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Motivation: A central goal of current biology is to establish a complete

functional link between the genotype and phenotype, known as the so-

called genotype–phenotype map. With the continuous development of

high-throughput technology and the decline in sequencing costs, multi-

omics analysis has become more widely employed. While this gives us new

opportunities to uncover the correlation mechanisms between single-

nucleotide polymorphism (SNP), genes, and phenotypes, multi-omics still

faces certain challenges, specifically: 1) When the sample size is large

enough, the number of omics types is often not large enough to meet the

requirements of multi-omics analysis; 2) each omics’ internal correlations are

often unclear, such as the correlation between genes in genomics; 3) when

analyzing a large number of traits (p), the sample size (n) is often smaller than p,

n << p, hindering the application of machine learning methods in the

classification of disease outcomes.

Results: To solve these issues with multi-omics and build a robust classification

model, we propose a graph-embedded deep neural network (G-EDNN) based

on expression quantitative trait loci (eQTL) data, which achieves sparse

connectivity between network layers to prevent overfitting. The correlation

within each omics is also considered such that the model more closely

resembles biological reality. To verify the capabilities of this method, we

conducted experimental analysis using the GSE28127 and GSE95496 data

sets from the Gene Expression Omnibus (GEO) database, tested various

neural network architectures, and used prior data for feature selection and
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graph embedding. Results show that the proposedmethod could achieve a high

classification accuracy and easy-to-interpret feature selection. This method

represents an extended application of genotype–phenotype association

analysis in deep learning networks.
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Introduction

A central goal of current biology is to establish a complete

functional link between the genotype and phenotype, known as the

so-called genotype-phenotype map (Romanowska and Joshi,

2019). Studying the relationship between the genotype and

phenotype can clarify the process of genetic variation

(Lunenburg et al., 2021; Tsuji et al., 2021). Genome-wide

association studies (GWAS) between common genotypes and

phenotypes are an effective way to reveal the link between an

individual’s genetic background and a specific disease or trait. The

principle is to find all the genetic variants on the genome (most

often single-nucleotide polymorphisms, or SNPs) and analyze the

correlation between genetic variants and phenotypes (Slaten et al.,

2020). Over the past decade, numerous GWASs have identified

many genetic variants associated with complex human diseases or

other traits (Lv et al., 2017; Wong et al., 2017; Shashkova et al.,

2021). Their findings indicate novel variant-trait associations

(Meyer and PhenotypeSimulator, 2018; Nussinov et al., 2019)

and provide a variety of new methods for analyzing complex

traits (Fortune et al., 2019; Sealfon et al., 2020; Denault et al., 2021),

enriching a multitude of clinical applications (Kim et al., 2016;

Maier et al., 2018). However, according to the principles of

GWASs, while SNPs for thousands of complex diseases and

traits have been discovered, single omics studies can only

illuminate a limited number of biological mechanisms, and the

further functional implications and mechanisms of the relevant

loci are largely unclear.

In recent years, a growing number of studies have attempted

to link clinical outcomes (e.g., for cancer and other diseases) to

gene expression and other types of omics data (Athreya and

Lazaridis, 2021; Hulot et al., 2021; Jendoubi, 2021) to create

multi-omics data for analysis (Dimitrakopoulos et al., 2018; Rao

et al., 2018; Zhao et al., 2018; Duan et al., 2021; Guan et al., 2021),

making such studies more biologically realistic. For example,

only those SNPs that affect the phenotype can be known through

GWAS data, but if the gene expression data is added to the SNP

and phenotype omics data, the SNP-gene-phenotype pathway

relationship can be solved by using the multi-omics data method.

So that makes the biological significance even clearer. However,

multi-omics data in genotype–phenotype association analysis,

especially in some novel disease data sets, are generally

vulnerable to the following two situations (Ritchie et al., 2015;

Lin and Lane, 2017; Picard et al., 2021). First, with the increase of

omics data types, multi-omics data on the same sample are not

easy to obtain, resulting in small multi-omics sample sizes. For

example, we made statistics on the data in the whole GEO

database and found that when there were four omics data

types, there were only two groups of data with

100–300 sample sizes. When there were three omics data

types, there were two groups with 300–400 sample sizes, five

groups with 200–300 sample sizes, and four groups with

100–200 sample sizes (up to 30 June 2022). According to

NETAM method (Lee et al., 2016), when the sample size is

N > 200, its method will have certain effect, and when the sample

size is equal to 800, the performance will reach the best. The

problem of multi-omics data analysis in such small sample cases

has been investigated in another article of mine (Guo et al., 2021).

Second, if the sample size is large enough, the number of omics

types is often small. We find in the GEO database sample size can

reach more than 1,000, but its omics data contains only genotype

and phenotype two omics type, and falling short of the

requirements for multi-omics applications, how to make use

of such data, combined with the advantages of multiple omics

data analysis, understanding the relationship between genotype

and phenotypic pathway is a problem to be solved in this paper.

