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Abstract: Tissue-specific gene expression has long been recognized as a crucial key for understanding
tissue development and function. Efforts have been made in the past decade to identify tissue-specific
expression profiles, such as the Human Proteome Atlas and FANTOM5. However, these studies
mainly focused on “qualitatively tissue-specific expressed genes” which are highly enriched in one or
a group of tissues but paid less attention to “quantitatively tissue-specific expressed genes”, which are
expressed in all or most tissues but with differential expression levels. In this study, we applied
machine learning algorithms to build a computational method for identifying “quantitatively
tissue-specific expressed genes” capable of distinguishing 25 human tissues from their expression
patterns. Our results uncovered the expression of 432 genes as optimal features for tissue classification,
which were obtained with a Matthews Correlation Coefficient (MCC) of more than 0.99 yielded by
a support vector machine (SVM). This constructed model was superior to the SVM model using
tissue enriched genes and yielded MCC of 0.985 on an independent test dataset, indicating its good
generalization ability. These 432 genes were proven to be widely expressed in multiple tissues and a
literature review of the top 23 genes found that most of them support their discriminating powers.
As a complement to previous studies, our discovery of these quantitatively tissue-specific genes
provides insights into the detailed understanding of tissue development and function.

Keywords: tissue-specific expressed genes; transcriptome; tissue classification; support vector
machine; feature selection

1. Introduction

A biological tissue is an ensemble of similar cells residing in the same location and performing
specific biological functions in multicellular organisms. As the bridge between single cells and
functional organs, tissues are elementary units with both phenotypical and functional contributions to
biological identity [1]. All biological functions are regulated and manipulated directly or indirectly
by proteins, which can be further attributed to gene expression patterns measured by messenger
RNA (mRNA) expression [2]. Therefore, different tissues and cell types could have their own unique
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expression patterns and a full picture of how genes are expressed in different tissues will help to unveil
the molecular mechanisms involved in tissue development and function.

Ten years ago, two milestones for identifying tissue-specific gene expression were conducted and
completed right after the human genome project, which built tissue-specific gene expression profiles
at the protein and RNA levels [3,4]. At the protein level, the protein distribution in human tissues
was explored using 718 antibodies corresponding to 650 human protein-coding genes in the Human
Protein Atlas [3]. While at the RNA level, the FANTOM consortium initiated the creation of a gene
atlas by integrating mouse and human expression data from multiple tissues using microarrays [4]
and built the widely used BioGPS portal, which has expression data from numerous resources [5].
These projects have been extended and updated by incorporating more genes and taking advantage
of advanced technologies, such as next-generation sequencing. For example, the number of genes
included in the Human Protein Atlas project has been increased to 10,118, which is more than half of the
protein-coding genes in humans [6]. Meanwhile, the application of RNA-Seq technologies has created
an RNA-Seq Atlas in different human tissues, providing a more comprehensive and unbiased view of
gene expression compared with the initial efforts using microarrays [7]. A recent study presented a map
of the human tissue proteome by integrating multiple-omics approaches, including RNA-Seq and tissue
microarray-based immunohistochemistry, which detected more than 90% of putative protein-coding
genes and found that 2355 genes are significantly enriched in a single tissue, 3478 are enhanced in a
single tissue and 1109 are enriched in a group of tissues [8]. These tissue-specific genes not only help
understand human biology but can also be applied in medical research, such as pharmaceutical drug
development and biomarker discovery in the field of translational medicine. However, these studies
have mainly focused on “qualitatively tissue-specific expressed genes”, which are enriched in a single
or subgroup of tissues. The genes expressed in all or almost all tissues could also have divergent
expression patterns among different cell types, which we termed as “quantitatively tissue-specific
expressed genes”. Although these quantitatively tissue-specific expressed genes have less expression
enrichment compared with qualitatively expressed genes, they might also play important roles in
tissue function and development.

