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ABSTRACT

Mining bacterial genomes for bacteriocins is a
challenging task due to the substantial structure
and sequence diversity, and generally small sizes,
of these antimicrobial peptides. Major progress in
the research of antimicrobial peptides and the
ever-increasing quantities of genomic data, varying
from (un)finished genomes to meta-genomic data,
led us to develop the significantly improved
genome mining software BAGEL2, as a follow-up
of our previous BAGEL software. BAGEL2 identifies
putative bacteriocins on the basis of conserved
domains, physical properties and the presence of
biosynthesis, transport and immunity genes in
their genomic context. The software supports
parameter-free, class-specific mining and has
high-throughput capabilities. Besides building an
expert validated bacteriocin database, we describe
the development of novel Hidden Markov Models
(HMMs) and the interpretation of combinations of
HMMs via simple decision rules for prediction of
bacteriocin (sub-)classes. Furthermore, the genetic
context is automatically annotated based on (com-
binations of) PFAM domains and databases of
known context genes. The scoring system was
fine-tuned using expert knowledge on data derived
from screening all bacterial genomes currently
available at the NCBI. BAGEL2 is freely accessible
at http://bagel2.molgenrug.nl.

INTRODUCTION

Bacteriocins are ribosomally synthesized antimicrobial
peptides produced by bacteria. These compounds are of
high interest to researchers in biotechnology and
medicine, because of numerous (potential) applications
based on their potent antimicrobial activity. Next to ap-
plication as food preservatives (1), bacteriocins can be

used for the development of novel antibiotics (2).
Bacteriocin genes frequently have genes encoding
proteins involved in bacteriocin regulation, self-immunity,
transport and modification in their close genomic proxim-
ity. Discovery of new bacteriocins is shifting from classical
screening for activity towards in silico analysis of genomic
data. This is a challenging task due to the small size of
bacteriocins and the fact that small ORFs are often
omitted from annotations, especially when no homology
to known proteins is found. Thorough bacteriocin predic-
tion methods should therefore not only exploit homology
to known bacteriocins and motifs therein, but they should
also take into account the genomic context of the putative
bacteriocin. To ensure that no putative bacteriocins are
missed, an ORF calling procedure focusing on small
ORFs should be employed. The only automated tool for
discovery of bacteriocins until now is BAGEL (3), which
has been used successfully in several studies (4–6). Here,
we present the significantly improved BActeriocin
GEnome mining tooL 2 (BAGEL2; Supplementary
Table S1). Next to implementing current knowledge
from the rapidly advancing molecular research in bacteri-
ocins, the software now allows high-throughput screening
to cope with the ever-increasing size of genomic data sets.
This new feature of BAGEL2 enabled us to use data
derived from a large input data set (>1000 genomes) to
further optimize bacteriocin identification.

IMPLEMENTATION

Improvement of the software

Major improvements of BAGEL2 are the extended use of
Hidden Markov Models (HMMs) and of the manually
curated databases of known bacteriocins and context
genes (encoding proteins for modification, immunity/
transport and two component systems; 7–10).
Furthermore, regular expressions (Supplementary
Table S2) are used for improved recognition of bacteri-
ocins. An advanced classification algorithm has been im-
plemented that predicts sub-classes according to the
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updated classification scheme (1) (Table 1). Due to many
changes in BAGEL2 compared to the first version,
BAGEL (3), among which the possibility for
high-throughput screening, a new scoring algorithm has
been implemented. A schematic overview of the program
is presented in Figure 1. Finally, the web server now offers
the possibility to BLAST peptides against the bacteriocin
database and offers an improved ORF calling system.

Classification

One of the greatly improved features of BAGEL2 is the
(sub-)classification of putative bacteriocins and, thus, the
class-specific mining of genomes for bacteriocins. For
BAGEL2, the classification scheme proposed by Cotter
et al. (1) is implemented, with addition of the arguable
Class III (for complete coverage), which contains relative-
ly large antimicrobial proteins. Class I contains the
lantibiotics; sub-classification of this class is according to
Wiley et al. (11): IA, LanBC-modified; IB,
LanM-modified; and IC, LanL-modified (12). For identi-
fication of sub-class IC through context screening an
alignment of LanL was used to identify a motif for
LanL encoding genes. Class II bacteriocins are
sub-classified (A, B, C and D) according to Cotter et al.
(1). Classification of bacteriocins in BAGEL2 is based on
homology to known bacteriocins, presence of motifs,
context genes and properties related to the specific class.
BAGEL2 creates separate candidate lists for each class by
assigning only class-relevant points. The sub-class is pre-
dicted by a simple interpretation of sub-class-specific
features registered by BAGEL2.

