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Identification of Novel Regulatory 
Genes in APAP Induced Hepatocyte 
Toxicity by a Genome-Wide 
CRISPR-Cas9 Screen
Katherine Shortt  1,3,5,9, Daniel P. Heruth  1, NiNi Zhang1,2,7, Weibin Wu1,3, Shipra Singh1,3, 
Ding-You Li  2, Li Qin Zhang1,4, Gerald J. Wyckoff  6, Lei S. Qi  8, Craig A. Friesen2 & 
Shui Qing Ye1,3,5

Acetaminophen (APAP) is a commonly used analgesic responsible for more than half of acute liver 
failure cases. Identification of previously unknown genetic risk factors would provide mechanistic 
insights and novel therapeutic targets for APAP-induced liver injury. This study used a genome-
wide CRISPR-Cas9 screen to evaluate genes that are protective against, or cause susceptibility to, 
APAP-induced liver injury. HuH7 human hepatocellular carcinoma cells containing CRISPR-Cas9 
gene knockouts were treated with 15 mM APAP for 30 minutes to 4 days. A gene expression profile 
was developed based on the 1) top screening hits, 2) overlap of expression data from APAP overdose 
studies, and 3) predicted affected biological pathways. We further demonstrated the implementation 
of intermediate time points for the identification of early and late response genes. This study illustrated 
the power of a genome-wide CRISPR-Cas9 screen to systematically identify novel genes involved in 
APAP-induced hepatotoxicity and to provide potential targets to develop novel therapeutic modalities.

APAP is a widely used medication and is responsible for ~50% of acute liver failure (ALF) cases in the US and Great 
Britain1,2. It is the top risk factor for acute liver injury (ALI) and ALF in the US and Great Britain and in the top 3 in 
China3. The recommended maximum daily dose of APAP is 4 g for adults, with a single dose of just 7.5–10 g caus-
ing acute toxicity4. Ultimately, 36% cases of APAP induced ALF survive if no liver transplant occurs and patients 
who receive a liver transplant have a 75% survival rate.10% of APAP is processed in the liver by cytochrome-P450 
to produce a toxic metabolite N-acetyl-p-benzo-quinone imine (NAPQI). Glutathione is used to convert NAPQI 
to a non-toxic substrate. When NAPQI levels are high, glutathione is depleted, causing an immune response and 
necrosis, which characterize acute liver failure. Current treatments of APAP-induced ALF focus on clearing excess 
APAP and replenishing glutathione and are only effective during a very short window of time post-overdose. The 
etiology of APAP-induced ALF is complex and not fully understood, particularly for cases that present more than 
8 hours post-ingestion5. These cases are extremely troublesome because the liver injury can be asymptomatic for 
24–48 hours. When the canonical APAP clearance pathways including metabolism via CYP2E1 are overwhelmed 
or low-functioning, redundant or accessory pathways may help to preserve function6. Furthermore, there is evi-
dence that APAP overdose may cause cell death by multiple mechanisms7. Genetic predisposition may play a 
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significant role in an individual’s susceptibility to APAP induced hepatotoxicity8. There is a demonstrated need for 
improved modalities of risk assessment, diagnosis, and therapeutics.

Microarray and “omics” approaches have widely been used to identify genes acting in APAP-induced 
injury8–13. These studies measure the changes in gene expression post-drug treatment using RNA sequencing or 
gene expression profiling, however the genes identified may not be causal. Previous screens of various diseases 
were accomplished using gene knockdown by RNA interference (RNAi), resulting in incomplete gene knockout 
and limiting the applications of the method14–16. Zinc finger nucleases (ZFNs) and transcription activator-like 
effector nucleases (TALENs) produce double-stranded breaks, however it is difficult to target multiple targets 
simultaneously with these methods17–21. CRISPR-Cas9 pooled lentiviral libraries provide stable, genome-wide 
gene knockout alternative that makes possible direct assessment of gene function that previous methods have 
not achieved21,22. In addition to the CRISPR-Cas9 pooled gene knockout libraries, genome-wide CRISPR/Cas9 
SAM (Synergistic Activation Mediator) and CRISPRi (CRISPR interference) sgRNA libraries enable robust, 
multi-approach CRISPR screens23–28. Similarly to RNAi screens, in a CRISPR-Cas9 knockout library a positive 
screen identifies enriched gene knockouts after drug treatment. These genes potentially increase susceptibility to 
the treatment condition. A negative screen identifies depleted gene knockouts after drug treatment. These genes 
are potentially essential to survival of the treatment condition. The genome-wide CRISPR-Cas9 knockout screen 
has successfully identified genes contributing to a large variety of mechanisms, including essential genes and 
genes that conferred loss of resistance to vemurafenib in a melanoma model23,29.

This study builds on the existing CRISPR-Cas9 screening technology and applies it to a novel study of 
APAP-induced hepatotoxicity. We performed a genome-scale CRISPR-Cas9 screen of APAP toxicity (30 min-
utes–4 days) using the GeCKOv2 sgRNA library. We identified groups of genes and biological pathways that are 
protective against APAP, and other genes that increase susceptibility to injury. An understanding of which genes 
act in protecting from or enhancing injury at different times can better inform candidate gene discovery and 
elucidate the molecular pathways acting in response to APAP. By cross-referencing these data with existing gene 
expression data on APAP overdose in Humans and mice, we validated findings from our screen and connected 
the effect of CRISPR-Cas9 gene knockout on drug metabolism with the effect of drug on gene expression. From 
these data, we hypothesized the role of novel genes and validate the functional effect of knockdown of select can-
didate genes. These findings inform changes in the diagnostic and therapeutic modalities employed at the patient, 
with the ultimate goal of improving outcomes of APAP-induced ALF.

Results
Development of screening strategy and preparation of cell lines. HuH7-Cas9 was monoclonally 
selected and expression of Cas9 was confirmed by western blot (Fig. 1A, Supplementary Fig. 1). To determine 
the optimal dosage of APAP, HuH7-Cas9 cell count and viability were assessed daily (N = 3) in the presence of 
0–20 mM APAP in growth media (Fig. 1B). A screening strategy was developed based on the rate of cell death in 
15 mM APAP to assess the effect of the gene knockouts on cellular survival and proliferation with APAP treat-
ment (Fig. 1C).

CRISPR-Cas9 knock-out screen and deconvolution. HuH7-Cas9 cells (1.62 × 108 total) were trans-
duced with the lentiviral sgRNA library at an MOI of 0.5 resulting in >630x total library coverage at the time 
of transduction. The first replicate contains plasmid and samples collected at 0 h, 30 min, 3 h, 6 h, 12 h, 24 h, and 
4d (end) of APAP treatment. The second replicate contains samples collected at 0, 24 h, and 4d of APAP treat-
ment. A minimum of 2 × 107 cells were collected per sample, resulting in 160x library coverage per sample as 
template for the 1st PCR (Supplementary Fig. 2). The average library coverage of aligned reads calculated from 
amount of isolated DNA per sample was 205x and 284x, respectively for replicates 1 and 2. On average, 70% of the 
sequence reads aligned to the reference sgRNA library resulting in 230.9x average library coverage per replicate 
(Supplementary Table 1).

After 4 days of APAP treatment and 21 days outgrowth, the endpoint sample is significantly different from the 
plasmid library or T0 (p < 10−10) by comparison via Wilcoxon Rank-Sum test and there is a noticeable increase 
in variation of read counts after 4 days of drug treatment (Fig. 1D,E, Supplementary Table 2). Scatter plots of the 
read counts between the untreated and 24 h samples and the untreated and 4d samples show an increase in differ-
ential sgRNA count between 24 h and 4d of drug treatment (Supplementary Fig. 3a,b).

sgRNA read counts were analyzed to determine the gene-level and protein-level negative and positive screen 
rankings of individual time points and combined time points using RRA (Supplementary Data 1–8). The 4d (end) 
samples were compared with the untreated sample, revealing a number of genes containing sgRNA that are sig-
nificantly decreased with APAP treatment (negatively selected, potentially essential) and significantly increased 
with APAP treatment (positively selected, potentially susceptible) (Fig. 2A,B). These gene knock-outs were sig-
nificantly differentially expressed after 4d of APAP treatment represent a small population of cells remaining 
after most cells were killed by APAP. The ranked gene lists underwent GSEA pathway analysis against the All 
Gene Ontology and KEGG pathway gene sets, which returned statistically significant, highly ranked essential 
pathways in the negative screen analysis as well as a number of novel pathways in both the negative and positive 
screen analysis (Fig. 2C–E). Essential KEGG pathways are highly ranked in the negative screen after drug treat-
ment, including ribosome and spliceosome pathways. Analysis of Gene Ontology pathways reveals other pathways 
important to cellular function are highly negatively selected and apoptotic processes are highly positively selected.

