca2+ dynamics (Anwar et al., 2014) or
other second messengers (Luczak et al., 2017). Conversely,
resources and second messengers can influence dendritic growth.
For example, diameter is observed to change in response to
cell growth (Mironov et al., 2016). In addition, diameter of
neural branches is observed to change dynamically, due to
competition of resources between local branches (Hjorth et al.,
2014) or after high-frequency stimulation (Chéreau et al., 2017).
Thus, understanding neuron function from morphology requires
measures of diameter.

Currently, NeuroMorpho.org remains the largest online
repository to access neuron morphological data, with
over 140,000 neuron morphologies from numerous brain
regions, neuron types, and species (Ascoli, 2015; Ascoli
et al., 2017). Though an insightful tool, NeuroMorpho.org
contains many neuron morphologies that lack measurement
of dendritic diameters. NeuroMorpho.org reviews certain
aspects of morphology for all submitted archives (Parekh
et al., 2015); however, many neuron morphologies
contain dendritic diameters that lack dendritic tapering
or branching asymmetry (Brown et al., 2008), or
contain identical diameters where variability is expected
(Anwar et al., 2014).

One possibility to obtain realistic dendritic diameters is to
create equations to predict diameter from other morphological
features. In essence, is it possible to extend Rall’s seminal work
and use relationships among other morphological features to
predict the diameter of dendritic branches? A previous study
describes an equation to estimate diameter, which included
total dendritic length, though is limited to a single neuronal
morphology (Lindroos et al., 2018). Expanding this approach
to multiple archives and cell types would enhance the use
of neuron morphologies with realistic dendritic diameter for
model simulation.

Our study derives equations to predict dendritic diameter
from other morphological features for three neuron types;
hippocampal pyramidal, cerebellar Purkinje, and striatal spiny
projection neurons (SPNs). We demonstrate that Parent
Diameter (PD) is strongly correlated to Child Diameter across
multiple cell types, particularly for hippocampal pyramidal cells.
The primary (initial) nodes, which begin dendritic processes, and
nodes directly after bifurcation (branching children) require a
combination of morphological features to predict diameter, such
as path length to soma, total dendritic length, and longest path to
terminal end, though this varies by cell type. Simulations reveal
membrane potential responses for passive models with predicted
diameters were similar to those of models with original diameters,
including morphologies not used to derive the equations. Our
predictive equations may extend utility of available morphologies
on NeuroMorpho.org with realistic dendritic diameters.

MATERIALS AND METHODS

Summary
Several archives from NeuroMorpho.org were selected as suitable
for predictive diameter equations. Each reconstruction contains
a collection of points (nodes) to describe neuronal morphology.
Each node acts as a boundary for compartments or segments,
which are cylindrical-like spaces useful for model simulation
of membrane potential in response to current injection or
synaptic input. Measures describing each node (features) within
neuron morphologies were compared to node diameter, using
graphical and statistical approaches, to reveal possible predictive
relationships. Multiple regression using a combination of
morphological features produced equations to predict node
diameter. New morphologies with predicted diameters were
created and compared to original morphologies, and a subset
of the neurons were simulated to assess differences in passive
response between original and predicted diameters.

NeuroMorpho.Org Archive Selection
NeuroMorpho.org metadata search and morphology inspection
provided initial archives for consideration toward predictive
diameter equations. Using metadata search, we selected certain
morphological- and reconstruction-specific aspects with
emphasis on dendritic representation (Parekh et al., 2015).
In Animal: Species, we selected only mouse or rat neuron
morphologies. In Completeness, we specified our search to
only include (a) Morphological Attributes: morphologies with
diameter, either 2-dimensional or 3-dimensional, and with
or without angles, (b) Structural Domain: morphologies with
dendrites, soma, and with or without axon, and (c) Physical
Integrity: search by dendrites: morphologies with “complete”
dendrites, or non-fragmented/non-truncated processes. In
Experiment: Experimental Condition, we specified control.
Following metadata search, archives were retained if available
brain regions or similar cell types contain at least two separate
archives, and if each archive contains more than a single
morphology. Subsequent visual inspection of the remaining 35
archives (totaling 790 morphologies) revealed some morphology
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TABLE 1 | Selected NeuroMorpho.org archives for predictive diameter equations.

Archive Brain region Cell type Morphology files Dendritic nodes Mean nodes per cell

Groen (Groen et al., 2014) Hippocampus CA1 Pyramidal 12 172023 14335

Jaffe (Chitwood et al., 1999) Hippocampus CA3 Pyramidal 5 14507 2901

Nedelescu (Nedelescu et al., 2018) Cerebellum Purkinje 30 46748 1558

Dusart (Chen et al., 2013) Cerebellum Purkinje 6 19664 3277

Luebke (Goodliffe et al., 2018) Striatum D1R SPN 14 25954 1853

Luebke (Goodliffe et al., 2018) Striatum D2R SPN 14 26068 1862

Lai (Chen et al., 2014) Striatum SPN 10 58629 15862

As described in section “Results,” hippocampal CA3 and CA1 pyramidal cells were combined for subsequent analysis to develop predictive equations.

TABLE 2 | Description of morphological features.

Acronym Feature Description

D Diameter Node diameter as defined by 2× radius within
SWC morphology file.

PD Parent
Diameter

Diameter of the previous node in path. Dendritic
nodes which directly stem from soma, i.e.,
“initial nodes,” have the soma as the parent
node.

IB Initial Branch
Order

Initial nodes initialized as 1. Traversing
downstream away from soma, each branching
node increases value by 1.

TD Terminal
Degree

Terminal nodes initialized as 1. Traversing
upstream toward soma, value increases at each
branching node as the sum of terminal degree
of the two downstream (child) nodes.

PS Path from
Soma

Summed path distance from soma traversing
downstream toward selected node.

LP Longest Path
to Terminal End

Summed path distance from selected node and
traversing downstream toward terminal node in
single path with greatest distance.

TL Total Dendritic
Length Rooted
at Node

Summed path distance stemming from
selected node and traversing downstream
toward all terminal nodes in path.

Individual node measures calculated from SWC neuron morphologies.
Morphological features are explained visually in Figure 1.

issues that forced exclusion from analysis. These issues included
identical diameter across all dendritic nodes and dendritic
processes with extreme shifts in the z-plane. From the seven
selected archives (Table 1), morphological features were obtained
to relate node measures to node diameter within morphology
files. Thus, we extracted morphology feature values to describe
each dendritic node (Table 2 and Figure 1).

Feature Prediction and Modeling
Dendritic Diameter
Several statistical tools were used to relate morphological features
to node diameter. Graphical analysis and Pearson’s coefficient
of determination (R2) were used to identify features that were
correlated with Diameter but not with each other. The adjusted
R2 from Multiple Linear Regression using an Ordinary least
squares (OLS) was used to automate selection of features that
account for a high proportion of variance in predicting node
diameter. First, we calculated the adjusted R2 between Diameter

and each feature. Second, we calculated the adjusted R2 of
Diameter+ an additional feature, in order from highest to lowest
feature adjusted R2. If the adjusted R2 for the pair exceeded the
R2 for each single feature (by a small improvement constant)
that pair was added to the list of candidate models. Third,
we calculated the adjusted R2 of other feature combinations,
and added that combination to the list if the adjusted R2

for the pair exceeded the R2 for each single feature and
was better than the prior best adjusted R2. Note that the
same results were obtained using an improvement constant
of 0.001 or 0.02.