Scoring algorithm

Eleven rules were implemented to add a specific weight
factor (Table 2) to each putative bacteriocin: (i) based
on a BLAST search against the bacteriocin database,
high homology to a known bacteriocin Class I or Class
II adds a weight factor, where a low homology adds half
the weight factor; (ii) for bacteriocin of Class III, one
threshold value is used; (iii) a match with the regular ex-
pression database; (iv) for each motif in the HMM
database a weight factor is added on the basis of specificity
and P-value cut-off in the HMM search (Supplementary
Table S3); (v) presence of a processing site at the proper
position in the bacteriocin; (vi) presence of cysteine in
combination with serine/threonine; (vii) properties:
iso-electric point, protein size and charged residues; (viii)
presence of a biosynthesis or immunity gene in the
genomic context on the basis of a BLAT hit in the
database; (ix) presence of an ABC transporter, histidine
kinase or a C39 type protease in the genomic context,
using HMM for function detecting; (x) presence of genes

for modification systems in the genomic context (see
Supplementary Data); (xi) highly unlikely candidates
(HUC) are masked using a BLAST search against the
HUC database (only for Class III). These rules result in
a score for each candidate bacteriocin. Candidates with
�1800 points (threshold value) are considered ‘putative
bacteriocins’, while candidates with a score below the
threshold value but with a score of �1000 are considered
‘interesting candidates’. The web server only displays the
members of the groups of putative bacteriocins and inter-
esting candidates.

Extended resources

New finished genomes are downloaded daily from NCBI.
Unfinished genome sequences were retrieved from NCBI
genome projects (ftp://ftp.ncbi.nih.gov/genbank/wgs/). To
collect microbial genomes, only a list was generated on the
NCBI website (www.ncbi.nlm.nih.gov/genomes/lproks
.cgi) to determine which genomes should be downloaded.
Subsequently, genomic data was downloaded selectively
with an FTP client. A collection of plasmid sequences
was downloaded from NCBI genomes by searching for
‘replication type:plasmid’ and limiting the results to bac-
terial data.

High-throughput screening

The BAGEL2 web server is designed for handling one
data file per run. For high-throughput screening of
multiple (unfinished) genomes, we use a local stand-alone
version of BAGEL2. The output can be either
tab-delimited text or html and is stored in a MySQL
database. A typical search for bacteriocin genes in all
genomes available at the NCBI takes 12–16 h on our
server.

Validation of BAGEL2

The software was validated by close examination of the
results obtained from screening all prokaryotic genomes
available at NCBI: 1140 genomes and 738 plasmids. This
resulted in 150 and 287 putative bacteriocins for Class I
and Class II, respectively. Examining the original genomic
annotation showed that 49% of the proteins identified by
BAGEL2 were already known as (putative) bacteriocins
and 48% were annotated as hypothetical proteins with
unknown function. A closer inspection of some of these
hypothetical proteins and their genomic contexts revealed
that these are indeed putative bacteriocins, based on our
expert knowledge. Also, BAGEL2 predicted the presence
of a Class I bacteriocin in Bacillus licheniformis ATCC
14580, locus tag BL05375, which were recently proven
to constitute the biologically active two component
lantibiotic lichenicidin (13). Of the putative bacteriocins
predicted by BAGEL2, 3% could be identified as false
as they had an annotation that was clearly not
bacteriocin-related. In the screen of 1140 genomes and
738 plasmids, 10 genes that were originally annotated as
specifying (putative) bacteriocins were only annotated as
interesting candidates by BAGEL2.