In this study, we took advantage of recently published transcriptomic data in multiple tissues
from the Genotype-Tissue Expression (GTEx) project [9] and present a new computational method
that integrates machine learning algorithms to identify genes that are widely expressed in the
human body but with different expression signatures across 25 human tissues and are capable of
distinguishing different tissue types. According to our results, the 25 tissues have been taken into
account and subtyped by 432 key genes using a prediction engine based on a support vector machine
(SVM) [10,11] with an Matthews Correlation Coefficient (MCC) value more than 0.99, revealing the
detailed expression characteristics of different tissue subtypes. The constructed classification model
also had good generalization ability because it yielded MCC of 0.985 on an independent test dataset.
In addition, the superiority of this model was proved by comparing it to the SVM model using tissue
enriched genes. A detailed analysis was also performed on the 23 most important genes among 432
key genes. As a complement to previous studies, our results demonstrate the ability to classify tissues
through a series of quantitatively tissue-specific expressed genes, suggesting that these genes could
also play important roles in tissue development and function.

2. Materials and Methods

2.1. Dataset

The expression profiles from different tissue samples obtained by RNA-Seq were downloaded
from GTEx V6p (http://gtexportal.org/home/datasets) [9]. Tissues with sample sizes smaller
than 80 were excluded, resulting in a total of 8436 samples from 25 tissues. These samples
comprised a training dataset. For an easy description, each tissue was denoted as Ti (I = 1, 2,
. . . , 25). For the computational analysis, we extracted expression levels of 18,365 genes that
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are expressed (i.e., expression level was not zero) in at least one of 8436 samples from the
file “GTEx_Analysis_v6p_RNA-seq_RNA-SeQCv1.1.8_gene_rpkm.gct”; that is, each sample was
represented by 18,365 features.

Besides, an independent test dataset was constructed using the new samples added in GTEx v7
after GTEx v6p. This dataset included 3367 samples from the same 25 tissues. These 25 tissues and
their sample sizes in training and independent test datasets are listed in Table 1.

Table 1. The 25 tissue samples.

Tag Tissue
Number of Samples Tag Tissue

Number of Samples

Training Dataset Test Dataset Training Dataset Test Dataset

T1 Adipose tissue 577 237 T2 Adrenal gland 145 50
T3 Blood 511 54 T4 Blood vessel 689 242
T5 Brain 1259 455 T6 Breast 214 84
T7 Colon 345 169 T8 Esophagus 686 348
T9 Heart 412 201 T10 Liver 119 58
T11 Lung 320 123 T12 Muscle 430 155
T13 Nerve 304 122 T14 Ovary 97 39
T15 Pancreas 171 82 T16 Pituitary 103 82
T17 Prostate 106 48 T18 Skin 890 342
T19 Small intestine 88 52 T20 Spleen 104 60
T21 Stomach 192 75 T22 Testis 172 91
T23 Thyroid 323 139 T24 Uterus 83 32
T25 Vagina 96 27 Total - 8436 3367

2.2. Feature Ranking and Selection

The purpose of this study is to extract a group of genes that can contribute to tissue classification
based on gene expression levels. To do that, the minimum redundancy maximum relevance (mRMR)
method [12] proposed by Peng et al. was employed to analyze all the features and yield a feature
list, named the mRMR feature list. This feature selection method has been applied to tackle various
biological problems [13–25]. In the method, the discriminated power of a feature f is reflected by
the relevance between it and a target class c, which is measured from their mutual information (MI).
The MI can be evaluated according to the following equation (x and y represent two variables):

x
p(x, y)log

p(x, y)
p(x)p(y)

dxdy (1)

where p(x) and p(y) are the marginal probabilistic density of x and y and p(x, y) is their joint probabilistic
density. Additionally, the redundancy between two features f 1 and f 2 is also evaluated by their MI.
To produce the mRMR feature list, the mRMR method repeatedly selects a non-selected feature that
has a maximum relevance to the target and a minimum redundancy to the already selected features.
The mRMR feature list ranks all the features according to their selection order. For the formulation,
this list was denoted as follows:

F = [ f1, f2, . . . fN ] (2)

where N is the total number of features (N = 18,365 in this study). It is clear that the top features in this
list are more important for identifying tissue types.