The final model fit was determined using Multiple Linear
Regression using an OLS model applied to the training
set, and the single or pair of features producing the best
adjusted R2 as determined using all the data. Note that if
the regression includes an intercept, the Pearson’s R2 will
be identical to the model R2; however, our final regressions
did not include an intercept in these final model fits. For
each cell type, archive morphologies were randomly separated
into a training set (Train), to create predictive equations,
or a testing set (Test), to predict diameters of morphologies
independent from those used for predictive equations. Original
and predicted diameters were compared for morphologies
in the training set and morphologies in the testing set
separately. When comparing predicted and original diameters,
goodness-of-fit was calculated using Pearson’s coefficient of
determination (R2) for each neuronal morphology and averaged
across morphologies.

We used the regression equations to create the morphologies
with predicted diameters. The process begins at initial nodes
and uses the soma diameter and selected features in predictive
equations. Traversing away from the soma, all subsequent branch
children and continuing nodes use the predicted PD instead of
original PD. That Predicted PD, in addition to selected features in
the predictive equations, then determine predicted node diameter
until all dendritic nodes have predicted diameter.

Simulation
Simulation of individual neuron responses to somatic
current injection was used to assess functional quality of
predicted diameter. To verify our model equations, we
simulated one morphology from each of the three selected
cell types: hippocampal pyramidal (NMO_35137), striatal SPN
(NMO_33253), and cerebellar Purkinje (NMO_10073) cells.
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FIGURE 1 | Illustration of morphological features. (A) Hippocampal CA1 pyramidal neuron visualized with Cvapp from NeuroMorpho.org (NMO_00817, left panel);
start of apical branch (right panel) with compartments (magenta) between individual nodes (blue dots). (B–G) Simplified dendritic morphology of apical branch to
demonstrate morphology feature values for each node. Nodes (points) classified as soma (black), initial (green), continuing (blue), and branch children (lavender).
Further feature description in Table 2. (B–D) Arrows indicate path distance between nodes used to calculate feature values originating at the first continuing node,
marked with blue X. (B) Path from soma. (C) Longest Path to Terminal End. (D) Total Dendritic Length Rooted at Node. (E) Parent Diameter; arrows point to parent
node and values provide the node diameter (µm). (F, G) Feature values indicate node positional relationship in branch arrangement within morphology. (F) Terminal
Degree. (G) Initial Branch Order.

Two additional morphologies separate from the training or
testing set were simulated to validate the model equations. One
hippocampal CA1 morphology was selected which had published
passive morphology simulations (NMO_00886, Golding et al.,
2005) and one striatal SPN was selected to compare predicted
diameters from our equations to previously reported diameter
equations (NMO_08390, Lindroos et al., 2018). The selected
hippocampal CA1 pyramidal cell (NMO_00886) was modified to
a 3-point soma for simulation in Moose1. The same membrane
and cytosolic parameters (RM = 1.6 � m2, CM = 0.0186 F/m2,
and RA = 1.98 � m) were used for simulations as previously
reported (Golding et al., 2005), with the exception of the
independent striatal SPN (RM = 8 � m2, CM = 0.01 F/m2, and
RA = 0.15 � m; NMO_08390; Lindroos et al., 2018). Both a
brief (1 ms, 1.5 nA) and a prolonged (800 ms, 30 pA) current
injection at the soma were used to evaluate time constant (τ,
fit to double exponential) and steady state voltage response
(1V), respectively. We also simulated the response to synaptic

1https://moose.ncbs.res.in

input, which had a conductance of 10 pS, rise time constant
of 1 ms, decay time constant of 5 ms, and reversal potential of
5 mV. We compared the predicted and original values of time
constant and steady state as the normalized difference (ratio): the
difference between time constant or steady state of the predicted
and original morphology divided by the time constant or steady
state of the original morphology. We similarly compared the
peak synaptic depolarization between predicted and original
morphologies as a normalized difference.

Software Implementation
Several open-source Python programs were created and are
available from2. morph_feature_extract.py (Python 2.7) uses the
Python 2 package btmorph3 to calculate morphological features
from SWC format morphologies. morph_feature_analysis.py
(Python 3.6) graphs morphological features versus diameter,

2https://github.com/neurord/ShapeShifter
3https://bitbucket.org/btorb/btmorph.git
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and uses statsmodels4 to perform statistical analysis on extracted
features to create predictive equations for node diameter.
shape_shifter.py (Python 3.6) utilizes predictive equations
to create new morphologies with predicted diameters from
original morphologies. Individual neurons, both original
and with predicted diameters, are simulated using Moose
(see text footnote 1). The Python scripts used for the Moose
simulations are available in the ShapeShifter respository.

RESULTS

Morphological Features Describe Node
Diameter
In order to derive equations to predict diameter, we identified
three cell types consisting of six separate archives: hippocampal
pyramidal (Chitwood et al., 1999; Groen et al., 2014), cerebellar
Purkinje (Chen et al., 2013; Nedelescu et al., 2018), and striatal
SPNs (Chen et al., 2014; Goodliffe et al., 2018; Table 1).
From 121,544 morphologies available on NeuroMorpho.org (ver.
7.9), metadata search parameters identified 3,463 morphologies
(2.85%) from selected criteria. Archive exclusion further
decreased the number to 35 potential archives totaling 790
morphologies before visual inspection of morphology. Multiple
morphological features were calculated for each node in archive
morphologies for assessment in predicting node diameter
(Table 2 and Figure 1).

4https://statsmodels.org

Parent Diameter as Predictor of
Diameter
We first evaluated the correlation of PD to diameter, because
dendrites tend to decrease slowly in diameter. Figure 2 shows that
PD is moderately correlated to diameter for all cell types tested.
Analysis of hippocampal CA3 and CA1 pyramidal archives
revealed that both are moderately correlated to PD (Figure 2),
with almost identical regression lines, despite having different
distributions of features (Supplementary Figures 1,2). Based on
this similarity, we combined these two data sets into a single
hippocampal pyramidal cell group for the remainder of analyses.
Accounting for all dendritic nodes in the morphology, apical
(R2 = 0.899, 0.917) and basal (R2 = 0.486, 0.261) dendrites of
hippocampal pyramidal cells, for the Jaffe and Groen archives,
had moderate correlation to PD, as did striatal SPNs (R2 = 0.320,
0.308, 0.250), for the Lai, LuebkeD1, and LuebkeD2 archives.
Cerebellar Purkinje cells (R2 = 0.186, 0.611) for the Dusart and
Nedelescu archives have diverse correlations to PD. Moderate
correlation to PD indicates this feature as a potential predictor
of node diameter across different cell types, particularly for apical
dendrites of hippocampal pyramidal cells. To further ascertain
whether other features could be used to predict diameter
independent of archive, we calculated the correlation between
diameter and features for each archive, and distribution of feature
values for each archive. Table 3 shows that, for the striatum
and hippocampus, the correlation of diameter to other features
are similar across archives, and Supplementary Figure 3 shows
that the feature distributions are similar for the striatal archives.