At 24 h APAP treatment, we observed a significantly different distribution of genes representing highly signif-
icant positive and negative changes in sgRNA expression (Fig. 3A,B). Pathway analysis by GSEA using the KEGG 
and Gene Ontology gene sets returned a number of novel pathways (Fig. 3C–E). The top negatively selected 
pathway after 24 hours of APAP treatment was regulation of skeletal muscle contraction. The top biological net-
work identified from this pathway by Ingenuity Pathway Analysis (Qiagen) was lipid metabolism, small molecule 
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biochemistry, and organ morphology, focusing around calcium signaling (Fig. 3F). We suspect this may be impor-
tant to the injury introduced by the APAP overdose, and further study of genes involved in this calcium signaling 
identified from this screen (including SLC8A3, ATP2A1, CASQ1) are warranted. This correlates with existing 
literature, suggesting that calcium imbalance may affect APAP-induced hepatotoxicity30,31. Our data provide new 
and previously unrevealed targets for further experimentation.

We next sought to rank genes by time groups rather than specific time points with two main goals: 1) identify 
genes that are ranked highly (positive or negative) in early time points (30 min–24 h APAP exposure) vs. no treat-
ment and 2) identify genes that are ranked highly (positive or negative) in all pooled APAP treated samples vs. 
no treatment. A literature search of the top 100 ranked genes (positively and negatively ranked, respectively) for 
each of these combinations of time points identified 44 unique genes (of 716 total unique genes queried) that are 
already associated with APAP and a vast majority which are novel (Table 1).

We then grouped genes that were highly ranked at independent time points to isolate early and late acting 
genes. While a few genes contained sgRNA that are significantly enriched (or depleted) across all early time 
points, many are unique to the individual time points. While the sensitivity of the screen at very early times is 
likely lower than at later time points, early and late acting gene groups that are shared between time points or are 
unique to specific time points but represent statistically significant pathways may be important to drug response 
(Fig. 4A,B). To identify knocked-out genes which have global significance we compared all APAP-treated samples 
to the T0 samples (Fig. 4C,D). To identify knocked-out genes that were important for the early APAP response 
we compared the 30 min–24 h APAP treated samples to the T0 samples (Fig. 4E,F). These comparisons resulted in 
5791 unique positively or negatively enriched significant genes (p < 0.05) in the combined 24 h APAP vs. T0, 4d 
APAP vs. T0, 30 min–24 h APAP vs. T0, or all APAP treatments vs. T0 gene rankings.

The RRA statistical method was chosen to rank gene knockouts because of its superior performance when 
compared with RSA and RIGER32. To validate our choice of statistical analysis method, we compared the 

Figure 1. Genome-scale positive and negative screening using CRISPR/Cas9. (A) Expression levels of Cas9 
in polyclonal and Monoclonal HuH7-Cas9 cell line. Full-length western blots are presented in Supplementary 
Fig. 1. (B) Relative growth of HuH7-Cas9/GuidePuro when treated with and without APAP. (C) Timeline of 
APAP resistance screen in HuH7 hepatocellular carcinoma cells. (D) Box-plot showing the distribution of 
log2 median-normalized sgRNA read count frequencies of the plasmid library (plasmid) and post-lentiviral 
transduction for baseline (T0), early APAP treatment time points (T30 min–24 h), and the endpoint (4 days 
APAP treatment and 21 days outgrowth) conditions. (E) Rank correlation p-values of median-normalized 
sgRNA read counts between treatment conditions.
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Maximum Likelihood Estimate algorithm (MLE) to RRA, which has been shown to produce comparable gene 
ranking to RRA33. In a MLE analysis of all APAP time points compared with the T0 sample, 683 genes were 
statistically significant (p < 0.05), of which 442 (65%) were also statistically significant (p < 0.05) using the RRA 
method (v0.5.6) (Supplementary Data 9).

Cross-referencing of other datasets. In cuffdif, GSE110787 RNA-seq data from mice with and without 
APAP exposure were compared to assess the effect of APAP exposure on gene transcription. 1,626 of 46,073 gene 
probes had significantly differential gene expression after APAP exposure with an unadjusted p-val  < 0.05. 1,025 
genes have − log2 fold change with p < 0.05 and 601 genes have +log2 fold change with P < 0.05 (Supplementary 
Fig. 4a, Data 10). Overlap between the genes that are highly ranked in the CRISPR screen at 24 h APAP treatment 
(2,082 gene knockouts, p < 0.05) and GSE110787 (p < 0.05) warrant validation in vivo. (Fig. 5A,B).Overall, 63 
enriched gene knockouts and 55 depleted gene knockouts (24 h, p < 0.05) overlap with the significantly differen-
tially expressed genes in the mouse model of ALF after 24 h drug treatment.

Secondary data from human sources was used to cross-validate the CRISPR screen findings. In GEO2R, 
microarray data from 3 APAP-induced ALF liver samples were compared to 2 healthy liver samples (GSE74000). 
1,679 of 54,675 probes have an FDR-adjusted p-value of <0.05. 1,251 probes have − log2 fold change with p < 0.05 
and 428 probes have +log2 fold change with p < 0.05 (Supplementary Fig. 4b). We compared genes with p < 0.05 
to genes that were significantly enriched and depleted in our CRISPR screen (p < 0.05) to identify overlap and 
ascertain the relationship between sgRNA depletion or enrichment and gene expression (Fig. 5C,D). Overall, 63 
enriched gene knockouts and 55 depleted gene knockouts (24 p < 0.05) overlap with the significantly differen-
tially expressed genes in the human ALF data.

Figure 2. Positive and negative screening of response to APAP reveal top gene and pathway candidates. (A) 
Identification of top candidate genes using the p-values from positive RRA analysis of the 4d and T0 samples. Genes 
with the most positively selected sgRNAs are highlighted. (B) Identification of top candidate genes using the p-values 
from negative RRA analysis of the 4d and T0sample. Genes with the most negatively selected sgRNAs are highlighted. 
(C) Top 10 KEGG pathways negatively selected in the endpoint sample compared with the T0 sample. (D) Top 10 
Gene Ontology pathways negatively selected in the endpoint sample compared with the T0 sample. (E) Top 10 Gene 
Ontology pathways positively selected in the endpoint sample compared with the T0 sample.
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A second dataset, GSE70748, was chosen to filter genes identified in the CRISPR screen that have also been 
identified in blood in humans who have been dosed with APAP. In GEO2R, microarray data from 12 APAP 
responder blood samples were compared to 32 non-responders using days 1 and 8 independently (GSE70784). No 
probes had an FDR-adjusted p-val < 0.05, so the unadjusted p-values were referenced. After 1 day of APAP dosing 
362 of 20,173 probes have an unadjusted p-val  < 0.05, of which 148 probes have −log2 fold change with p < 0.05 
and 214 probes have +log2 fold change with P < 0.05 (Supplementary Fig. 5a). After 8 days of APAP dosing 2445 
of 20,173 probes had an unadjusted p-val < 0.05, of which 314 probes have − log2 fold change with p < 0.05 and 

Figure 3. Highly ranked genes and pathways. (A) Identification of top candidate genes using the p-values 
from positive RRA analysis of the 24 h and T0 samples. Genes with the most positively selected sgRNAs are 
highlighted. (B) Identification of top candidate genes using the p-values from negative RRA analysis of the 24 h 
and T0 sample. Genes with the most negatively selected sgRNAs are highlighted. (C) Top 10 KEGG pathways 
negatively selected in the 24 h sample compared with the T0 sample. (D) Top 10 Gene Ontology pathways 
negatively selected in the 24 h sample compared with the T0 sample. (E) Top 10 Gene Ontology pathways 
positively selected in the 24 h sample compared with the T0 sample. (F) Top biological network identified by 
IPA from the top essential Gene Ontology pathway, regulation of skeletal muscle contraction, at 24 h of APAP 
treatment.
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2,131 probes have + log2 fold change with P < 0.05 (Supplementary Fig. 5b). We compared genes with p < 0.05 
to genes that were significantly enriched and depleted in our CRISPR screen (p < 0.05) to identify overlap and 
ascertain the relationship between sgRNA depletion or enrichment and gene expression at 24 h APAP treatment 
(Fig. 6A–D). Overall, 11 enriched gene knockouts and 15 depleted gene knockouts (24 h, p < 0.05) overlap with the 
significantly differentially expressed genes in non-acute overdose (drug responders vs. non-responders) after 1d 
of exposure. 101 enriched CRISPR gene knockouts and 117 depleted gene knockouts (24 h, p < 0.05 overlap with 
the significantly differentially expressed genes between drug responders and non-responders after 8d of exposure.