Table 1. Classification scheme used by BAGEL2

Class I lanthionine Class II non-lanthionine Class III

A LanBC modified A Pediocin-like Large proteins
B LanM modified B Two-component
C LanL modified C Cyclic peptides

D Miscellaneous
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System requirement and the web interface

BAGEL2 runs on a Linux platform (SentOS; http://www
.centos.org/) with Apache web server (version2.2),
MySQL server (version 5.1), PHP 5.0 (http://www.php.
net/), Perl 5.10 (http://www.perl.org/) and BioPerl 1.6.0
(http://www.bioperl.org/). Furthermore, the following
softwares were used: BLAST 2.2.9 (14); BLAT (15);
HMMsearch (HMMER3; http://hmmer.janelia.org/);
Glimmer v2.13 (16); RBSfinder (http://www.tigr.org/
software/genefinding.shtml); and Prodigal v1.20 (http://
compbio.ornl.gov/prodigal/; publication in progress). We
implemented the recently released HMMER3, which uses
a different but much faster algorithm than HMMER2,
mainly to keep the search time within 1min. The web
interface consists of two separate sections: (i) one for up-
loading or selecting of an already available GenBank file.
This section also displays the status of the run; and (ii) a
result section with a condensed table of top hits found by
BAGEL2 and links to detailed reports of each individual
putative bacteriocin and interesting candidates, including
a graphical presentation of the gene cluster.

Availability

The BAGEL2 web server is freely accessible at http://
bagel2.molgenrug.nl. Next to bacteriocin mining, the
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Figure 1. Process overview. (A) The input genome data can be a single or multi-entry GenBank file, in case of non-annotated data or,
if re-annotation is desired, an ORF calling can be performed via the BAGEL2 web site. (B) Annotation of putative bacteri-
ocins and their genomic context genes. (C) Calculation of score for each candidate and generation of detailed reports (including graphical
representation).

Table 2. Weight factors used by the BAGEL2 scoring system

Property Weight
factor

Blast hit with bacteriocin Class I or II,
stringent cut-off

10 000

Blast hit with bacteriocin Class I or II,
non-stringent cut-off

5000

Blast hit with bacteriocin Class III 2000
[Cys]:[Thr,Ser] ratio 0.35: 0.80

and leader present
600

Bacteriocin regular expression match 500
Cysteine count between 2 and 8 400
PF05147 (1000� 100 * distance) 200–900
PF03412 PF00005!LanT 300
PF04737 PF04738!LanB 300
PF00069 PF05147!LanL 300
Blast hit with context biosynthesis genes,

Class I or II
200

Blast hit with context immunity genes,
Class I or II

200

[Cys]:[Thr,Ser] ratio 0.25:0.55
and no leader

200

Presence of a leader processing site 100
HMM hit for context genes 100
PF00072 PF00486!Response 100
PF00512 PF02518!Sensor 100
Proper pI and charge 50
HMM hit for bacteriocin see Supplementary

Table S3A
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website offers ORF prediction tools and a BLAST server
that can be used to BLAST search against the bacteriocin
database. High-throughput data analysis can be per-
formed upon request.

RESULTS AND DISCUSSION

Prodigal ORF prediction improves bacteriocin discovery

Bacterial genomes are mostly annotated using Glimmer as
ORF calling algorithm. Recently, Prodigal ORF predic-
tion also became available at NCBI. For ORF prediction
in prokaryotic genomic data, we compared the perform-
ance of Glimmer and Prodigal on four very
well-annotated Gram positive bacterial genomes, i.e.
B. subtilis 168, Lactobacillus plantarum WCFS1,
Streptococcus pneumoniae TIGR4 and Enterococcus
faecalis V583. Glimmer predicted more smaller ORFs
(<360 bp) than Prodigal, but the Prodigal re-annotation
of these genomes contained all the bacteriocins annotated
in the original data whereas the Glimmer predictions
lacked two. Moreover, re-annotation of several genomes
using Prodigal instead of Glimmer resulted in more novel
ORFs encoding putative bacteriocins (data not shown).

Identification and benchmarking of novel bacteriocin
motifs

For classification purposes, we identified motifs in several
sub-classes/groups of lantibiotics, which also proved to be
useful in the identification of new potential lantibiotics.
The motifs were obtained using the amino acid sequences
of known lantibiotics (7) as input for MEME (17).
Subsequently, the obtained motifs were checked by
MAST (18) against the UniProtKB database and against
a database of proteins created for validation purposes,
which contained random Lactococcus lactis MG1363
genes and all known bacteriocins. The added value of
these motifs is demonstrated by the identification of
relevant gene clusters (Figure 2; Table 3; Supplementary
Table S4). From 10 novel motifs, which were found to be
discriminating for bacteriocins and useful for classifica-
tion, an HMM was built (Supplementary Table S3A).
Additionally, one motif based on the lacticin 481 group
described in literature was implemented (19).