FIGURE 2 | Parent Diameter predicts diameter for multiple neuron types. R2 as Pearson’s coefficient of determination for each archive. (A–D) A majority of nodes
display a linear relationship between Parent Diameter and diameter, with a subset of nodes with large Parent Diameter departing from the relationship. (A) Apical
dendrites of hippocampal pyramidal morphologies, with inset near origin showing the discretization of diameter values; Groen (CA1) with 130,070 nodes, Jaffe (CA3)
with 8,483 nodes. (B) Basal dendrites of hippocampal pyramidal morphologies, with inset near origin; Groen (CA1) with 41,953 nodes, Jaffe (CA3) with 6,024 nodes.
(C) Cerebellar Purkinje morphologies; Dusart with 19,664 nodes, Nedelescu with 46,748 nodes. (D) Striatal SPN morphologies; Luebke D1R (LuebkeD1) with
25,954 nodes, Luebke D2R (LuebkeD2) with 26,068 nodes, and Lai with 58,629 nodes.
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TABLE 3 | Correlation between morphological features and diameter by archive.

Cerebellum Striatum Hippocampus, basal Hippocampus, apical

Correlation to diameter Dusart Nedelescu Lai Luebke D1 Luebke D2 Groen Jaffe Groen Jaffe

Path distance 0.0694 −0.2173 0.2685 0.1842 0.1849 −0.4434 −0.368 −0.2275 −0.3439

Path to end 0.3211 0.7217 0.3457 0.0985 0.0997 0.4301 0.3929 0.8248 0.625

Total dendritic length 0.3418 0.6729 0.4931 0.1479 0.1769 0.5557 0.6892 0.8301 0.785

Node order 0.0828 0.3241 0.0649 −0.1032 −0.1549 −0.4662 −0.2508 −0.0759 −0.3589

The difference in R2 between cerebellum archives averages
∼0.3 across features and the diameter distributions are quite
different (Supplementary Figure 4), suggesting that additional
archives may be needed to create equations that will generalize
across novel archives. The cause of this disparity is unclear, but
could include mouse strain, age, sex, cerebellar subregion, slice
thickness, staining method, or other aspects not recorded by
NeuroMorpho.org.

Diameter Predictions Differ With Node
Classification
We subdivided the nodes into different classes to account for
the 3/2 power rule for branch points. Thus, one node type is
branching children, which directly stem from branch nodes. In
addition, we noticed a small subset of nodes with large PD,
which departed from the main linear relationship to PD for
all cell types (Figure 2). The large PD of these nodes suggests
that these nodes may be the initial dendritic nodes that directly

stem from the soma. Thus another node type is initial node.
The remaining nodes are the third class: continuing nodes. We
reevaluated the correlation between PD and Diameter separately
for the three classes of nodes: initial, branching children, or
continuing nodes. Figure 3 verifies that initial nodes are indeed
the nodes with large PD, and these nodes do not exhibit a linear
relationship. On the other hand, the branching children and
continuing nodes retain similar linear relationship and result
in moderate to strong correlation with PD (Figure 3). Note
that the correlation between Diameter and PD for branching
children was not improved by raising these values to the 3/2
power. Due to the difference in node type, all subsequent analyses
were performed separately for initial, branching children, and
continuing nodes.

Figure 3 shows that diameter of continuing nodes is highly
correlated to PD across cell types. Strong correlation in apical
dendrites (R2 = 0.998) and basal dendrites (R2 = 0.993)
of hippocampal pyramidal cells, cerebellar Purkinje cells

FIGURE 3 | Relationship of Parent Diameter to diameter differs for Initial nodes. Note that the data points are identical to those in Figure 2, but color coded
according to node type instead of archive. R2 as Pearson’s coefficient of determination for each node type. (A–D) Nodes separated into initial, branching children
(BC), and continuing nodes. Branching children and continuing nodes demonstrate strong linear relationship between Parent Diameter and diameter, which is lacking
for initial nodes. Node classification explained in Figure 1. (A) Apical dendrites of hippocampal pyramidal morphologies have 138,536 continuing nodes, 17 initial
nodes, and 1,510 branching children nodes. (B) Basal dendrites of hippocampal pyramidal morphologies have 47,899 continuing nodes, 78 initial nodes, and 776
branching children nodes. (C) Cerebellar Purkinje morphologies have 66,376 continuing nodes, 36 initial nodes, and 13,200 branching children nodes. (D) Striatal
SPN morphologies have 110,455 continuing nodes, 196 initial nodes, and 1,784 branching children nodes.
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FIGURE 4 | Parent Diameter predicts diameter for continuing nodes. R2 as Pearson’s coefficient of determination. TL, Total Dendritic Length Rooted at Node; TD,
Terminal Degree; IB, Initial Branch Order; PD, Parent Diameter; PS, Path from Soma; LP, Longest Path to Terminal End; and D, Diameter. Morphology feature
descriptions from Table 2. (A–D) Diameter of continuing nodes have strong correlation with PD across morphologies. Apical dendrites of hippocampal pyramidal
cells have multiple features with moderate to strong correlation with diameter. Remaining cell types have low correlation with other features.

(R2 = 0.800), and striatal SPNs (R2 = 0.788) indicate PD as
a strong predictor of continuing node diameter (Figure 4).
No additional features improved the prediction of diameter for
continuing nodes. We found node diameter was equal to PD for
the vast majority of continuing nodes in hippocampal pyramidal
cells, consisting of 98.2% of apical dendrites, and 97.3% of basal
dendrites. Node diameter was equal to PD for a moderate number
of continuing nodes in cerebellar Purkinje cells (51.2%) and
striatal SPNs (65.9%).

Branching children require additional morphological features
in combination with PD to predict their diameter. Branching
children demonstrate lower correlation to PD than observed
with continuing nodes (Figure 5). Moderate correlation in
apical dendrites (R2 = 0.471) and basal dendrites (R2 = 0.759)
of hippocampal pyramidal cells, cerebellar Purkinje cells
(R2 = 0.538), and striatal SPNs (R2 = 0.369) indicate PD is
still a predictor of diameter of branching children (Figure 5).

Because other features were correlated with diameter, we used
multiple linear regression to select additional features that
were both predictive of diameter and improved the overall
model adjusted R2. When combined with PD, the OLS model
produced a good fit by including Longest Path to Terminal
End for apical dendrites of hippocampal pyramidal cells (adj
R2 = 0.915), Path to Soma for basal dendrites of hippocampal
pyramidal cells (adj R2 = 0.934) and Total Dendritic Length
for cerebellar Purkinje cells (adj R2 = 0.883). We tested
whether using the non-linear 3/2 power rule could improve
the correlations for branching children. The correlation between
PD raised to the 1.5 and the sum of child diameters raised
to the 1.5 was quite high (between 0.64 and 0.93 for all but
the Groen Apical dendrites). However, the predictive model
was not improved by using the 3/2 power rule because the
model must predict individual child diameters, not the sum
of child diameters. Graphs of diameter versus the selected
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FIGURE 5 | Branching Children require Parent Diameter in combination with other features to predict diameter. R2 as Pearson’s coefficient of determination. (A–D)
Diameter of branching children have moderate to strong correlation with Parent Diameter (PD) across morphologies. Better model fits to diameter were obtained by
adding select features with PD: Longest Path to Terminal End (LP) for apical dendrites of hippocampal pyramidal cells, Path to Soma (PS) for basal dendrites of
hippocampal pyramidal cells, and Total Dendritic Length (TL) for cerebellar Purkinje cells.

feature were used to visually verify the lack of other non-
linear relationships between feature values and diameters for
branching children.