Using the same GSE70784 dataset in GEO2R, microarray data from 12 APAP responder blood samples were 
compared to 10 placebo controls using days 1 and 8 independently. After 1 day of APAP dosing 697 of 20,173 
probes had an unadjusted p-val < 0.05. Of these, 244 probes have − log2 fold change with p < 0.05 and 453 probes 
have +log2 fold change with P < 0.05 (Supplementary Fig. 5c). After 8 days of APAP dosing 1,801 of 20,173 probes 
had an unadjusted p-val < 0.05, of which 1248 probes have − log2 fold change with p < 0.05 and 553 probes have 
+log2 fold change with P < 0.05 (Supplementary Fig. 5d). We compared genes with p < 0.05 to genes that were 
significantly enriched and depleted in our CRISPR screen (p < 0.05) to identify overlap and ascertain the rela-
tionship between sgRNA depletion or enrichment and gene expression at 24 h APAP treatment (Fig. 6E–H).  
30 enriched gene knockouts and 34 depleted gene knockouts (24 h, p < 0.05) overlap with the significantly dif-
ferentially expressed genes in non-acute overdose (responders vs. placebo) after 1d of exposure. 89 enriched 
CRISPR gene knockouts and 86 depleted gene knockouts (24 h, p < 0.05 overlap with the significantly differen-
tially expressed genes in non-acute overdose after 8d of exposure.

Of the genes overlapping the CRISPR screen at 24 h APAP exposure (p < 0.05) and 1d APAP exposure vs. 
placebo in GSE70784, 7 up regulated genes and 8 downregulated genes remain significantly up or down regu-
lated after 8d APAP treatment (GSE70784, p < 0.05). These overlaps rise to 10 and 20 genes, respectively, when 
the CRISPR gene knockout list is expanded to include all significant gene knockouts across all treatment times. 
Similarly, 6 downregulated genes remain significantly down regulated after 8d APAP treatment when the CRISPR 
overlapping APAP responders are compared with non-responders (GSE70784, p < 0.05). 13 genes are down-
regulated when the CRISPR gene knockout list is expanded to include all significant gene knockouts across all 
treatment times. Overall, our CRISPR screen data best overlaps the long-term exposure (8d). We additionally 
observe that there is little overlap between the differentially expressed genes in the early (1d) and late (8d) chronic 
exposure data of GSE70784 when filtered by gene knockouts that are significantly enriched or depleted in the 
CRIPSR screen. This suggests a dramatic shift in gene expression between early and longer-term exposure. We 
also observe better overlap when we include significant gene knockouts from other time points observed from 
the CRISPR screen.

We then isolated only genes (or gene knockouts in the case of the CRISPR screen) that were significantly dif-
ferentially expressed across the CRISPR, mouse, and human studies. 523 genes (369 unique, 6% of CRISPR-Cas9 
screen genes with p < 0.05) overlap the mouse RNA-seq and CRISPR “top lists” (4d, 24 h, Int, and All, p < 0.05, 
representing 5,791 unique genes with significant enrichment or depletion in the CRISPR screen). 57 of the 67 
unique genes overlapping CRISPR, mouse, and GSE74000 p < 0.05 lists (0.1% of CRISPR-Cas9 screen genes with 
p < 0.05) are not previously reported to have a role in APAP metabolism, and 51/67 have consistent expression in 
mouse and GSE74000 and within CRISPR lists. When we compare the GSE70784 1 day responder vs. placebo to 
the CRISPR and mouse RNA-seq datasets, 12 of the 16 overlapping unique genes are novel (0.3% of CRISPR-Cas9 
screen genes with p < 0.05, p < 0.05 overlap the main CRISPR analyses and the mouse RNA-seq) and 10 of the 
16 have consistent expression between CRISPR analysis or between gene expression dataset. When we compare 
the GSE70784 8 day responder vs. placebo to CRISPR and Mouse datasets 36 of the 38 overlapping unique genes 
are novel (0.7% of CRISPR-Cas9 screen genes with p < 0.05, p < 0.05 overlap the main CRISPR analyses and the 
mouse RNA-seq) and 22 of the 38 have consistent expression between CRISPR analysis or between gene expres-
sion dataset. The largest number of genes overlapping with the CRISPR-Cas9 screen data was observed with the 
GSE70784 8d day responder vs. non-responder and responder vs. placebo datasets. (Supplementary Table 3). A 
number of the genes which had statistically significant differential expression in the in vivo datasets have known 
relationships with APAP (top 100 genes per data set), although as previously seen with the CRISPR screen, many 

PubMatrix APAP Acetaminophen Hepatotoxic Hepatotoxicity
Acute liver 
injury

Acute liver 
failure

24 h pos. top 100 genes × APAP 7 7 6 14 11 8

24 h neg. top 100 genes × APAP 5 5 5 5 5 5

4d pos. top 100 genes × APAP 7 6 6 8 6 8

4d neg. top 100 genes × APAP 7 7 2 8 8 4

all pos. top 100 genes × APAP 2 1 0 3 4 4

all neg. top 100 genes × APAP 6 6 4 7 6 4

30 min–24 h pos. top 100 genes × APAP 7 7 2 5 5 5

30 min–24 h neg. top 100 genes × APAP 6 6 4 7 5 5

genes in all 8 top 100 lists 800

unique genes in all 8 top 100 lists 716

unique genes with APAP hits 44(APAP), 
42(acetaminophen)

Table 1. The top 100 genes for various APAP time points were queried in pubmatrix to determine novelty.
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are novel findings (Supplementary Table 4). These candidates which show consistent and significant differential 
expression in ALI (GSE70784) and ALF (mouse RNA-seq and GSE74000) and whose knockout impacts survival 
of APAP overdose need further study to evaluate the mechanisms and pathways by which they function.

Figure 4. Identification of gene hits across the APAP time course in the CRISPR/Cas9 screen. (A,B) Venn 
diagrams of differently expressed genes in HuH7 cells treated with 15 mM APAP for 5 early time points. The 
diagrams show the number of gene knockouts significantly enriched by the treatment (A) and depleted by the 
treatment (B) for 5 time points (P < 0.05). The diagrams show the number of genes significantly modulated by 
the treatments. (C) Identification of top candidate genes using the p-values from positive RRA analysis based on 
all APAP time points vs. T0. Genes with the most positively selected sgRNAs are highlighted. (D) Identification 
of top candidate genes using the p-values from negative RRA analysis based on all APAP time points vs. T0. 
Genes with the most negatively selected sgRNAs are highlighted. (E) Identification of top candidate genes using 
the p-values from positive RRA analysis based on intermediate (30 min–24 h) APAP time points vs. T0. Genes 
with the most positively selected sgRNAs are highlighted. (F) Identification of top candidate genes using the 
p-values from negative RRA analysis based on intermediate (30 min–24 h) APAP time points vs. T0. Genes with 
the most negatively selected sgRNAs are highlighted.
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We suspect that NAD metabolism may play an important role in survival of acetaminophen injury and to this 
end we identified a number of genes involved in NAD metabolism which are also highly ranked in the CRISPR 
screen time points. A list of 48 genes identified based on Nikiforov et al., 2015 was compared with statistically sig-
nificant CRISPR hits (p < 0.05)34. We identified 9 NAD metabolism in our screen data (Supplementary Table 5). 
Additionally, data from our lab suggest overexpression of NAMPT, a gene involved in NAD salvage, is protective 
against APAP-induced hepatotoxicity in vivo35.

We considered genes for functional validation which were in the top 10 of a CRISPR list and were also sig-
nificantly differentially expressed in the GEO or mouse RNA-seq datasets (p < 0.05), with a preference for genes 
with a p < 0.05 in multiple positive or negative ranked lists. Novelty was assessed by literature search and essen-
tiality was determined from essentialgene.org. A number of genes that were highly ranked in the CRISPR screen 
(positive or negative), and overlapped with other gene sets (human and mouse gene expression with and without 
APAP, p < 0.05), are identified as essential genes (essentialgene.org). These genes include PGM5, KIF23, C19orf60, 
BMPR1A, PDSS2, CXADR, SSR2, TMCC2, RDH13, and EGR1 (Supplementary Data 11). Additional genes that 
were highly ranked in the CRISPR screen, and overlapped with the other gene sets (human and mouse gene 
expression with and without APAP), have previously published relationships with APAP metabolism (pubmatrix.
irp.nia.nih.gov). These genes include EGR1, VNN1, NR1I3. Genes ranked highly in both our screen and previous 
publications support the selection method used to filter candidate genes. Novel, non-essential genes identified by 
this study for further study include LZTR1, NAAA, ATG2B, MYOZ3, EFNB3, OR5M11, FCGR3A, PROZ, EEF1D, 
ACAD11, and TMCC2 (Supplementary Data 11). These genes are pathogenic (positively ranked) or protective 
(negatively ranked) and have potential for utility in development of diagnostic, risk-assessment, or therapeutic 
biomarkers.