The mRMR method only provides a feature list, in which important features receive high ranks.
However, we still do not know which features should be selected for classification. In view of this,
the incremental feature selection (IFS) method was adopted in this study to select a group of features
that can effectively classify the human tissues. In this method, a series of feature sets, denoted as F1,
F2, . . . , Fi, . . . , FN , were constructed according to the mRMR feature list F, where the subscript i in Fi
represents the top i features in F comprising the feature set Fi, that is,

Fi = [ f1, f2, . . . fi] (3)
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Then, a classification model would be built on each feature set trained by a machine learning
algorithm (e.g., SVM). Accordingly, the classification model yielding the best performance can be
found and termed the optimal classification model. Features used in this optimal classification model
comprise the optimal feature set. In this study, there were 18,365 features in total, meaning we
could construct 18,365 classification models. However, due to our limited computational power, this
would be time-consuming. Thus, we only examined feature sets that contained 4–500 features to
construct the classification models and selected the model yielding the highest Matthews Correlation
Coefficient, a powerful measurement to evaluate the performance of different models. For convenience,
the obtained model was called optimal classification model.

2.3. Classification Algorithm

In the IFS method, a machine learning algorithm was used to build a classification model based
on each feature set. Here, we selected one of the most classic machine learning algorithms, SVM [10,11].
The principle of SVM is to find a balance between the learning error and the minimum statistical risk.
To date, several types of SVMs have been proposed to address different kinds of problems. In this
study, we adopted an SVM that is trained by sequential minimum optimization (SMO) [26], which
always breaks the quadratic programming (QP) problem into a series of the smallest possible sub-QP
problems. Then, these sub-QP problems are solved analytically, thereby avoiding matrix storage and
using numeric QP optimization steps. To quickly implement this type of SVM, a tool named “SMO”
was employed in Weka (https://www.cs.waikato.ac.nz/ml/weka/) [27] and it was executed using its
default settings, where the kernel was set as polynomial function and the tolerance parameter was set
to 0.001.

2.4. Measurements

The prediction abilities of the constructed classification models were evaluated by a 10-fold
cross-validation (10-CV) [16,28–30], which yields similar results to the stricter test called the Jackknife
cross-validation (J-CV) [31,32] but saves significant computational resources.

In this study, 25 tissues were considered. Thus, based on the predicted results derived from the
SVM on different feature sets and evaluated by 10-CV, we can compute the prediction accuracy for j-th
tissue Tj, which was defined as follows:

ACCj =
nj

Nj
, j = 1, 2, . . . , 25 (4)

where nj represents the number of correctly predicted samples in Tj and Nj represents the total number
of samples in Tj. We can further compute the overall accuracy (TACC) with the following formula:

TACC =
∑25

j=1 nj

∑25
j=1 Nj

(5)

We can see from Table 1 that some tissues were large (e.g., brain), while some tissues had much
fewer samples (e.g., uterus). The overall accuracy may strongly rely on the prediction accuracy of
the tissues with large sizes. Thus, it is not proper to evaluate the performance of models using TACC.
In binary classification, MCC [33] is deemed as a balanced measurement even if the class sizes are
of great differences. Later, the multi-class version—called MCC in multiclass—was developed by
Gorodkin [34], which inherits the merits of original MCC. Here, we give a brief description of the MCC
in multiclass. A more detailed description can be found in Gorodkin’s study [34].