Initial nodes also require a combination of morphological
features to predict diameter. Diameter of apical dendrites
(R2 = 0.310) and basal dendrites (R2 = 0.499) of hippocampal
pyramidal cells have lower correlation to PD (soma diameter),
with even lower correlation in cerebellar Purkinje cells
(R2 = 0.068) and striatal SPNs (R2 = 0.002; Figure 6). We
used multiple linear regression to select features predictive
of diameter. The OLS model indicated moderate to good fit
by using PD with Longest Path to Terminal End for apical
dendrites of hippocampal pyramidal cells (adj R2 = 0.722),
and PD with Path to Soma for basal dendrites of hippocampal
pyramidal cells (adj R2 = 0.725). Initial nodes of striatal
SPNs did not use PD and instead the best model used

Total Dendritic Length and Longest Path to Terminal End
(adj R2 = 0.813). The best model for cerebellum used PD
alone (adj R2 = 0.888). Graphs of diameter versus feature
value were used to visually verify the lack of non-linear
relationships between the feature values and diameters
for initial nodes.

Original Initial Diameters Improve
Hippocampal Pyramidal Predictions
To evaluate the ability to predict diameter, we separated
morphologies into a training set (Train), to derive model
equations, and a testing set (Test), to predict diameter
independent of morphologies used to derive the predictive
equations. The model adjusted R2 (adj R2) in Table 4 shows
goodness of fit for the training set morphologies. The equations
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FIGURE 6 | Initial Nodes require multiple features to predict diameter. R2 as Pearson’s coefficient of determination. (A–D) Diameter of initial nodes have moderate
correlation with Parent Diameter (PD) for apical and basal dendrites of hippocampal pyramidal cells, and low correlation for cerebellar Purkinje cells and striatal
SPNs. Stronger correlation to diameter for hippocampal dendrites was obtained by adding select features with PD. Diameter was correlated with Longest Path to
Terminal End (LP) for apical dendrites of hippocampal pyramidal cells, and Path to Soma (PS) for basal dendrites of hippocampal pyramidal cells. Diameter was
correlated with Total Dendritic Length (TL), but not PD, for striatal SPNs.

in Table 4 solely require the soma diameter and other
morphological features (Table 2) to predict diameter across
morphology, and do not rely on original dendritic diameters. The
correlation between original and predicted diameter is shown in
Figure 7.

Predicted diameters of testing set moderately match original
diameters of apical dendrites (R2 = 0.69) and basal dendrites
of hippocampal pyramidal cells (R2 = 0.44) and have low
correlation for cerebellar Purkinje cells (R2 = 0.27) and striatal
SPNs (R2 = 0.1; Figure 7). Pearson’s coefficient of determination
R2 is calculated for each dendritic tree, and then averaged to
obtain a mean R2 separately for training set and testing set. As
the prediction of diameter for initial nodes is weak compared
to branch children and continuing nodes, we used the original
diameter of initial nodes (original initial diameter) to predict new

diameters for remaining branch children and continuing nodes.
The predictions using the original initial diameters (Test + In.
in Figure 7) had greater correlation to original diameters for
apical dendrites (R2 = 0.75) and basal dendrites (R2 = 0.51) of
hippocampal pyramidal cells. Using the original initial diameters
did not significantly improve correlation to original diameters for
cerebellar Purkinje cells (R2 = 0.26) or striatal SPNs (R2 = 0.09;
Figure 7).

We investigated two sources that may contribute to the
discrepancy between correlation with predicted diameters and
the original correlations. We considered whether a difference
between archives could cause prediction errors by repeating
the model fits separately for individual archives. The fit to
one of the striatal archives was improved, while the fits
for all the other archives were either worse, or similar.
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TABLE 4 | Predictive diameter equations.

Initial nodes Branch children Continuing nodes

Hippocampal pyramidal Apical dendrites 0.0755 × PD + 0.0056 × LP
(adj R2 = 0.7216)

0.2598 × PD + 0.0034 × LP
(adj R2 = 0.9151)

0.9968 × PD (adj R2 = 0.9993)

Hippocampal pyramidal Basal dendrites −0.5964 × PD + 0.3535 × PS
(adj R2 = 0.7246)

0.6351 × PD + 0.0033 × PS
(adj R2 = 0.9340)

0.9926 × PD (adj R2 = 0.9984)

Cerebellar Purkinje (apical like) 0.2331 × PD (adj R2 = 0.8879) 0.6842 × PD + 0.6842 × TL
(adj R2 = 0.8934)

1.0121 × PD
(adj R2 = 0.9555)

Striatal SPN (basal like) 0.00114 × TL + 0.00713 × LP
(adj R2 = 0.8126)

0.921 × PD
(adj R2 = 0.915)

0.9834 × PD (adj R2 = 0.9753)

Striatal SPN, Lai 0.250 × TD (adj R2 = 0.786) 0.861 × PD
(adj R2 = 0.967)

0.997 × PD
(adj R2 = 0.999)

Striatal SPN, Luebke 0.003 × TL
(adj R2 = 0.75)

0.934 × PD
(adj R2 = 0.907)

0.976 × PD
(adj R2 = 0.962)

TL, Total Dendritic Length Rooted at Node; PD, Parent Diameter; PS, Path from Soma; and LP, Longest Path to Terminal End. Morphology feature acronyms from Table 2.
adj R2 as measure of training set fit of predicted diameters to original diameters across morphologies.

FIGURE 7 | Predicted Diameters match original Diameters for select archives. (A–D) Morphologies were separated into a training set (Train) to create predictive
equations and verified with separate testing set (Test). As initial nodes were not predicted as well as branching children or continuing nodes, we created an additional
set of morphologies from the test set that used the original diameter of initial nodes and then predicted diameter for remaining branching children and continuing
nodes (Test + In.). R2 is the averaged Pearson’s coefficient of determination R2 calculated across morphologies in either the training or testing set. Predictions which
include original initial diameters have higher correlation with original diameters for apical dendrites (R2 = 0.75) and basal dendrites (R2 = 0.51) of hippocampal
pyramidal cells, though did not improve correlation for cerebellar Purkinje cells (R2 = 0.26) or striatal SPNs (R2 = 0.09). (A, B) Apical and basal dendrites of
hippocampal pyramidal with 8 in the training set and 9 in the testing set. (C) Cerebellar Purkinje morphologies with 18 in the training set and 18 in the testing set.
(D) Striatal SPN morphologies with 19 in the training set and 19 in the testing set.