Genes containing significant APAP SNPs. 133 gene names were identified from the literature as 
nearest-neighbors or containing 147 APAP injury-associated single nucleotide polymorphisms (SNPs)36. 22 of 
the genes were significantly enriched or depleted in the screen time points (Supplementary Table 6).

Figure 5. Validation of significant CRISPR/Cas9 screen hits by comparison with mouse ALI (GSE110787) and 
human ALF gene expression data (GSE74000). (A) Overlap of pos. CRISPR/Cas9 screen (p < 0.05, 24 h) with 
mouse RNA-Seq (p < 0.05, 24 h). Heat map of the log2 fold change of the most pos. selected sgRNAs (left to 
right). (B) Overlap of neg. CRISPR/Cas9 screen (p < 0.05, 24 h) with mouse RNA-Seq (p < 0.05, 24 h). Heat map 
of the differential log2 fold change of the most neg. selected sgRNAs (left to right). (C) Overlap of pos. CRISPR/
Cas9 (p < 0.05, 24 h) with ALF microarray dataset GSE74000 (p < 0.05). Heat map of the differential log2 fold 
change of the most pos. selected sgRNAs (left to right). (D) Overlap of neg. CRISPR/Cas9 screen (p < 0.05, 24 h) 
with ALF microarray dataset GSE74000 (p < 0.05). Heat map of the differential log2 fold change of the most neg. 
selected sgRNAs (left to right).
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Figure 6. Validation of significant CRISPR/Cas9 screen hits by comparison with human gene expression 
data (GSE70784). (A) Overlap of pos. CRISPR/Cas9 screen (p < 0.05, 24 h) with APAP overdose microarray 
dataset GSE70784 responders vs. Non-responders (1 day, p < 0.05). Heat map of differential log2 fold change 
of the most pos. selected sgRNAs (left to right). (B) Overlap of neg. CRISPR/Cas9 screen (p < 0.05, 24 h) with 
APAP overdose microarray dataset GSE70784 responders vs. Non-responders (1 day, p < 0.05). Heat map of 
differential log2 fold change of the most neg. selected sgRNAs (left to right). (C) Overlap of pos. CRISPR/Cas9 
screen (p < 0.05, 24 h) with APAP overdose microarray dataset GSE70784 responders vs. Non-responders 
(8 days, p < 0.05). Heat map of differential log2 fold change of the most pos. selected sgRNAs (left to right). 
(D) Overlap of neg. CRISPR/Cas9 screen (p < 0.05, 24 h) with APAP overdose microarray dataset GSE70784 
responders vs. Non-responders (8 days, p < 0.05). Heat map of differential log2 fold change of the most neg. 
selected sgRNAs (left to right). (E) Overlap of pos. CRISPR/Cas9 screen (p < 0.05, 24 h) with APAP overdose 
microarray dataset GSE70784 responders vs. Placebo (1 day, p < 0.05). Heatmap of differential log2 fold change 
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Drug-gene interactions of top candidate genes. Further analysis of top candidate genes described in 
this study (Supplementary Data 11, Tables 5–6) identified a number of candidate genes that may be suitable for 
re-purposing to treat APAP-induced hepatotoxicity. Of the 54 unique candidate genes that were analyzed, 153 
drug-gene interactions were identified for 19 genes (Supplementary Data 12). Of these, 14 genes were anno-
tated with drug-gene interactions of known effects (Table 2). Notably, 3 novel genes are targets of existing drugs, 
which may be suitable re-purposed therapeutics against APAP-induced hepatotoxicity. BMPR1A, identified as 
a susceptible gene by the CRISPR-Cas9 screen, is inhibited by CHEMBL3186227. PROZ, identified as a protec-
tive gene by the CRISPR-Cas9 screen, is activated by Menadione. HSD11B1, a gene that was susceptible in the 
CRISPR-Cas9 screen, is inhibited by Carbenoloxone, CHEMBL222670, CHEMBL2153191, CHEMBL2177609, 
and Phenylarsine Oxide. An additional 3 genes, NR1I3, SIRT3, and GSTP1, have known roles in APAP hepato-
toxicity that were correctly predicted by our CRIPSR-Cas9 screen and are targets of existing drugs that may be 
suitable for re-purposing37–39. These 6 genes are excellent candidate targets for re-purposing existing drugs to 
treat APAP-induced ALI and ALF. An additional 3 genes, SIRT1, GPX4, and GSS, were identified as targets of 
drugs with known gene interactions, however the CRISPR-Cas9 screen did not agree with the published gene role 
(protective or susceptible) in APAP-induced hepatotoxicity40–42.

Functional validations of candidate genes. Mouse Lztr1, Nampt, and Pgm5 were selected for further 
in vitro validations of their functional effect of survival of APAP injury in primary mouse hepatocytes. Nampt 
knockdown by siRNA was significantly pathogenic when compared with a scramble control after 3 h APAP treat-
ment (Fig. 7A,B, Supplementary Fig. 6a). Lztr1 knockdown by siRNA was significantly protective when compared 
with a scramble control after 3 h APAP treatment (Fig. 7C,D, Supplementary Fig. 6b). Pgm5 knockdown by siRNA 
resulted in a significant increase in cellular survival after 3 h of APAP treatment when compared with the scram-
bled control (Fig. 7E,F, Supplementary Fig. 6c).

Discussion
This study has identified a number of novel and previously unrevealed regulators of APAP-induced hepatotoxicity 
by employing state of the art genome-wide CRISPR-Cas9 screen in a hepatocyte cell line. Selected targets have 
been validated in primary hepatocytes and cross-referenced in other available data sets of human and mouse 
involvement. Our study has illustrated the power of a genome-wide CRISPR-Cas9 screen to systematically iden-
tify novel genes involved in APAP induced hepatocyte toxicity and most importantly, it provide a rich resources 
for further experimentation to identify potential new diagnostic targets or to develop novel therapeutic modali-
ties to APAP induced hepatocyte toxicity.

Validation of the screen findings was sought at multiple steps in the analysis and by siRNA in primary hepat-
ocytes. Inspection of the significant genes revealed overlap with human microarray and mouse RNA-seq studies 
of APAP overdose. Additionally, several top genes identified from the screen for further study already had known 
associations with APAP in the literature. Lastly, some of the genes identified from the screen for further study have 
been previously identified as essential. While these genes were not essential in our study, their relationship with 
APAP treatment would support their roles in critical cellular functions that, when disrupted, result in cell death.

Although few genes were completely removed from the pooled mutant cell population prior to APAP treat-
ment, thousands were missing after 4 days of APAP treatment. Based on the kill curve 4 days of APAP treatment 
results in about 1% surviving cells, indicating a majority of the cells being killed. The survival of cells with low 
numbers of sgRNAs is only statistically important if the proportion within the surviving population is signifi-
cantly different than the starting population consistently across multiple sgRNAs per gene. The early time points 
(30 min to 24 h) in this screen are base off of traditional gene expression screening techniques. By considering 
the impact of drug selection at early time points we can better assess the early and late response genes involved in 
drug toxicity. We propose that a Wilcoxon Rank-Sum value of p < 10−10 may be too stringent for addressing finer 
scale effects of gene knockout.

Using GSEA pathway analysis our screen identified WNT signaling (KEGG pathway) as a very strongly 
depleted pathway and also identified positive regulation of Notch Signaling (All Gene Ontology gene set) as a 
significantly depleted pathway (p < 0.05). Notch signaling has been previously identified as essential to survival 
of APAP43. To further validate our screening methodology, both spliceosome and ribosome KEGG pathways are 
among the most strongly depleted pathways after 4 days of APAP treatment. Our top negatively selected pathway 
after 24 h APAP treatment, regulation of skeletal muscle contraction, corroborated existing work, suggesting that 
intracellular calcium may be important to response to APAP. However, the role of this pathway in APAP-induced 
hepatotoxicity is unclear.