Given a classification problem involving n samples, denoted by s1, s2, . . . , sn and N classes,
represented by 1, 2, . . . , N. The true classes of all the samples can be formulated by the matrix
Y =

(
yij
)

n×N , where yij = 1 if si belongs to class j; otherwise, it is set to 0. For the predicted classes
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of all the samples, the classes can be used to a define another matrix, X =
(
xij
)

n × N , which can be
defined as follows: xij = 1, if si is predicted to be in class j, otherwise, xij = 0. Then, the MCC in the
multiclass is defined as follows:

MCC =
cov(X, Y)√

cov(X, X)cov(Y, Y)
(6)

where cov(X,Y) is the covariance function of X and Y, which can be computed with the
following formula:

cov(X, Y) =
1
N

N

∑
k=1

cov(xk, yk) =
1
N

N

∑
k=1

n

∑
i=1

(xik − xk)(yik − yk) (7)

where xk and yk denote the k-th column of X and Y, respectively and xk and yk denote the mean values
of the numbers in xk and yk, respectively.

Like the original MCC value proposed by Matthews [33], the range of the MCC in the multiclass
is between −1 and 1, where the higher the MCC value obtained, the better a classifier is (1 means the
given classifier yields a perfect classification, 0 indicates a classification is no better than a random
prediction and −1 represents a total misclassification). In this study, we used the MCC values in the
multiclass as the key measurements and only called MCC in the following text for convenience.

3. Results

3.1. Results of Feature Ranking

To avoid the unbalanced data sizes among the different tissues, we collected the transcriptome
data from 8436 samples originating from 25 tissues in the GTEx project [9]; tissues with sample sizes
smaller than 80 were excluded from this study. To perform a comprehensive analysis, all 18,365 genes
expressed in the 8436 samples, regardless of tissue specificity or expression, were used to construct the
features. All the features were rigorously analyzed with the widely used mRMR method, inducing the
mRMR feature list (Supplementary Material S1).

3.2. Results of Feature Selection

The obtained mRMR feature list was used with the IFS method to discover the optimal feature
set for the SVM. However, because of our limited computational power, we only tried feature
sets F4, F5, . . . , F500. For each feature set, an SVM-based classification model was built, in which
each sample was represented by the features in the set. Then, 10-CV was adopted to evaluate the
performance of each classification model; the predicted results included the prediction accuracies of
the 25 tissues, TACC and MCC (Supplementary Material S2). To clearly show the relationship between
the number of used features and the performance of the corresponding classification model, the IFS
curve was plotted and is shown in Figure 1 with the feature number as the X-axis and the MCC value
as the Y-axis. The highest MCC value (0.994) reached almost 1.00 and was obtained when the top
432 features in the mRMR feature list were used, suggesting that these 432 features could be optimal
features for the SVM for distinguishing the 25 tissues. Accordingly, the optimal classification model
using 432 optimal features and SVM can be built. The detailed performance of this model, including
accuracy on each tissue and TACC, is shown in Figure 2, from which we can see that 17 of 25 tissues
received a perfect classification (ACCj = 1) and all accuracies are higher than 0.930, suggesting that the
performance of the optimal classification model is quite stable on different tissues.

To examine whether these 432 genes are widely expressed or tissue-specific, we searched their
annotations in the Human Protein Atlas [8]. Among the 432 genes, fourteen genes were annotated as
tissue-enriched, tissue-enhanced or group-enriched, which suggests that these fourteen genes might be
tissue-specific or group-specific (Supplementary Material S3). However, further examination revealed
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that only one gene, ASAP2, is annotated as tissue-enriched (in testis) in the GTEx data and that this
gene shows no enriched or enhanced expression in the FANTOM5 database [35], another expression
atlas for RNA levels. Both the GTEx and FANTOM5 annotations were obtained through the Human
Protein Atlas database to keep the criteria consistent. Therefore, these 432 genes showed the ability to
distinguish different tissues that are widely expressed across multiple tissues.
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Figure 2. The performance of the optimal support vector machine (SVM) classification model,
SVM model using all tissue enriched genes and SVM model using top 432 tissue enriched genes,
including accuracy on each tissue and overall accuracy. The optimal SVM classification model gave
better performance.