The parameters for the Lai archive alone and the two Luebke
archives together show that, for branch children and continuing
nodes, the parameter values for the three archives together
are between the parameter values for the separated archives.
For the initial nodes, different features were used, thus the

parameters cannot be compared. Then we evaluated the auto-
correlation for each archive. The autocorrelation differs from
the correlations shown in Figures 2, 3 in that it evaluates
the correlation between the diameters of nodes separated by
multiple nodes. Figure 8 shows that the autocorrelation decay
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FIGURE 8 | Autocorrelation functions illustrate why predictions of diameter are better for some dendrites. In each archive, the autocorrelation was averaged across
morphologies to reduce noise, and then the average autocorrelation was fit to a double exponential decay. (A) Hippocampal apical dendrites, (B) Hippocampal basal
dendrites, (C) Purkinje dendrites, (D) Striatal dendrites. The smaller space constant, λ1, of hippocampal apical dendrites is larger than that of other dendrites. The
larger space constant, λ2, of both apical and basal hippocampal dendrites is larger than that of striatal and cerebellar dendrites.

TABLE 5 | Passive response for select archive morphologies in test set.

Test set Independent morphologies

Passive response Hippocampal CA1
pyramidal (NMO_35137)

Cerebellar Purkinje
(NMO_10073)

Striatal SPN
(NMO_33253)

Hippocampal CA1
pyramidal, golding

(NMO_00886)

Striatal SPN, Lindroos
(NMO_08390)

Original τ1, τ2 (ms) 21.0, 1.57 21.3, 1.99 21.0, 2.13 23.1, 1.76 15.8, 1.50

Predict τ1, τ2 (ratio) 0.042, 0.035 0.127, 0.025 0.061, 0.117 0.092, 0.171 0.333, 0.081

Predict + In. τ1, τ2 (ratio) 0.037, 0.006 0.193, 0.173 0.064, 0.018 0.120, 0.013 0.084, 0.093

2.0 Diameter τ1, τ2 (ratio) – – – 0.225, 0.102 0.094, 0.425

Original1V (mV) 1.16 2.21 3.07 2.17 1.03

Predict1V (ratio) 0.020 0.111 0.671 0.626 0.005

Predict + In.1V (ratio) 0.189 0.470 0.493 0.243 0.354

2.0 Diameter1V (ratio) – – – 0.519 0.586

Passive response was calculated for time constant (τ) and steady state (1V) for original, predicted, and predictions including original initial diameter (Predict + In.)
for selected morphologies (Figure 9). Passive response for morphologies independent of predictive equations (Figure 11) was determined additionally for identical
diameter (2.0 Diameter). Original morphology for the Striatal SPN morphology NMO_08390 used predicted diameters from previously reported model equations
(Lindroos et al., 2018).

constants are larger for hippocampal apical dendrites than for
other dendrites, and smallest for the Luebke archives. Since
the goal is to predict all diameters, starting from the soma (or
from the initial nodes), the fast decay of the autocorrelation
(smaller space constant is worse) together with the maximum
correlations to diameter from Figures 4, 5 (larger is better)
jointly determine the quality of the predictions. In summary,
predicted diameters are moderately to strongly correlated with
original diameters of hippocampal pyramidal cells and cerebellar
Purkinje cells, but do not capture diameter variations of
striatal SPNs as well. However, a more functional test of
diameter predictions is to simulate the membrane potential
response of neurons, as the purpose of predicting diameter is
to expand the number of morphologies that could be used in
model simulations.

Predictions With Original Initial
Diameters Improve Simulation Passive
Response
To further evaluate our predictive diameter equations, we
simulated neuron morphologies with predicted and original
diameters from the testing set (Table 5 and Figure 9). Simulation
of the hippocampal CA1 pyramidal cell (NMO_35137) and
the cerebellar Purkinje neuron demonstrates that the passive
response of predicted diameters has similar time constants, τ,
and steady state, 1V, to the original morphology. Predictions
using the original initial diameters did not improve τ and 1V
for these neurons (Figure 9 and Table 5). The striatal SPN
(NMO_33253) simulation had similar τ, but quite different 1V,
and the predictions using original initial diameters improved
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FIGURE 9 | Passive response is similar when predicted diameters are correlated with original diameters. (A–C) Simulation strategy, with location of current injection
and voltage recording at the soma compartment (left panel); 1 ms (center) and 800 ms (right) current injection. (A) Hippocampal CA1 pyramidal cell (NMO_35137),
with apical and basal dendrites. (B) Cerebellar Purkinje cell (NMO_10073). (C) Striatal SPN (NMO_33253). Normalized difference (ratio) was calculated for both time
constants (τ1, τ2) and steady state (1V) to compare modified morphology response to original response. Simulation parameters provided in Methods. Simulation of
predictions were quite similar to original morphology for Hippocampal CA1 pyramidal and Cerebellar Purkinje cells, and were not improved by using original initial
diameters. Simulation of predictions with original initial diameters improved passive response for the striatal SPN.

passive response 1V (Figure 9). We also simulated the response
to synaptic input, measuring both the dendritic response and the
somatic response. Figure 10 shows that the synaptic response
of predicted diameters was similar to that of original diameters
for both hippocampal and cerebellar neurons, especially in
the dendrite. The synaptic response of the striatal SPN was
greatly improved by using the original initial diameter, but the
response was still quite different from the original morphology.
In summary, simulation of the passive response to current
injection and synaptic input shows a good match to the original
morphology when the predicted diameters are moderately
correlated with the original diameters.

Simulation of Independent Morphologies
Extend Utility of Predictive Equations
To further assess the utility of predictive equations, we simulated
two additional morphologies from distinct NeuroMorpho.org
archives not previously used in predictive equations (Table 5
and Figure 11). We also created comparative morphologies
with identical dendritic diameter (2 µm) across all nodes,
which is the standard corrective procedure if morphologies
are submitted to NeuroMorpho.org without explicit diameter.

For the hippocampal CA1 pyramidal cell (NMO_00886,
Golding et al., 2005) the passive response of the predicted
diameter morphology had similar time constant, τ, though
different steady state, 1V. Predictions including original initial
diameters did not improve τ, though greatly improved 1V.
The striatal SPN (NMO_08390, Lindroos et al., 2018) was
simulated to compare our predictive diameter equations to
previously reported predictive diameter equations. Simulation
reveals that our predictive equations produce a similar τ

and nearly identical 1V. Predictions using original initial
diameters improved τ, but not 1V. The original striatal SPN
(NMO_08390) had diameters of 2.0 µm; thus to provide a
measure of how significant these differences are, we simulated
the striatal SPN (and the hippocampal CA1 pyramidal cell)
using diameters of 2.0 µm. Predicted diameter morphologies
better resemble passive response to original morphologies
than morphologies with constant dendritic diameter (Table 5
and Figure 11). We also simulated the response to synaptic
input, measuring both the dendritic response and the somatic
response. Figure 11 shows that the synaptic response using the
predicted morphologies is much better than using the 2.0 µm
diameters. Using the original initial diameter improved the
response for the hippocampal neurons, but not for the striatal
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FIGURE 10 | Passive response to synaptic input. (A) Hippocampal CA1 pyramidal cell (NMO_35137), with apical and basal dendrites, compartment 32_3. 1V
ratio = 0.009 for dendritic response. (B) Cerebellar Purkinje cell (NMO_10073), compartment 12_3. 1V ratio = 0.082 for dendritic response (C) Striatal SPN
(NMO_33253), compartment 19_3. 1V ratio = 0.639 for dendritic response, and improved to 0.427 using original initial diameters.

neurons. These results suggest that predicted diameters from
our model equations are not limited to the select archives used
to derive model equations, and may improve utility of available
morphologies on NeuroMorpho.org.