The 3 gene expression datasets all used distinct sampling methodologies, when combined with the 
CRISPR-Cas9 screen data, produced a comprehensive picture of changes in gene expression after APAP overdose. 
GSE70784 consists of blood samples from participants that are dosed with the daily maximum of APAP daily 

of the most pos. selected sgRNAs (left to right). (F) Overlap of neg. CRISPR/Cas9 screen (p < 0.05, 24 h) with 
APAP overdose microarray dataset GSE70784 responders vs. Placebo (1 day, p < 0.05). Heatmap of differential 
log2 fold change of the most neg. selected sgRNAs (left to right). (G) Overlap of pos. CRISPR/Cas9 screen 
(p < 0.05, 24 h) with APAP overdose microarray dataset GSE70784 responders vs. Placebo (8 days) (p < 0.05). 
Heatmap of differential log2 fold change of the top 10 genes with the most pos. selected sgRNAs (left to right). 
(H) Overlap of neg. CRISPR/Cas9 screen (p < 0.05, 24 h) with APAP overdose microarray dataset GSE70784 
responders vs. Placebo (8 days) (p < 0.05). Heatmap of differential log2 fold change of the most neg. selected 
sgRNAs (left to right).
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for an extended time. These data reflect a more chronic drug exposure, and response to the drug is measured by 
ALT. GSE74000 consisted of liver biopsies from Livers being replaced after APAP-induced ALF and liver biop-
sies obtained from non-ALF donors. This dataset, although it contains few samples, represents differential gene 
expression in humans at the 4d-point of the disease. The mouse RNA-seq data GSE110787 provided an extremely 
controlled population with controlled APAP dosage, avoiding issues of inter-population variabilities that may 
affect studies in human populations.

The local inflammatory response and accumulation of neutrophils, which is not considered necessary to 
the initiation of progression of ALF contribute a major role in clearing necrotic cells and alter the liver injury 
micro-environment. In addition the inflammasome contributes greatly to the late stage of injury with activation 
of caspase-1 and IL1β with further cytokines and chemokines contributing to the recruitment of neutrophils 
and monocytes44. This late-stage of injury would be better captured by the mouse RNA-seq (ALF, GSE110787) 
and human microarray (ALF, GSE74000) datasets, since they represent a late-stage disease in a whole organism, 
which includes inflammatory and immune interactions not present in hepatocytes alone. It is therefore unsur-
prising that we observed the best overlap of the CRISPR screen data with the human liver injury microarray data 
(GSE70784).

This approach addresses APAP-induced liver injury in 2 distinct ways. First, we identified genes with a role in 
APAP metabolism by assessing the effect of gene knockouts on cell proliferation and survival. Next, we identified 
genes that were differentially expressed in response to APAP. The combination helps us to build hypotheses about 
the role of these genes in the disease process. This cross-validation with other APAP datasets is targeted at iden-
tifying genes that are important to APAP metabolism and may be novel diagnostic or therapeutic biomarkers. 
Genes that are highly ranked in the CRISPR screen (p < 0.05) and whose RNA are expressed differentially at high 
enough levels that a blood sample (preferable) or liver biopsy (less preferable) could be used to detect changes 
in expression levels resultant from APAP overdose rapidly in clinic. Novel genes identified by this method that 
were highly ranked in the CRIPSR-Cas9 screen and in the gene expression data are the strongest candidates for 
further study.

We tested the effect of siRNA knockdown of Lztr1, Nampt, Pgm5, and Naaa in primary mouse hepatocytes to 
validate our screen findings. We demonstrate that Leucine Zipper Like Transcription Regulator 1 (LZTR1) knock-
out in HuH7 and knockdown in mouse cells increase cellular survival of APAP-induced injury. LZTR1 has a pos-
itive LFC in the APAP-exposed human microarray data GSE70784, suggesting that the while the gene knockout 

Gene Gene Effect on ALF Known Drug Drug Effect
Drug Effect matches 
Gene Effect?

BMPR1A susceptible (CRISPR screen) CHEMBL3186227 inhibitor yes

FCGR3A protective (CRISPR screen) GLOBULIN, IMMUNE antagonist no

NAAA protective (CRISPR screen) CARBENOXOLONE inhibitor no

NAAA protective (CRISPR screen) FLUFENAMIC ACID inhibitor no

NR1I3 susceptible (PMID: 12376703, and CRISPR screen) PRASTERONE activator no

NR1I3 susceptible (PMID: 12376703, and CRISPR screen) CHEMBL458603 agonist no

NR1I3 susceptible (PMID: 12376703, and CRISPR screen) CLOTRIMAZOLE antagonist yes

NR1I3 susceptible (PMID: 12376703, and CRISPR screen) MECLIZINE antagonist modulator yes

PROZ protective (CRIPSR screen) MENADIONE activator yes

HSD11B1 susceptible (CRISPR screen) CARBENOXOLONE inhibitor yes

HSD11B1 susceptible (CRISPR screen) CHEMBL222670 inhibitor yes

HSD11B1 susceptible (CRISPR screen) CHEMBL2153191 inhibitor yes

HSD11B1 susceptible (CRISPR screen) CHEMBL2177609 inhibitor yes

HSD11B1 susceptible (CRISPR screen) PHENYLARSINE OXIDE inhibitor yes

HSD11B1 susceptible (CRISPR screen) PREDNISONE ligand unknown

SIRT1 protective (PMID 29084443), susceptible (CRISPR screen) CHEMBL257991 activator unknown

SIRT1 protective (PMID 29084443), susceptible (CRISPR screen) SODIUM LAURYL SULFATE inhibitor unknown

SIRT1 protective (PMID 29084443), susceptible (CRISPR screen) CHEMBL420311 inhibitor unknown

SIRT1 protective (PMID 29084443), susceptible (CRISPR screen) SPLITOMICIN inhibitor unknown

SIRT3 susceptible (PMID 21720390, CRISPR screen) SODIUM LAURYL SULFATE inhibitor yes

GPX2 protective (CRISPR screen) GLUTATHIONE cofactor unknown

GPX4 protective (PMID 25962350), susceptible (CRISPR screen) GLUTATHIONE cofactor unknown

GSS protective (PMID 11287661), susceptible (CRISPR screen) ACETYLCYSTEINE stimulator no

GSTP1 susceptible (PMID 11058152; CRIPSR screen) EZATIOSTAT HYDROCHLORIDE inhibitor yes

KCNJ3 protective (CRISPR 4d), susceptible (CRISPR all APAP samples) CHEMBL2409106 activator unknown

KCNJ3 protective (CRISPR 4d), susceptible (CRISPR all APAP samples) CHEMBL116590 channel blocker unknown

KCNJ3 protective (CRISPR 4d), susceptible (CRISPR all APAP samples) HALOTHANE inhibitor unknown

NAMPT protective (PMID 29684358) TEGLARINAD CHLORIDE inhibitor no

Table 2. Top candidate genes with known drug effects annotated by the DRUG Gene Interaction Database 
(www.dgidb.org).
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increases survival of APAP, it is also elevated in APAP-treated subjects (Supplementary Data 11). LZTR1 muta-
tions are associated with Noonan Syndrome 10, Schwannomatosis-2, gastric cancer, ventricular septal defects, 
and deletion of the gene may be associated with DiGeorge syndrome45–49. The GO annotations for LZTR1 include 
transcription factor activity and sequence-specific DNA binding. The protein localizes to the golgi, where it is 
thought to have a stabilizing effect.

Nicotinamide Phosphoribosyltransferase (NAMPT, PDBID 4LVF.A) was selected for further study 
because although it is not significant in this screen, other lab data demonstrates a protective effect of overex-
pression against APAP-induced hepatotoxicity. In mice, Nampt has reduced expression after APAP treatment 
(LFC = −0.476, p < 0.05). This in combination with the number of other NAD metabolism genes that are signifi-
cantly ranked in this screen led us to validate the observed effect of NAMPT knockout in HuH7 with knockdown 
in mouse hepatocytes, which we found to increase susceptibility to APAP-induced injury. NAMPT protein is 
involved in the catalysis of the biosynthesis of the nicatinomide adenine dinucleotide. NAMPT’s role in NAD sal-
vage is thought to be important to a number of metabolism and aging-related conditions50–57. It is involved in the 
NAD metabolism and Common Cytokine Receptor Gamma-Chain Family Signaling pathways. GO annotations 
include protein homodimerization activity and drug binding. NAMPT’s role in APAP-induced hepatotoxicity 
does however need further study in whole organisms to evaluate its role during the different stages of liver injury. 
The secreted form of Nampt functions as both a cytokine and adipokine and functions to inhibit neutrophil apop-
tosis which is implicated in the second phase of acetaminophen-induced injury58.