3.3. Comparison of SVM Model with Tissue Enriched Genes

As mentioned in Section 3.2, an SVM classification model was built to classify samples into 25
tissues, which yielded the MCC of 0.994. To indicate its effectiveness, we mapped the tissue enriched
proteins retrieved from Human Protein Atlas onto the filtered GTEx expression dataset which excluded
the non-expressed genes, resulting in 1981 genes (see Supplementary Material S4). The expression
levels of these genes were used to represent each sample in the training dataset. Then, the SVM
was executed on this data with its performance evaluated by 10-CV. The predicted results were
counted as MCC of 0.990, which was lower than that obtained by the optimal SVM classification model.
For detailed comparison, the detailed performance of these two models, including accuracy on each
tissue and TACC, is illustrated in Figure 2. It can be observed that the optimal SVM classification
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model gave better or equal performance on almost all tissues (expect tissue T7, “Colon”) than SVM
model using tissue enriched genes.

Besides, considering that the above two models using different number of genes, to give a fairer
comparison, we also evaluated the importance of 1981 tissue enriched genes via mRMR method
and extracted the top 432 genes to construct an SVM classification model and evaluate it on the
training dataset, yielding MCC of 0.976, which was much lower than that obtained by the optimal
SVM classification model. The detailed performance on each tissue and overall accuracy is shown
in Figure 2, from which we can see that the optimal SVM classification model gave higher or equal
accuracies on almost all tissues expect one tissue (T24, “Uterus”).

All these suggested that important genes for classification of samples into different tissues can be
extracted via advanced computational methods used in this study and they can be adopted to build a
better classification model.

3.4. Performance of the Optimal SVM Classification Model on Test Dataset

We constructed an optimal SVM classification model in Section 3.2 via mRMR and IFS methods.
To test its generalization, we performed this model on the independent test dataset. The obtained
TACC and MCC were 0.986 and 0.985, respectively, indicating that the prediction ability of the
constructed model was quite strong. We also calculated the MCC of tissue enriched genes on the
independent test dataset and it was 0.972, smaller than the MCC (0.985) obtained by the optimal SVM
classification model.

3.5. Comparison of SVM Model with t-Test Genes

Beside the machine learning algorithms used in present study, there were other ways to identify
the quantitatively tissue-specific expressed genes. Another more straightforward way was to identify
the significantly highly expressed genes in each tissue by performing t test between one tissue and
all the other tissues and then combine the highly expressed genes in each tissue to get the final
quantitatively tissue-specific expressed genes. To make the t test result comparable with our result,
we selected the top 19 significantly highly expressed genes from 25 tissues and obtained 422 unique
t-test genes (see Supplementary Material S5), which had similar number of genes with the 432 optimal
genes. We evaluated the performance of the 422 t-test genes on independent test dataset and its MCC
was 0.984, slightly smaller than the MCC obtained by 432 optimal genes, 0.985. It was difficult to tell
whether the increase of MCC from 0.984 to 0.985 was statistically significant, especially when the MCC
was already so high and there was little space for improvement. But we strongly believe that the
quantitative gene expression signatures identified either by t-test based method or mRMR and IFS
based method, are better than traditional tissue specific gene lists that only consider the expression
or not rather than the expression level differences. The results on the high-quality dataset GTEx had
supported it. Although the GTEx project has ended, the Enhancing GTEx (eGTEx) project [36] carries
on. We will work closely with the eGTEx Consortium to test the constructed model on larger new
samples and update the model correspondingly.