Furthermore, regular expressions were deduced from
these new motifs (Supplementary Table S2B).

Analysis of example genomes

The genomes of S. pneumoniae ATCC 700669, B. clausii
KSM-K16 (re-annotated with Prodigal) and
Corynebacterium matruchotii ATCC 33806 were analysed
using BAGEL2, resulting in three lists with putative bac-
teriocins, one for each class. Here, we only discuss the
Class I output (Table 4). From the six annotated genes
identified by BAGEL2 as encoding Class I bacteriocins,
only one gene was previously annotated as ‘putative
lantibiotic’, the rest were annotated as ‘hypothetical
protein’. Manual examination of the gene clusters
suggests that the latter five might indeed be lantibiotics.
An additional candidate gene, orf3711 of B. clausii
KSM-K16, could only be identified by BAGEL2 after
re-annotation of its genome with Prodigal. Furthermore,
BAGEL2 was able to predict a sub-class for all putative
bacteriocins obtained in this screening. Within the group
of significant putative bacteriocins of Class I no false posi-
tives were observed. In this example of three genomes,
�80% of the putative bacteriocins of Class I identified
by BAGEL2 are not annotated as such with current
methods.

CONCLUSIONS

Using BAGEL2, we showed that the annotation systems
currently used by NCBI, TIGR and JGI fail to discover all
putative bacteriocin genes in bacterial genomes. We
demonstrated that the BAGEL2 web server is able to
identify (small) bacteriocin-coding ORFs quickly and pre-
cisely using several crucial features in addition to
homology. The incorporation of increasingly more bac-
teriocin knowledge into the software enables it to accur-
ately predict the sub-classes to which putative bacteriocins
belong. The development of the automated bacteriocin
prediction tool BAGEL2 significantly improves the pre-
diction of putative bacteriocins and should be of added
value to prokaryotic genome annotation pipelines. Rapid
advances in sequencing methods and computational
meta-genomics (20), improving contig lengths, will soon

MKNYEELFNEVNENASLQAELNGGSIATTIVCTIAQSLLGCVGSYVLGNKGYGCTVTNECMSNCR

Figure 2. BAGEL2 graphical output for putative bacteriocin (light green). ClocelDRAFT_0418 from Clostridium cellulovorans 743B, which was
identified through the new MA-2PEPA motif. Amino acids in the leader sequence of the putative bacteriocin are indicated in green. Amino acids
potentially involved in lanthionine ring formation are marked in red (cysteine) and blue (serine and threonine).
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allow bacteriocin mining in meta-genomic data with
BAGEL2.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Table 4. Putative Class I bacteriocins identified with BAGEL2

Gene Product Protein_ID Class Score Organism

SPN23F_12701 Putative lantibiotic precursor YP_002511205.1 IB 8025 S. pneumoniae
SPN23F_19710 Hypothetical protein YP_002511831.1 IB 2950 S. pneumoniae
SPN23F_19700 Hypothetical protein YP_002511830.1 IB 1950 S. pneumoniae
orf3711 Not annotated orf3711 IA 10 400 B. clausii KSM
CORMATOL_2550 Hypothetical protein EEG25958.1 IB 4775 C. matruchotii
CORMATOL_2549 Hypothetical protein EEG25957.1 IB 3575 C. matruchotii
CORMATOL_2551 Hypothetical protein EEG25959.1 IB 3375 C. matruchotii

Displayed are the combined data from mining the genomes of S. pneumoniae 23F, B. clausii KSM-K16 (re-annotated using Prodigal) and
C. matruchotii ATCC 33806.

Table 3. Putative bacteriocins identified by BAGEL2 using new HMMs

Motif Putative bacteriocin
identified by new motif

Organism

LE-MER1 bpmyx0001_45460 B. pseudomycoides DSM 12442
MA-2PEPA ClocelDRAFT_0418 C. cellulovorans 743B
LE-LAC481 G11MC16DRAFT_3402 Geobacillus sp. G11MC16
LE-LanBC SnasDRAFT_14510 Stackebrandtia nassauensis DSM 44728
MA-2PEPb CORMATOL_02550 C. matruchotii ATCC 3380
MA-DUF bcere0025_31210 B. cereus F65185
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