Phosphoglucomutase 5 (PGM5) knockdown increased cellular survival of APAP treatment, validating our 
CRISPR/Cas9 screen finding that knockout of the gene is protective (Supplementary Data 11). PGM5 has a neg-
ative LFC in the APAP-exposed human microarray data GSE70784, suggesting that the gene knockout increases 
survival of APAP exposure and gene expression is decreased after APAP exposure. PGM5 does not exhibit phos-
phoglucomutase activity and is a component of cell-cell and cell-matrix junctions. It is expressed at high levels in 
smooth muscle and is essential in the metabolism of galactose and glycogen and is involved in the Porphyrin and 
chlorophyll metabolism pathway. GO annotations include structural molecule activity, intramolecular transferase 
activity, and phosphotransferase activity. Abnormal expression and mutation of PGM5 are associated with a num-
ber of diseases, including Duchenne’s Muscular Dystrophy and colorectal tumorigenesis59,60.

Although we were able to confirm knockdown of mouse Naaa in vitro, we were not able to validate the 
increase in susceptibility observed in the CRISPR-CAS9 screen. It is possible that the effect was too small in the 
conditions used for the validation experiments, or that a true knockout is needed to observe the effect.

It is widely accepted that the cytochrome P450 isoform play an important role in APAP metabolism. While we 
expected to see the cytochrome P450 isoforms higher in the gene rankings of the negative screen, it is unsurpris-
ing that they are not highly ranked. It is suspected that multiple isoforms can regulate the metabolism of APAP, so 
it is possible that others are compensating for the knocked out isoform. The low, though not totally absent, expres-
sion of some CYPs in HuH7 arguably increases the potential for this system to reveal non-canonical mechanisms 
of survival and susceptibility61. HuH7 additionally metabolized NAPQI by glucuronidation and sulfation at low 
levels7,61. Although there are always concerns when using a cell line to study a biological mechanism, HuH7 has 
been used successfully for studies of drug metabolism61,62. To carry out the CRISPR-Cas9 screen it was necessary 
to use a cell line that could be transduced and didn’t require differentiation. Whenever possible, we validated our 
findings in primary mouse hepatocytes.

To better control for potential differences in drug metabolism across systems and to identify the most prom-
ising candidate genes, the CRIPSR-Cas9 gene knockout rankings were cross-referenced with multiple human 
and mouse datasets to select the most promising candidate genes. We also identified genes with likely and known 
associations with APAP-induced hepatotoxicity (NAD metabolism and genes containing polymorphisms). 
Further study of the polymorphisms in these genes could result in a diagnostic or prognostics SNP panel. Further 
study of the role of these genes could inform their use in targeted therapies. These candidate genes were assessed 
for drugability by existing drugs as a means to more quickly bring forward new therapies. Indeed, 6 candidate 
genes (3 novel and 3 known) are targets for existing drugs which have an interaction predicted to be protective 
against APAP-induced hepatotoxicity.

Conclusions
Collectively, this study has illustrated the power of a genome-wide CRISPR-Cas9 screen to systematically iden-
tify novel genes involved in APAP-induced hepatocyte toxicity and to provide potential new targets to develop 
novel therapeutic modalities. Combined with functional validations, this screening technique offers a robust and 
dynamic way to identify candidate genes for a variety of disease models. In this study we demonstrate that LZTR1 
and PGM5 knockout and knockdown are protective against APAP–induced hepatotoxicity.

The gene NAMPT is protective against APAP-induced ALI in vivo, although not identified directly by the 
sgRNA screen, we show knockdown increases susceptibility to APAP-induced hepatotoxicity. NAMPT has a 
known role in NAD salvage that warrants further study to identify if its protective effect is resultant of increased 
NAD supporting glutathione production and CYP function, or if it is protective by a novel mechanism.

These genes represent novel diagnostic and therapeutic targets for improving the care of acetaminophen over-
dose. Gene expression could be used to determine susceptibility to APAP-hepatotoxicity as well diagnose and 
predict disease severity and outcome. Expression and function-associated variants in these genes could be used in 
risk-assessment genotyping panels. Furthermore, these genes represent novel biomarkers for personalized thera-
peutics. In silico analysis of candidate genes identified a number of the candidate genes that are targets for exist-
ing drugs. These existing drugs could be quickly re-purposed to treat and prevent APAP-induced ALF. Further 
studies are needed to better understand the functional role of the genes and pathways highlighted in this study.
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Methods
GeCKOv2 sgRNA library. The genome-wide CRISPR-Cas9 gene knockdown screen was accomplished 
using HuH7 human hepatoma cells and the GeCKOv2 gene knockout library23,63–65. The human GeCKOv2 
sgRNA libraries A and B contained 122,411 targeting sgRNA and 1,000 non-targeting control sgRNA, of which 
119,461 were unique sgRNAs (117,481 targeting sgRNAs). Libraries A and B were amplified in Endura compe-
tent cells (Lucigen cat. 60242-1, Middleton, WI) and isolated using the Purelink HiPure plasmid midi prep kit 
(Invitrogen k210005, Carlsbad, CA) as previously described23,64.

Figure 7. Validation experiments in primary mouse hepatocytes. (A) Viability of primary mouse hepatocytes 
transfected with 25 Mm scrambled or Lztr1 siRNA after treatment with 7.5 mM APAP for 3 h, normalized to 
Lztr1 siRNA transfected, untreated cells, measured by luminescent ATP assay. N = 4 and error bars represent 
standard deviation. *p < 0.05. (B) sqPCR from cDNA prepared from RNA collected 25 h post-transfection 
with 25 Mm scrambled or Lztr1 siRNA. ActB qPCR reactions were conducted concurrently, run on the same 
gel in non-adjacent lanes, and imaged concurrently. (C) Viability of primary mouse hepatocytes transfected 
with 25 Mm scrambled or Nampt siRNA after treatment with 7.5 mM APAP for 3 h, normalized to Nampt 
siRNA transfected, untreated cells, measured by luminescent ATP assay. N = 4 and error bars represent 
standard deviation. *p < 0.05. (D) sqPCR from cDNA prepared from RNA collected 25 h post-transfection 
with 25 Mm scrambled or Nampt siRNA. ActB qPCR reactions were conducted concurrently, run on the same 
gel in non-adjacent lanes, and imaged concurrently. (E) Viability of primary mouse hepatocytes transfected 
with 50–100 Mm scrambled or Pgm5 siRNA after treatment with 7.5 mM APAP for 3 h, normalized to Pgm5 
siRNA transfected, untreated cells, measured by luminescent ATP assay. N = 4 and error bars represent standard 
deviation. *p < 0.05. (F) sqPCR from cDNA prepared from RNA collected 25 h post-transfection with 50 Mm 
scrambled or Pgm5 siRNA. ActB qPCR reactions were conducted concurrently using the ActB F2 and R2 
primers, run on the same gel in non-adjacent lanes, and imaged concurrently. Full-length gels are presented in 
Supplementary Fig. 6.

https://doi.org/10.1038/s41598-018-37940-6


www.nature.com/scientificreports/

1 4Scientific RepoRts |          (2019) 9:1396  | https://doi.org/10.1038/s41598-018-37940-6

Cell Culture. HEK293FT cells (Thermo Fisher cat. R70007, Waltham, MA) were maintained in high-glucose 
DMEM (Thermo Fisher cat. 11965118) supplemented with 100 U/ml penicillin and streptomycin (Thermo Fisher 
cat. 15140122), non-essential amino acids (Thermo Fisher cat. 11140050), 2 mM L-glutamine (Thermo Fisher 
cat. 25030081), 1 mM sodium pyruvate (Thermo Fisher cat. 11360070), and 10% fetal bovine serum (Atlanta 
Biologicals cat. S11150, Atlanta, GA). Cells were detached with trypsin-EDTA (Thermo Fisher cat. 25200056).

HuH7 was obtained from the Japanese Collection of Research Bioresources Cell Bank66. The HuH7 human 
hepatocellular carcinoma cell line (JCRB cat. 0403, Osaka, Japan) was chosen as a model for APAP toxicity studies 
because it is more robust than primary hepatocytes, allowing efficient lentiviral transduction, transfection, and 
genome editing with CRISPR/Cas962,67–70.

Cells were maintained in DMEM (Thermo Fisher cat. 111885092) supplemented with 100 U/ml penicillin 
and streptomycin (Thermo Fisher cat. 15140122), non-essential amino acids (Thermo Fisher cat. 11140050), 
and 10% fetal bovine serum (Atlanta Biologicals cat. S11150) as previously described, with the addition of 2 mM 
L-glutamine (Thermo Fisher cat. 25030081) and 1 mM sodium pyruvate (Thermo Fisher)71. Cells were detached 
with trypsin-EDTA (Thermo Fisher cat. 25200056). All incubations were performed at 37 °C and 5% CO2.