4. Discussion

As we have analyzed above, RNA-Seq has been reported to be an effective classification tool for
identifying cell types. Based on the transcriptome datasets from different human tissues presented in a
recent study, we developed a new computational method and successfully identified 432 quantitatively
tissue-specific expressed genes capable of classifying twenty-five human tissues with high accuracy
(MCC > 0.99). To further examine the reliability of our results, we selected the top 23 genes in the
mRMR feature list for detailed analyses (Table 2). The performance of the classification model built
on these genes displayed an MCC value > 0.95 (Figure 1, Supplementary Material S2), suggesting
the significant role of these genes among the 432 genes in the classification. As shown in Table 2,
we searched the 23 genes in Human Protein Atlas [8] and Expression Atlas [37]. Based on Human
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Protein Atlas, 16 genes were “Expressed in all”; six genes were “Mixed”; only one gene was “Tissue
enhanced (thyroid gland)”. Based on Expression Atlas, all genes were expressed in “Multiple tissues”.
Both databases suggested these genes were expressed in multiple tissues. But our method can find
their expression level difference rather than whether they were expressed. For clearly displaying
the expression level of these 23 genes across 25 tissues, we gave a box plot for each gene, which is
illustrated in Supplementary Figure S1. It can be observed that for almost all genes, their expression
levels on different tissues are quite different, indicating that they can be important biomarkers.

The first gene, ARAF, is a potential proto-oncogene that can be clustered into the RAF
subfamily of Ser/Thr protein kinases and contributes to the regulation of cell proliferation and
tissue development [38]. For its tissue-specific expression pattern, this gene has been reported to be
steadily expressed in multiple tissues, including most of tissue/cell subtypes incorporated in this
study, suggesting a wide expression signature [39]. More importantly, it has also been confirmed to
have a unique expression pattern in the skin; thus, though this gene is expressed widely in multiple
tissues, the expression levels could be different from one another [39].

Table 2. The top 23 genes selected for further investigation via a literature review.

Rank Gene Description The Human Protein
Atlas [8]

Expression Atlas
of EMBL-EBI [37]

1 ARAF A-Raf Proto-Oncogene, Serine/Threonine Kinase Expressed in all Multiple tissues
2 ITGA3 Integrin Subunit Alpha 3 Mixed Multiple tissues
3 SLAIN2 SLAIN Motif Family Member 2 Expressed in all Multiple tissues
4 ZNF532 Zinc Finger Protein 532 Mixed Multiple tissues
5 PPIC Peptidylprolyl Isomerase C Mixed Multiple tissues

6 KDELR1 KDEL Endoplasmic Reticulum Protein Retention
Receptor 1 Expressed in all Multiple tissues

7 NBL1 Neuroblastoma 1, DAN Family BMP Antagonist Expressed in all Multiple tissues
8 PLP2 Proteolipid Protein 2 Expressed in all Multiple tissues
9 STAT6 Signal Transducer and Activator of Transcription 6 Expressed in all Multiple tissues

10 ARHGAP23 Rho GTPase Activating Protein 23 Mixed Multiple tissues

11 LRIG3 Leucine Rich Repeats And Immunoglobulin Like
Domains 3

Tissue enhanced
(thyroid gland) Multiple tissues

12 MANBAL Mannosidase Beta Like Expressed in all Multiple tissues
13 PTPRA Protein Tyrosine Phosphatase, Receptor Type A Expressed in all Multiple tissues
14 YAP1 Yes Associated Protein 1 Mixed Multiple tissues
15 CLIC1 Chloride Intracellular Channel 1 Expressed in all Multiple tissues
16 TMEM109 Transmembrane Protein 109 Expressed in all Multiple tissues
17 MOCS2 Molybdenum Cofactor Synthesis 2 Expressed in all Multiple tissues
18 PTPRF Protein Tyrosine Phosphatase, Receptor Type F Mixed Multiple tissues
19 MYO1C Myosin IC Expressed in all Multiple tissues
20 FAM127B Family with Sequence Similarity 127 Member B Expressed in all Multiple tissues
21 TRIP10 Thyroid Hormone Receptor Interactor 10 Expressed in all Multiple tissues
22 SERPING1 Serpin Family G Member 1 Expressed in all Multiple tissues
23 TOM1L2 Target of Myb1 Like 2 Membrane Trafficking Protein Expressed in all Multiple tissues