DISCUSSION

We used a combination of morphological features to create
predictive diameter equations for multiple neuron cell types:
hippocampal pyramidal, cerebellar Purkinje, and striatal SPNs.
Separate model equations were created for each of three types
of dendritic nodes: initial, branching children, and continuing
nodes, to predict diameter from morphological features.
Dendritic diameter predictions require PD across cell types,
a morphology feature used in a previous predictive diameter
model (Lindroos et al., 2018). Additional features, which varied
between different cell types, were used to predict diameter
for initial nodes and branching children. Predicted diameters
of hippocampal pyramidal cells and cerebellar Purkinje cells
correlate with original diameters, and simulations reveal similar

passive response in these cell types, with improved predictions
by including original initial node diameters for striatal SPNs.
Simulations of additional morphologies that were independent
of the training and testing sets suggest the predictive equations
can extend utility to other NeuroMorpho.org morphologies,
supplement morphologies without dendritic diameter, and
improve model simulations with realistic dendritic diameter.

Further simulation is required to completely assess the
response of neurons with predicted diameters. Membrane ion
channels modify the response of neurons to synaptic inputs
and current injection (Golding et al., 2005; Shah et al., 2010;
Debanne and Russier, 2019). Simulations show that variations
in channel conductance (Alonso and Marder, 2019) and
neuromodulation (Marder, 2012; Marder et al., 2014) can
produce drastic differences in neuron activity. This suggests
that channel conductance can at least partially compensate for
diameter inaccuracies in physiological simulations. We did not
present simulations of neurons with active channels to avoid
obscuring the role of diameter in controlling passive responses.

Our research continues a long line of studies, beginning
with Rall (1962) trying to understand how neuron shape
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FIGURE 11 | Passive Response with predicted diameters + original initial diameters is similar to that of original diameters for morphologies in validation data.
Normalized difference (ratio) was calculated for time constants (τ) and steady state (1V) to compare predicted morphology response to original morphology
response. (A) Hippocampal CA1 pyramidal cell (NMO_00886), with apical and basal dendrites, synaptic input to compartment 31_4. (B) Striatal SPN (NMO_08390),
synaptic input to compartment 35_3 (A1, B1) response to 800 ms somatic current injection. 1V ratio = 0.24 for hippocampus and 0.35 for striatum for
morphologies with original initial diameter (A2, B2) response to 1 ms somatic current injection. τ1 ratio = 0.12, τ2 ratio = 0.01, for hippocampal neuron; τ1

ratio = 0.08, τ2 ratio 0.09 for striatal SPN for morphologies with original initial diameter. (A3, B3) dendritic response to 10 pS. 1V ratio = 0.14 for hippocampus and
0.33 for striatum for morphologies with original initial diameter. (A4, B4) somatic response to 10 pS conductance synaptic input to the dendrite.
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controls activity, as well as investigating what controls neuron
shape. Previous studies used morphological features to predict
neural branching in growth models (Brown et al., 2008;
Donohue and Ascoli, 2008). Cellular processes that control
branching may similarly control dendritic diameter. During
neurite growth, high tubulin concentration at the soma and
high levels of active transport maintain the structural integrity
of the growth cone (Hjorth et al., 2014; Mironov et al., 2016;
Lanoue and Cooper, 2019). Also, actin is essential to establish,
extend, and direct the growth cone toward pre-determined
targets (Lanoue and Cooper, 2019). As many neurites grow
concurrently, local competition of tubulin and other cytoskeletal
components at the soma can selectively increase or decrease
dendritic diameter and path length of select branches (Hjorth
et al., 2014). The correlation between diameter and path length
or branch order may stem from diameter limiting the transport
rate of actin and other structural proteins. Additionally, tapering
of distal dendrites decreases cellular energy requirements as well
as optimizes current transfer along the entire dendritic path
(Cuntz et al., 2007; Bird and Cuntz, 2016). Similarly, the extent
of dendritic branching can also decrease energy requirements
by lowering path length to all terminal ends (Cuntz et al.,
2010). Capturing these energy requirements or the addition of
microtubules and actin to NeuroMorpho.org (Nanda et al., 2018,
2020) may improve predictions of dendritic diameter.

A possible limitation in the predictive equations is the use
of linear regression; however, several analyses suggest that this
was not a limiting factor. We used three-dimensional plots to
graphically analyze relationship of diameter to morphological
features. We assessed whether using the 3/2 power rule at
branch children (Rall, 1962) or whether other non-linear feature
transformations (e.g., logarithm, power law) would improve
predictions of diameter. These extended feature analyses did
not improve correlation of features to dendritic diameter
for either initial, branching children, or continuing nodes.
In summary, multiple linear regression using a combination
of features was found to better predict diameter than the
non-linear or transformed features. Nonetheless, other non-
linear transformations could improve diameter predictions;
however, there currently lacks a systematic method to test all
possible non-linear relationships or data transformations without
considerable involvement. Methods exist to automate non-
linear data transformations, such as Artificial or Deep Neural
Networks; however, a difficulty remains with interpretation of
the mechanisms behind these relationships (Tavallali et al.,
2017). Machine learning to automate feature creation (feature
engineering) has provided novel insight to proteomics (Ofer and
Linial, 2015; Sumonja et al., 2019) and brain connectomics (Pu
et al., 2015), suggesting that these approaches may help with
predicting dendritic diameter.

The process we utilized to derive predictive equations is not
influenced by the accuracy of the dendritic diameters; however,
the parameters of the predictive equations are controlled by
the diameter values, which may be biased by several factors.
One factor is using light microscopy for reconstructions. Light
microscopy is limited by light diffraction to a resolution of
0.2 µm (Lu, 2011); thus, dendritic diameter, especially for thin

processes, may be over-estimated due to the resolution limit of
light microscopy. For example, comparison of the CA1 neuron
diameters with electron microscopy diameters (Megias et al.,
2001) suggests that the diameter of the thin processes in distal
radiatum and lacunosum-moleculare are a bit too large. In
addition, the resolution limit of light microscopy may account
for the discretized node diameter and the observation that many
nodes have diameter equal to PD across our archive morphologies
(as shown in insets of Figure 2). A second factor is shrinkage
caused by tissue fixation, especially in the z direction. Other
considerations with light microscopy such as microscope optics
and cell mounting, including magnification and tissue depth,
can influence perception of dendritic diameter and diameter-
dependent features when tracing neurons (Scorcioni et al., 2004).
Thus, alternative imaging techniques are used to overcome
current limitations in light microscopy. Electron microscopy can
reveal cell ultrastructure to a resolution of 2–4 nm (Lu, 2011) for
various brain regions (FitzGibbon and Nestorovski, 2013; Firmin
et al., 2014; Liewald et al., 2014), though its utility for large scale
neuron reconstructions is limited by acquisition and processing
speed of imaging data (Lu, 2011; Silvestri et al., 2013). Newer
methods, such as super-resolution imaging (e.g., Stimulated
Emission Depletion), can reveal small changes in neural diameter
(Chéreau et al., 2017) to a theoretical resolution of 10 nm (Huszka
and Gijs, 2019). Another possibility is correlative light electron
microscopy, which may be able to provide high resolution
diameter estimates of the same neurons being reconstructed
(Begemann and Galic, 2016). In the future, applying our method
to complete morphologies reconstructed with these methods may
improve the predictive equations.