Lentivirus Production and Purification to Produce Lentivirus. T-150 TPP flasks (18 T-150 flasks for 
the library, MidSci cat. TP0151, Valley Park, MO) of HEK293T cells were seeded at ~40% confluence the day before 
transfection in DMEM. One hour prior to transfection, media was removed and 18 mL of pre-warmed reduced 
serum OptiMEM media (Thermo Fisher cat. 31985070) was added to each flask. Transfection was performed 
using Lipofectamine 2000 (Thermo Fisher cat. 11668019) and Plus reagent (Thermo Fisher cat. 11514015). For 
each flask, 200 μl of Plus reagent was diluted in 3 ml OptiMEM with 20 μg of lentiCRISPR plasmid library, 10 μg of 
pVSVg, and 15 μg of psPAX2. 100 μl of Lipofectamine 2000 was diluted in 3 ml OptiMEM and, after 5 min, it was 
added to the mixture of DNA and Plus reagent. The complete mixture was incubated for 20 min before being added 
to cells. After 6 h, the media was changed to 24 ml D10 supplemented with 1% BSA (Sigma cat. A8412-100ML, 
St. Louis, MO). After 84 h, the media was removed and centrifuged at 3,000 × g at 4 °C for 5 min to pellet cell 
debris. The supernatant was filtered through a 0.45 um low protein binding membrane (EMD Millipore Steriflip 
cat. SE1MO03MO0 or stericup cat. SCHVU05RE, Billerica, MA). To achieve concentration of the GeCKO v2 
pooled library, the virus was ultracentrifuged (Beckman-Coulter, Brea, CA) at 84,000 × g for 1 h at 4 °C and then 
re-suspended overnight at 4 °C in D10 supplemented with 1% BSA. Aliquots were stored at −80 °C. Lentiviruses 
were titrated by qRT-PCR (Clontech Lenti-X™ qRT-PCR Titration Kit cat. 631235, Mountain View, CA).

APAP Kill Curve. The APAP concentration used for the screen was determined by measuring cell pro-
liferation of HuH7 stably transduced with Cas9 and Guide-Puro (empty vector) in the presence of 0–20 mM 
APAP (Sigma cat. A7085. St. Louis, MO) daily for 7 days. HuH7 were seeded at 20,000 cells/96-well (MidSci 
cat. TP92696, Valley Park, MO) prior to APAP treatment. Titration of APAP concentrations ranging from 
5 mM–20 mM was accomplished by measuring cell count at 24 hour intervals for seven days by trypan blue count-
ing (Sigma cat. T8154-100ML, St. Louis, MO). Percent of cell death was determined as an average of cell count 
divided by untreated cell count (N = 3). For the screen, 15 mM APAP was chosen because there were 95% fewer 
cells at 3 days selection than mock and 99% fewer cells at day 4 than mock, based on the strategy of Wang et al.27.

Cell Transduction Using the GeCKOv2 Library. HuH7 cells were detached using 0.25% Trypsin-EDTA 
(Thermo Fisher cat. 25200056) and seeded the day prior to transduction at 6E6 cells per T-150 TPP flask (MidSci 
cat. TP0151, Valley Park, MO). The flasks were then transduced for 48 h in culture media + 8 µg/ml polybrene 
(Thermo Fisher cat. 107689-10 G) + Cas9 lentivirus at an MOI  <0.1. HuH7 underwent monoclonal selection 
by 1 ug/ml blasticidin (Thermo Fisher cat. A1113903) before Cas9 expression was confirmed by western blot. 
HuH7-Cas9 was transfected with the GeCKOv2 packaged lentiviral library as described above at 0.5 MOI. The 
pooled, transduced cells were selected with 1.5 µg/ml puromycin (Invitrogen cat. Ant-pr-1) for 3 days alongside 
cells transduced with the empty vector lentiGuidePuro, positive fluorescent control PLJM1-EGFP. PLJM1-EGFP 
fluorescence was verified 48 h post-transduction.

APAP Screen and Sample Collection. After 8 days of transduction a T0 sample was collected (N = 2) and 
the remaining library-transduced cells were treated with 15 mM APAP for 30 minutes up to 4 days (2 biological 
replicates for T0, 24 hour, and 4 day samples). Samples that underwent 4 days of APAP treatment were outgrown 
for 21 days prior to collection. Genomic DNA was isolated from samples of a minimum of 2E7 cells using the 
Blood and Cell Culture Midi Kit (Qiagen cat. 13343, Valencia, CA), resulting in a minimum of 136 µg DNA 
per sample. DNA was quantified using the Qubit high-sensitivity DNA quantification assay (Thermo Fisher cat. 
Q32851) and Take3 microspot plate reader (BioTek Epoch, Winooski, VT).

Sequencing. 3.33 µg of the isolated genomic DNA was used to amplify the bar-coded amplicons in 39 
Herculase II DNA polymerase (Agilent cat. 600679, Santa Clara, CA) reactions per sample (primers described in 
Supplementary Data 13). 5 µl amplicon or 1 µl diluted plasmid library was used as template in 13 50 µl Herculase 
II DNA polymerase reactions per sample to attach pooled variable-length spacers and Illumina indexes (prim-
ers described in Supplementary Data 13). 24 cycles were used to amplify DNA in the first and second PCR, 
respectively. The amplicon fragments after PCR 2 have the following sequence (354–362 bp library with variable 
20 bp sgRNA sequence in the middle) (SF1). DNA was pooled by sample and purified using the Nucleospin 
Gel and PCR Clean-up kit (Clontech cat. 740609.250, Mountain View, CA). DNA was quantified using a Qubit 
high-sensitivity DNA quantification assay (Thermo Fisher cat. Q32851) and Take3 microspot plate reader 
(BioTek). DNA quality was analyzed by Experion CHIP assay (BioRad cat. 7007-163, Hercules, CA). Clusters 
were generated on the flow cell using the HiSeq Rapid Duo CBot Sample Loading Kit (Illumina CT- cat. 403-2001, 
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San Diego, CA). A single-read rapid run of 75 cycles was performed on a HiSeq. 1500 (Illumina cat. GD-402-
4002) using the HiSeq Rapid SBS kit (Illumina cat. FC-402-4022) with 10% PhiX.

GeCKOv2 screen deconvolution and statistical analysis. The sequence reads were demultiplexed and 
converted to fastQ with BCL2FastQ v2.17 (Illumina) and trimmed in cutadapt 1.7.1 (with Python 2.7.6) to only the 
20 bp sgRNA72. Trimmed reads were aligned to the index in Bowtie2 v2.1 with a 1 bp mismatch allowance73. Read 
counts were normalized to the median with T0 as control and analyzed using sgRNA and gene-level RRA (Robust 
Rank Aggregation) in MaGeCK v0.5.6. In comparisons between 2 time points the biological replicates were han-
dled as independent replicates and in the pooled T0 vs. 30 min–24 h and 30 min-end the replicates were combined. 
Gene-level analysis was validated using Maximum Likelihood Estimate (MLE) in MaGeCK v0.5.6. Genes with 
fewer than 3 sgRNA were removed from the gene-level analysis but were included in the Gene Set Enrichment 
Analysis (GSEA) pathway analysis implemented in MaGeCK v0.5.632,74. Box plot, scatter plots and heat map were 
generated in R. Venn-diagrams were generated using http://bioinformatics.psb.ugent.be/webtools/Venn/.

Pathway analysis. Analysis of pathway-level effects of APAP treatment in the 24 h and 4d samples individu-
ally vs. T0 was accomplished using GSEA in Mageck v0.5.6 using the MsigDB “KEGG gene sets” and “all GO gene 
sets”. Ingenuity Pathway Analysis of 24 h vs. T0 (genes with p < 0.05) and 4d vs. T0 (genes with p < 0.05) was also 
used to predict pathway-level effects of APAP treatment.

Statistical analysis of GEO datasets. Human APAP analysis. We then analyzed samples from 2 pub-
licly available human datasets of acetaminophen overdose from the Gene Expression Omnibus, GSE74000 and 
GSE707849,75. Gene candidates identified using the genome-wide CRISPR-Cas9 screen were cross-referenced 
with gens that were significantly correlated with APAP overdose from 2 human microarray datasets identified in 
the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/).

Of the available gene expression datasets assessing the effect of APAP, these were selected because they address 
hepatotoxicity at a range of stages. These datasets were analyzed in GEO2R using the microarray data normal-
ized and deposited by the original authors. GSE70784 contains gene-expression data from blood in patients 
receiving a daily dose of APAP or placebo. These data compare patients at a higher risk of injury (responders) 
to non-responders and placebo after 1 day and 8 days of dosing. Genes with differential expression in blood, 
especially early after dosing, are ideal diagnostic biomarkers. GSE7400 contains gene expression data from liver 
biopsies from healthy patients and patients APAP-induced-ALF. These data address differential gene expression 
in end-stage disease, and better inform the biological mechanisms active in APAP-induced ALF.