Another gene named ITGA3 has been widely reported to function as a cell surface adhesion
molecule and is involved in the malignant metastasis of certain tumor subtypes [40,41]. Therefore,
it is expected that this gene has low expression in the blood, as many blood cells freely float [42],
suggesting that this gene may have different expression patterns across tissues corresponding to their
different cell adhesion requirements. Similarly, SLAIN2, a microtubule dynamics-associated regulator,
has also been reported to be down-regulated in blood cells compared with other tissue subtypes in our
candidates, indicating the distinctive roles of SLAIN2 as well as microtubule dynamics in different
tissues [43]. ZNF532, a nucleic acid binding-associated gene, has been confirmed to be involved in
transcriptional regulation [44,45]. Based on recent publications, this gene has also been reported to be
down-regulated in liver and whole blood cells compared with other candidate tissues, implying that
this gene may be a potential marker for the identification of hepatocytes and blood cells [46].

PPIC encodes functional peptidylprolyl isomerase C (cyclophilin C), which has been confirmed
to bind to the immunosuppressant cyclosporin A, implying that this gene is an immune-associated
regulator [47,48]. This gene has been confirmed to have quite high expression levels in the tibial
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nerve but lower levels in the cortex, suggesting its differential expression levels across various cell
types and indicating potential roles in tissue classification [47]. In contrast to PPIC, another nerve
associated-gene, NBL1, has been confirmed to be highly expressed in the central nervous system (brain)
but lowly expressed in the peripheral nervous system (such as the spinal cord) [49,50].

KDELR1, a potential endoplasmic reticulum (ER)-associated gene, has no direct evidence reporting
any unique expression patterns. However, this gene has been reported to affect ion transmembrane
transporter activity in the nervous system and blood cells [51,52], so it is likely that this gene may
have specific expression patterns corresponding to divergent ion transmembrane transporter activity
requirements in different tissues.

PLP2, which has not been reported to display unique expression patterns, has been found to
increase neuronal apoptosis when down-regulated and promotes cell proliferation in leukemia when
up-regulated, indicating that different expression levels are required in tissues based on their needs for
cell apoptosis and proliferation [53,54].

STAT6, a transcription factor in the STAT family, has been confirmed to contribute to the
proliferation and differentiation of T helper 2 cells, indicating its specific role in the immune system
and certain cell types [55–57].

ARHGAP23 is an effective component of the Rho GTPase family and has been widely reported
to be involved in transmembrane receptor signal transduction [58]. With regards to its detailed
expression, this gene has been confirmed to be down-regulated in blood and muscles, revealing a
specific expression pattern [59]. Similarly, LRIG3 also has quite low expression levels in the blood [60].
Moreover, LRIG3 displays specific expression patterns in the nervous system as it regulates the normal
functioning of the inner ear, implying that this gene may also contribute to the identification of nerve
tissues [61,62].

As a gene encoding a functional component of the Hippo signaling pathway involved in
development, growth, repair and homeostasis, YAP1 has low expression in mature blood cells [63,64].
This gene, as well as another three genes MANBAL, PTRPA and CLIC1 has also been reported to be
differentially expressed across different human tissues [9].

Another membrane-associated gene, TMEM109, has also been predicted to be distinctively
expressed in different tissues. Generally, this gene has been widely reported to mediate cellular
responses to DNA damage, such as ultraviolet C-induced cell death [65,66]. Not present in the bone
marrow or thymus, this gene may also participate in the identification of certain cell types [66].

MOCS2, a gene encoding the eukaryotic molybdoenzyme, has been widely reported to contribute
to molybdenum cofactor synthesis [67]. For its expression pattern, this gene has been confirmed to
be predominantly expressed in heart and skeletal muscle, thus contributing to the identification of
muscle and heart cells [67–69].