Correlation between omics is often used to achieve multi-

omics analysis (as when studying the effect of SNPs on

phenotypes), and a common method is the introduction of

gene expression through embedding eQTL data, which can

lead to better classification performance (Zhu et al., 2016;

Shan et al., 2019; Wu et al., 2019; Gerring et al., 2021).

However, owing to the massive number of features of SNPs,

dimensionality reduction methods should be applied before

eQTL use, such as the commonly used principal component

analysis (PCA) or Isomap in manifold learning. Still, such

unsupervised dimensionality reduction methods cannot obtain

the pathway relationships between SNPs, gene effects, and

disease. To reduce the amount of input features, feature

filtering methods can be used in addition to dimensionality

reduction methods. While the neural network model is a

multilayer network architecture, the number of nodes in the

middle layer is usually fewer than the number of input values.

Intermediate layers with a smaller cardinality (compared to the

number of inputs) can be used as a reduced dimensional

representation of the input data. A supervised method of

feature filtering proposed by Lin et al. builds upon a neural

network to generate a low-dimensional representation of single-
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cell RNA-sequencing (scRNA-seq) data (Lin et al., 2017). By

combining neural networks with protein–protein interaction

(PPI) networks and using the hidden layer of the neural

network to generate a low-dimensional representation of

scRNA-seq data, this method can achieve better performance

than most existing unsupervised models, effectively reducing the

dimensionality of SNPs. With genes as our intermediate layer, we

use eQTL data to establish the association between SNPs and

genes, allowing the network to capture important biological

knowledge present in the data, obtain the

SNP–gene–phenotype association, and filter the number of

SNP to reduce dimensionality. In this way, other prior

knowledge is utilized to achieve the analysis effect of multiple

sets of data without multiple sets of data.

Additionally, diseases do not arise from merely a few genes,

but rather from interactions between genes with impacts on the

disease. In other words, functionally related genes are more

likely to be interdependent and impact biological outcomes in a

synergistic manner. For example, our team created the IPMM

(Integration Pathways and Motif Model) by combining genetic

association information such as pathways and motifs with

multi-omics data to study cancer subtype classification. Our

results show that the clustering effect was improved to varying

degrees in each method after incorporating the intergenic

associations (Guo et al., 2020). Therefore, implications of the

biological association between genes should be considered

when introducing genetic information into multi-omics.

Kong et al. combined gene networks with deep feedforward

networks (DFNs), which are useful in both classification

performance and learning the structure of trait spaces (Kong

and Yu, 2018). Zhao et al. proposed a new machine-learning-

based framework, GCN-DTI, for identification of new

drug–target interactions. The model first uses a graph

convolutional network (GCN) to learn the features of each

drug–protein pair (DPP). Then, using the feature

representation as input, the model uses a deep neural

network (DNN) to predict the final label. Their framework is

largely superior to some of the most advanced methods (Zhao

et al., 2021). The above method not only considers the

correlation between genes, but also effectively combines gene

networks with deep learning networks.

In summary, we propose a graph-embedded deep neural

network (G-EDNN) based on eQTL data, which implements

sparse connectivity and feature filtering between network layers

to prevent overfitting and reduce dimensionality, respectively.

Our model also embeds the gene network into the broader neural

network to integrate intra-omics correlation and better reflect the

biological reality. By effectively filtering the eQTL and gene

correlation layer relationships, we resolve the issue of the

sample size (n) being smaller than number of features p, n <<
p, which has historically hindered the application of machine

learning methods in the classification of disease outcomes. We

performed experimental analysis using the GSE28127 and

GSE95496 data sets from the GEO database, tested various

neural network architectures, and used prior data for feature

selection and graph embedding. The results show that the

proposed method could achieve high classification accuracy

and easy-to-interpret feature selection. The method extends

the application of deep learning networks to

genotype–phenotype association analysis.

The main contributions of this paper include:

1. Increasing interpretability of DNNs by integrating SNPs with

genes and incorporating intergenic correlations.

2. Simultaneously analyzing inter-omics and intra-omics

relationships, which is more in line with actual biological

mechanisms.

3. Achieving the dual purposes of feature filtering and

dimensionality reduction using neural networks.

4. Using GWAS data and other prior data to attain multi-omics

analysis, which clarifies pathway relationships between SNPs,

genes, and disease.