In GEO2R, microarray data from 12 APAP responder blood samples were compared to 32 non-responders 
and 10 placebo controls on 1 day and 8 days of APAP treatment (GSE70784). Subjects were treated with 4 g APAP 
or placebo for 7 days and were followed for 14 days. Responders were classified as patients with ALT (alanine ami-
notransferase). >2 times the upper limit of normal during days 4–9 after the start of APAP dosing. Background 
correction and normalization was completed by the depositing authors. Data was log2 transformed prior to anal-
ysis and the unadjusted p-values were used for comparison with the CRISPR screen.

Microarray data from 3 APAP-induced ALF liver samples were compared to 2 healthy liver samples were 
obtained from the GEO dataset GSE74000 and compared using GEO2R. Background correction, median polish 
summarization, and quantile normalization were completed by the depositing authors. Data was log2 transformed 
prior to analysis and the FDR-adjusted p-values were used for comparison with the CRISPR screen. Heat maps 
were generated in R. Box plots were generated in GEO2R.

Mouse APAP analysis. RNA-seq data from mice previously published by our lab (GSE110787) evaluating the 
effect of APAP overdose on RNA expression changes in the liver was 7 male 11 week old C57BL/6 mice, 4 saline 
treated control mice and 3 mice 24 h after 200 mg/kg APAP (Sigma cat. A7085, St. Louis, MO) exposure via 
intraperitoneal injection, underwent RNA-sequencing on an Illumina HiSeq 150035. RNA was isolated from liver 
using the MirVana miRNA isolation kit (Thermo Fisher cat. AM1561, Waltham, MA).

Samples were prepared using the TruSeq Stranded Total RNA Sample Preparation Kit (Illumina cat. RS-122-
2201, San Diego, CA) and clusters were generated using the TruSeq Paired-End Cluster Kit v3-cBot-HS (Illumina 
cat. PE-401-3001, San Diego, CA). Paired –end sequencing (2 × 101 cycles) was completed using the TruSeq SBS 
kit v3-HS (Illumina cat. FC-401-3001, San Diego, CA). The raw base calling (.bcl) files were converted to demulti-
plexed compressed FASTQ files using Illumina’s bcl2fastq v2.17 software. TopHat 2.0.9 was used to map RNA-seq 
reads against the mouse reference genome (mm10) using default parameters76,77. Transcript assembly and abun-
dance estimation and comparing expression were conducted with Cufflinks v2.2.1 and reported in Fragments 
Per Kilobase of exon per Million fragments mapped (FPKM). Cuffdiff, a part of the Cufflinks package, was used 
to calculate statistical significance changes of gene expression between treated and untreated mice. Box plot and 
heat maps were generated in R.

This RNA-seq study of APAP-induced ALI identified genes which were differentially expressed in a geneti-
cally and drug dosage controlled environment after liver injury has occurred, but prior to ALF. These data better 
illustrate the changes in gene expression due to the drug overdose absent of the variation that is unavoidable in 
human studies.

Functional validations in primary mouse hepatocytes and analysis. Cryopreserved hepatocytes 
(Lonza cat. MBCP01, Allendale, NJ) from 8-week old male C57/Bl6 mice were thawed in thawing media (Lonza. 
Cat. MCRT50) and immediately seeded at a density of 15,000 cells/96-well and 250,000 cells/12-well in Williams 
E media with thawing and plating supplement (Thermo cat. A1217601, cat. CM3000, respectively). After 4 h 
the cells were transfected using the standard Polyplus INTERFERin protocol for 4 h (VWR cat. 89129-930, 
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Radnor PA) and 25 nM TYE-563 fluorescent control (IDT cat. 51-01-20-19) or SmartPool scrambled siRNA or 
(Nampt, Lztr1, Naaa) siRNA (Dharmacon, Lafayette, CO) or 50–100 nM SmartPool siRNA (Pgm5, Dharmacon) 
in Williams E media with thawing and plating supplement (serum-free, Thermo cat. A1217601, cat. CM4000, 
respectively). 20 hours after transfection TYE-563 positive fluorescent controls were imaged and cells were 
treated with +/−7.5 mM APAP for 3 h beginning 22 h post-transfection. Cell viability was measured by ATP 
luminescence read at 0.25 seconds with n = 6 and the high and low values removed for a final n = 4 (Promega 
CellTiter-Glo cat. G7571, Madison, WI) using a TriStar LB 941 Multimode Microplate Reader (Berthold 
Technologies, Bad Wildbad, Germany). For each siRNA transfection, APAP-treated wells were normalized to 
untreated wells. Statistical significance was determined by a 2 sample 2-tailed Student’s t-test assuming equal 
variance (p < 0.05). Gene expression was validated by sqPCR (primers are described in Supplementary Data 13).

Western blotting. HuH7 cell lysates were collected on ice in RIPA buffer and isolated by centrifugation at 
~16,000 × g for 10 minutes @ 4 °C. Protein was quantified by Pierce BCA (Thermo Fisher cat. 23225, Waltham, 
MA). 30 µg protein (western) was boiled with sample buffer prior to loading on a polyacrylamide gel. Cas9 
antibody diluted 1:2,000 in TBS-T + 3% milk (EMD Millipore cat. MAC133, Billerica, MA), GAPDH antibody 
diluted 1:2,000 in TBS-T + 5% milk (Santa Cruz cat. sc-25778, Santa Cruz, CA). Goat anti-rabbit HRP antibody 
1:10,000 in TBS-T + 5% milk (Vector Biolabs cat. PI-1000, Malvern, PA) and horse anti-mouse HRP antibody in 
TBS-T + 5% milk (vector Biolabs cat. P1-2000, Malvern, PA) were used to visualize GAPDH and Cas9. Band size 
was visualized using the Precision Plus Protein Dual Color Standard (Bio-Rad cat. 161-0374).

sqPCR. RNA was isolated using the MirVana miRNA isolation kit (Thermo Fisher cat. AM1561, Waltham, 
MA) and quantified using the Epoch Take3 (BioTek, Winooski, VT). cDNA was amplified from 500 ng mRNA 
by SuperScript IV (Thermo Fisher cat. 18091200, Waltham, MA). 2 µl CDNA was used as sqPCR template 
using Platinum Taq polymerase (Thermo Fisher cat. 10966-026, Waltham, MA) (primers are described in 
Supplementary Data 13). A 2.5% agarose gel was run @100 V to visualize knockdown of mouse Lztr1, Nampt, and 
Pgm5 with ActB used as a loading control.

Drug-Gene interaction analysis. Genes in the top 10 of a CRISPR-Cas9 knockout screen list and over-
lapping a gene expression dataset (p < 0.05), in a CRISPR-Cas9 knockout screen list (p < 0.05) and involved 
in NAD metabolism, or in a CRISPR-Cas9 knockout screen list (p < 0.05) and containing or nearest neighbor 
to APAP-associated SNPs (Supplementary Data 13 and Tables 5–6) were compared against the Drug Gene 
Interaction Database (http://www.dgidb.org/) to assess known drug interactions and potential re-purposing of 
existing drugs78.

Plasmids. The lenti Guide_puro backbone, lenti Cas9_blast, and the Human GeCKOv2 CRISPR knockout 
pooled library were obtained from Addgene (pooled library #1000000048, #1000000049, plasmid #52962, 52963 
originally from Feng Zhang’s lab, respectively)64. psPAX2 was a gift from Didier Trono (Addgene plasmid # 12260; 
http://n2t.net/addgene:12260; RRID:Addgene_12260). pCMV-VSV-G was a gift from Bob Weinberg (Addgene 
plasmid # 8454; http://n2t.net/addgene:8454; RRID:Addgene_8454)79. pLJM1-EGFP was a gift from David 
Sabatini (Addgene plasmid # 19319; http://n2t.net/addgene:19319; RRID:Addgene_19319)80.

Source of Data. All research has been approved by the University of Missouri Kansas City Institutional 
Biosafety Committee. The studies using APAP overdose and acute liver failure patient microarray data are not 
classified as human subjects research because the data are previously collected and de-identified.

Data Availability
Amplicon sequence data from the CRISPR-Cas9 screen has been submitted to the Gene Expression Omnibus 
(https://www.ncbi.nlm.nih.gov/geo/, accession # GSE112463, accession # GSE112463).
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