Future extensions to our method could involve integrating
diameters measured with newer microscopy methods as well as
deriving additional features, e.g., from imaging of cytoskeletal
components. Another possibility is to further subdivide dendrites
by type of node, e.g., including terminal nodes or branch
parents, or according to their location, e.g., within layers in
the cortex or hippocampus, because different rules may govern
the growth of dendrites in different locations. This may require
changes to the reconstruction software, which currently classifies
processes into only four classes: soma, axon, apical dendrite,
and basal dendrite. A simpler solution, with low processing
requirements and using current imaging techniques, would be for
reconstructions to include initial node diameters, and then utilize
predictive equations to estimate remaining branching children
and continuing nodes in the morphology. Providing initial
node diameter is practical with standard imaging techniques as
initial nodes are physically larger and proximal to the soma
in contrast to thin, tapering, and distant dendritic processes.
Though manual processing and reconstruction of neuronal
morphology remains necessary, predictive equations can provide
an alternative method to supplement realistic diameter values and
shorten image processing needs using available morphology data.
Another approach could be to use electron microscopy or super-
resolution imaging of “representative” dendrites from different
neuron classes, to derive general equations describing dendritic
tapering of continuing nodes which then could be applied
to NeuroMorpho reconstructions. These predictive equations
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would help supplement dendritic diameters that are difficult
to capture due to small size, and extend the utility of neuron
reconstructions for use in physiology simulations. In theory, our
approach is applicable to axons. The predictions of diameter for
continuing nodes likely would be different, and possibly better, as
axons are not known to taper. On the other hand, the diameters
of axons tend to be small, making it difficult to find accurate
diameter estimations from light microscopy reconstructions.
Ideally, predictive equations could utilize spatial aspects captured
by features of original morphology and supplement dendritic
diameters across archives within neuron cell types, improving
simulations with realistic dendritic diameter for many cell types.

DATA AVAILABILITY STATEMENT

The datasets analyzed for this study can be found in http://
neuromorpho.org/. The neurons can be downloaded using the
archive name in Table 1 entered into metadata search by archive.
The list of swc files used is provided at http://github.com/
neurord/ShapeShifter.

AUTHOR CONTRIBUTIONS

JR: morphology selection and analysis, modeling software
development and analysis, model simulation and analysis, and

manuscript preparation. KB: modeling software development
and analysis, model simulation, and manuscript preparation.
Both authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported through the joint NIH-NSF CRCNS
program through NIDA grant R01DA038890 and NIAAA
grant R01AA16022.

ACKNOWLEDGMENTS

We would like to thank Alexander Kozlov and Robert Lindroos
for their initial advice with diameter predictions, and Zhi Cheng
Wu for contributing to morphology selection and modeling
software development.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2021.666695/full#supplementary-material

REFERENCES
Alonso, L. M., and Marder, E. (2019). Visualization of currents in neural models

with similar behavior and different conductance densities. Elife 8:42722. doi:
10.7554/eLife.42722

Anwar, H., Roome, C. J., Nedelescu, H., Chen, W., Kuhn, B., and De Schutter, E.
(2014). Dendritic diameters affect the spatial variability of intracellular calcium
dynamics in computer models. Front. Cell. Neurosci. 8:1–14. doi: 10.3389/fncel.
2014.00168

Ascoli, G. A. (2015). Sharing Neuron Data: Carrots, Sticks, and Digital Records.
PLoS Biol. 13:10. doi: 10.1371/journal.pbio.1002275

Ascoli, G. A., Maraver, P., Nanda, S., Polavaram, S., and Armañanzas, R. (2017).
Win-win data sharing in neuroscience. Nat. Methods 14:112. doi: 10.1038/
nmeth.4152

Begemann, I., and Galic, M. (2016). Correlative light electron microscopy:
Connecting synaptic structure and function. Front. Synaptic Neurosci. 8:28.
doi: 10.3389/fnsyn.2016.00028

Bird, A. D., and Cuntz, H. (2016). Optimal Current Transfer in Dendrites. PLoS
Comput. Biol. 12:e1004897. doi: 10.1371/journal.pcbi.1004897

Brown, K. M., Gillette, T. A., and Ascoli, G. A. (2008). Quantifying neuronal size:
Summing up trees and splitting the branch difference. Semin. Cell Dev. Biol. 19,
485–493. doi: 10.1016/j.semcdb.2008.08.005

Chen, J. Y. (2010). A simulation study investigating the impact of dendritic
morphology and synaptic topology on neuronal firing patterns. Neural.
Comput. 22, 1086–1111. doi: 10.1162/neco.2009.11-08-913

Chen, X. R., Heck, N., Lohof, A. M., Rochefort, C., Morel, M. P., Wehrlé, R.,
et al. (2013). Mature purkinje cells require the retinoic acid-related orphan
receptor-α (rorα) to maintain climbing fiber mono-innervation and other adult
characteristics. J. Neurosci. 33, 9546–9562. doi: 10.1523/JNEUROSCI.2977-12.
2013

Chen, Y. W., Kao, H. Y., Min, M. Y., and Lai, W. S. (2014). A sex- and
region-specific role of Akt1 in the modulation of methamphetamine-induced
hyperlocomotion and striatal neuronal activity: Implications in schizophrenia
and methamphetamine-induced psychosis. Schizophr. Bull. 40, 388–398. doi:
10.1093/schbul/sbt031

Chéreau, R., Saraceno, G. E., Angibaud, J., Cattaert, D., and Nägerl, U. V.
(2017). Superresolution imaging reveals activity-dependent plasticity of axon
morphology linked to changes in action potential conduction velocity. Proc.
Natl. Acad. Sci. U S A. 114, 1401–1406. doi: 10.1073/pnas.1607541114

Chitwood, R. A., Hubbard, A., and Jaffe, D. B. (1999). Passive electrotonic
properties of rat hippocampal CA3 interneurones. J. Physiol. 515, 743–756.
doi: 10.1111/j.1469-7793.1999.743ab.x

Cullheim, S., Fleshman, J. W., Glenn, L. L., and Burke, R. E. (1987). Membrane area
and dendritic structure in type−identified triceps surae alpha motoneurons.
J. Comp. Neurol. 255, 68–81. doi: 10.1002/cne.902550106

Cuntz, H., Borst, A., and Segev, I. (2007). Optimization principles of dendritic
structure. Theor. Biol. Med. Model. 4:21. doi: 10.1186/1742-4682-4-21