PTPRF, a member of the protein tyrosine phosphatase (PTP) family, has been reported to
participate in various core survival-associated biological processes, such as cell growth, differentiation
and mitosis [70,71], which suggests that differential expression patterns could be found in different
tissues due to divergent levels of cell growth and differentiation. For example, the expression of this
gene has been reported to be down-regulated in tissues with low proliferation potential, such as the
heart and brain [72,73].

Encoding a common protein in muscle, MYO1C could be up-regulated in tissues that contain
smooth muscle, skeletal muscle or heart muscle, which would distinguish these tissues from other
tissues such as blood and cartilage [74,75].

The TRIP10 gene has been confirmed to have quite a low expression level in the blood and nervous
system, implying its potential in tissue classification [76,77]. The abnormal expression of this gene
usually indicates specific pathological processes such as cancer and leukemia [76].

The last two genes SERPING1 and TOM1L2 both have been found to be expressed in all
tissues [8]. SERPING1 encodes the plasma protease C1 inhibitor involved in regulating important
physiological pathways, including complement activation, blood coagulation, fibrinolysis and the
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generation of kinins [78], while TOM1L2 may regulate growth factor-induced mitogenic signaling [79].
These discovered functional roles suggest potential requirements for differential expression patterns
across different tissues.

We have discussed 22 of the 23 genes (FAM127B has little information in terms of its function)
and shown their potential for tissue classification based on previous studies. Some genes, such as
ARAF, PTPRF, ITGA3 and SLAIN2, are involved in crucial cell processes, including cell proliferation,
cell adhesion, cell invasion and the regulation of microtubule dynamics, which have diverse roles in
different tissues, indicating that these genes might have differential expression patterns across different
tissues. Other genes were confirmed to have specific functions in particular tissues or cell types,
suggesting their specific roles in these tissues or cell types. By comparing the GO annotations between
the 432 quantitatively-specific expressed genes identified in this study and the 2355 tissue-enriched
genes annotated previously by Uhlen et al. [3] through the online tool DAVID [80], we found that these
two sets of genes showed diverse clustering on biological processes. The former ones are enriched in
translational, transcriptional and posttranscriptional regulation processes, while the latter ones are
enriched in those biological processes specific to cell-types or tissues, such as spermatogenesis, muscle
filament sliding, cell differentiation and so forth (see Supplementary Material S6). This finding
indicates those quantitatively tissue-specific genes possibly contribute to tissue-specific features
through transcriptional, translational, posttranscriptional and posttranslational regulations.

5. Conclusions

In summary, this study identified quantitatively tissue-specific expressed genes with
discriminating power for classifying different tissue types based on their expression patterns via
machine-learning algorithms. As a complement to previous studies that have identified genes enriched
in a single or a few tissues, our findings of genes that are commonly but also differentially expressed
in multiple tissues will provide insights into a detailed understanding of tissue development and
function. In addition, we provided tissue samples represented by expression profiles of 432 optimal
genes in Supplementary Material S7, in which the instructions of how to use this file to build the
classification model and further make predictions were also given.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/9/9/449/s1,
Supplementary Material S1: The mRMR feature list yielded by the mRMR method; Supplementary Material
S2: The performance of SVM classification model with different features; Supplementary Material S3: Fourteen
important genes that were annotated as tissue-enriched, tissue-enhanced or group-enriched; Supplementary
Material S4: Tissue enriched genes retrieved from Human Protein Atlas; Supplementary Material S5: Significantly
highly expressed genes in each tissue obtained by the t test between one tissue and all other tissues. Supplementary
Material S6: The GO enrichment analysis on 432 quantitatively-specific expressed genes identified in this study
and 2355 tissue-enriched genes annotated previously by Uhlen et al.; Supplementary Material S7: Data and
instructions used to construct the optimal SVM classification model and make predictions. Supplementary Figure
S1: Box plots to show the expression level of 23 top genes across different tissues.
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