Cuntz, H., Forstner, F., Borst, A., and Häusser, M. (2010). One rule to grow them
all: A general theory of neuronal branching and its practical application. PLoS
Comput. Biol. 6:e1000877. doi: 10.1371/journal.pcbi.1000877

D’Angelo, E., Solinas, S., Garrido, J., Casellato, C., Pedrocchi, A., Mapelli, J., et al.
(2013). Realistic modeling of neurons and networks: Towards brain simulation.
Funct. Neurol. 28, 153–166. doi: 10.11138/FNeur/2013.28.3.153

Debanne, D., and Russier, M. (2019). The contribution of ion channels in input-
output plasticity. Neurobiol. Learn. Mem. 166:107095. doi: 10.1016/j.nlm.2019.
107095

Donohue, D. E., and Ascoli, G. A. (2008). A comparative computer simulation
of dendritic morphology. PLoS Comput. Biol. 4:e1000089. doi: 10.1371/journal.
pcbi.1000089

Einevoll, G. T., Destexhe, A., Diesmann, M., Grün, S., Jirsa, V., de Kamps, M.,
et al. (2019). The Scientific Case for Brain Simulations. Neuron 102, 735–744.
doi: 10.1016/j.neuron.2019.03.027

Fan, X., and Markram, H. (2019). A brief history of simulation neuroscience. Front.
Neuroinform. 13:00032. doi: 10.3389/fninf.2019.00032

Firmin, L., Field, P., Maier, M. A., Kraskov, A., Kirkwood, P. A., Nakajima, K., et al.
(2014). Axon diameters and conduction velocities in the macaque pyramidal
tract. J. Neurophysiol. 112, 1229–1240. doi: 10.1152/jn.00720.2013

FitzGibbon, T., and Nestorovski, Z. (2013). Human intraretinal myelination: Axon
diameters and axon/myelin thickness ratios. Indian J. Ophthalmol. 61, 567–575.
doi: 10.4103/0301-4738.121075

Frontiers in Neuroinformatics | www.frontiersin.org 16 June 2021 | Volume 15 | Article 666695

http://neuromorpho.org/
http://neuromorpho.org/
http://github.com/neurord/ShapeShifter
http://github.com/neurord/ShapeShifter
https://www.frontiersin.org/articles/10.3389/fninf.2021.666695/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fninf.2021.666695/full#supplementary-material
https://doi.org/10.7554/eLife.42722
https://doi.org/10.7554/eLife.42722
https://doi.org/10.3389/fncel.2014.00168
https://doi.org/10.3389/fncel.2014.00168
https://doi.org/10.1371/journal.pbio.1002275
https://doi.org/10.1038/nmeth.4152
https://doi.org/10.1038/nmeth.4152
https://doi.org/10.3389/fnsyn.2016.00028
https://doi.org/10.1371/journal.pcbi.1004897
https://doi.org/10.1016/j.semcdb.2008.08.005
https://doi.org/10.1162/neco.2009.11-08-913
https://doi.org/10.1523/JNEUROSCI.2977-12.2013
https://doi.org/10.1523/JNEUROSCI.2977-12.2013
https://doi.org/10.1093/schbul/sbt031
https://doi.org/10.1093/schbul/sbt031
https://doi.org/10.1073/pnas.1607541114
https://doi.org/10.1111/j.1469-7793.1999.743ab.x
https://doi.org/10.1002/cne.902550106
https://doi.org/10.1186/1742-4682-4-21
https://doi.org/10.1371/journal.pcbi.1000877
https://doi.org/10.11138/FNeur/2013.28.3.153
https://doi.org/10.1016/j.nlm.2019.107095
https://doi.org/10.1016/j.nlm.2019.107095
https://doi.org/10.1371/journal.pcbi.1000089
https://doi.org/10.1371/journal.pcbi.1000089
https://doi.org/10.1016/j.neuron.2019.03.027
https://doi.org/10.3389/fninf.2019.00032
https://doi.org/10.1152/jn.00720.2013
https://doi.org/10.4103/0301-4738.121075
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-15-666695 May 28, 2021 Time: 17:15 # 17

Reed and Blackwell Predicting Neural Diameter From Morphology

Golding, N. L., Mickus, T. J., Katz, Y., Kath, W. L., and Spruston, N. (2005). Factors
mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites.
J.Physiol. 568, 69–82. doi: 10.1113/jphysiol.2005.086793

Goodliffe, J. W., Song, H., Rubakovic, A., Chang, W., Medalla, M., Weaver, C. M.,
et al. (2018). Differential changes to D1 and D2 medium spiny neurons in
the 12-month-old Q175+/- mouse model of Huntington’s Disease. PLoS One
13:e0200626. doi: 10.1371/journal.pone.0200626

Groen, M. R., Paulsen, O., Perez-Garci, E., Nevian, T., Wortel, J., Dekker, M. P.,
et al. (2014). Development of dendritic tonic GABAergic inhibition regulates
excitability and plasticity in CA1 pyramidal neurons. J.Neurophysiol. 112,
287–299. doi: 10.1152/jn.00066.2014

Hjorth, J. J. J., Van Pelt, J., Mansvelder, H. D., and Van Ooyen, A. (2014).
Competitive dynamics during resource-driven neurite outgrowth. PLoS One
9:e86741. doi: 10.1371/journal.pone.0086741

Huszka, G., and Gijs, M. A. M. (2019). Super-resolution optical imaging: A
comparison. Micro Nano Eng. 2, 7–28. doi: 10.1016/j.mne.2018.11.005

Koene, R. A., Tijms, B., Van Hees, P., Postma, F., De Ridder, A., Ramakers, G. J. A.,
et al. (2009). NETMORPH: A framework for the stochastic generation of large
scale neuronal networks with realistic neuron morphologies. Neuroinformatics
7, 195–210. doi: 10.1007/s12021-009-9052-3

Krichmar, J. L., Velasquez, D., and Ascoli, G. A. (2006). Effects of β-catenin on
dendritic morphology and simulated firing patterns in cultured hippocampal
neurons. Biol. Bull. 211, 31–43. doi: 10.2307/4134575

Kubota, Y., Karube, F., Nomura, M., Gulledge, A. T., Mochizuki, A., Schertel, A.,
et al. (2011). Conserved properties of dendritic trees in four cortical interneuron
subtypes. Sci. Rep. 1:sre00089. doi: 10.1038/srep00089

Lanoue, V., and Cooper, H. M. (2019). Branching mechanisms shaping dendrite
architecture. Dev. Biol. 451, 16–24. doi: 10.1016/j.ydbio.2018.12.005

Li, L., Gervasi, N., and Girault, J. A. (2015). Dendritic geometry shapes neuronal
cAMP signalling to the nucleus. Nat.Commun. 6:6319.

Liewald, D., Miller, R., Logothetis, N., Wagner, H. J., and Schüz, A. (2014).
Distribution of axon diameters in cortical white matter: an electron-
microscopic study on three human brains and a macaque. Biol. Cybern. 108:541.
doi: 10.1007/s00422-014-0626-2

Lindroos, R., Dorst, M. C., Du, K., Filipović, M., Keller, D., Ketzef, M., et al. (2018).
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