Methods

DNNs

DNNs are the most common deep learning architecture. An

n-layer network can be represented as

X1 � δ(X0W0 + b0)
Xi � δ(Xi−1Wi−1 + bi−1)
Xn � δ(Xn−1Wn−1 + bn−1)

P(Y|X0, θ) � f(XnWn + bn)
whereinX0 is an input matrix of n sample sizes; P is features;W0,

b0 is the initialization weight matrix and offset, respectively; Y is

the n-dimensional sample label; θ represents all parameters of the

model; and Xi, Wi, bi(i � 1, ..., n) represents each neuron layer,

weight matrix, and offset, respectively. δ(·) is the activation

function, such as a Sigmoid function, Tanh function, or ReLU

function. f(·) denotes the conversion of the values of the output

layers into probabilistic predictions using the softmax function.

Algorithms such as stochastic gradient descent (SGD) are used to

optimize the loss function, changing the parameters to minimize

cross-entropy loss (Courville, 2016).

C � −1
n
∑n
i�1
Yi ln(f(XiWi + bi)) + (1 − Yi) ln(1 − f(XiWi + bi))

G-EDNN based on eQTL data

Using the above DNN approach, SNPs can be used as

input and the phenotype as output to build a deep learning
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approach. To incorporate known prior knowledge into DNNs,

we propose the G-EDNN model based on eQTL data. This

model makes two major prerequisite assumptions: 1) SNPs

influence the phenotype through genes; and 2) the influence of

the genotype on phenotype does not rely on an individual

gene, but on how intergenic relationships cumulatively impact

the phenotype. For the first prerequisite, it has been

demonstrated in literature (Lee et al., 2016) that many

SNPs influence the phenotype through genes. Thus, we

added the intermediate gene network layer, which better

corresponds with biological reality and additionally allows

for sparse connectivity between layers using eQTL data.

Further, in multilayer neural network model structures,

usually, the number of downstream nodes is fewer than the

number of input values, which can be leveraged to represent a

dimensionality-reduced version of the input data. Moreover,

as genes have interactive correlative relationships, which do

not meet the characteristics of independent and homogeneous

neuron distribution of a hidden layer, an intergenic

correlation network should be integrated directly into the

neural network. This gives rise to the second prerequisite

assumption, also supported in the literature (Kong and Yu,

2018), that the model has higher classification accuracy and

better feature selection when the correlations between

genes are incorporated in the neural network, as shown in

Figure 1.

Sparse connectivity is involved in both SNP–gene correlation

and intergenic correlations. The correlations can be represented

by adjacency matrices. Let A and A′ denote the adjacency matrix

between the SNP–gene and gene–gene correlation, respectively.

The relationship between SNP and gene came from eQTL data,

and the association data between genes came from PPI data.

Then,

Aij � { 1, if SNP and gene are connected

0, otherwise
Aij

′ � { 1, if gene and gene are connected

0, otherwise

where i and j represent the matrix coordinates; and A′ is the
symmetrical matrix such that Ajj

′ � 1, indicating that the upper

and lower layers of the gene network interconnect.

By incorporating two adjacency matrices (A and A′) into the
DNN network, the original equation becomes

X1 � δ(X0(W0 ⊙ A) + b0)
X2 � δ(X1(W1 ⊙ A′) + b1)

X3 � δ(X2W2 + b2)
Xk � δ(Xk−1Wk−1 + bk−1)

P(Y|X0, θ) � f(XnWn + bn)
where the operator ⊙ denotes the Hadamard product (element-

wise product), k = 3, . . ., n represents the number of hidden

neuron layer. Thus, the connections between the first three layers

of the feedforward network achieve feature filtering through the

dot-product adjacency matrix. SNPs are selected using genomics,

and the intergene correlations are also considered. The SNP layer

keeps those SNPs related to genes, and the gene layer keeps those

genes related to both the SNPs and another gene. Because feature

selection is based on the predictive model, and not reliant upon

only the feature’s mathematical characteristics, the selected

FIGURE 1
G-EDNN model diagram based on expression quantitative trait loci data. The intergenic correlation network is embedded into a DNN to form
the final G-EDNN model.
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features may help elucidate underlying biological mechanisms of

disease.

Detailed model settings

The G-EDNN’s detailed settings include selecting the

activation function, the optimizer, the overfit prevention

strategy, the learning rate, the number of layers, the number

of hidden layer nodes, and the batch value, among other settings.

The selection of these values is not the focus of our work. The

hyperparameter tuning process is guided by the area under the

validation curve (AUC) of the receiver operating characteristics

(ROC) curve. In other words, we will select the best candidate

hyperparameter based on the AUC validation curve score.

For training the G-EDNN, we used the ReLU activation

function (Nair and Hinton, 2010), which has advantages over

sigmoid and tanh functions because it avoids the vanishing

gradients problem when using SGD (Kolen and Kremer,

2001). For the optimizer, we chose the Adam optimization

algorithm (Kingma and Ba, 2014), which is an extension of

the most widely used SGD algorithm in deep learning. In

addition, we used a small-batch training strategy where the

optimizer trains a small number of samples randomly in each

iteration. Too large a batch size will reduce the network’s

accuracy because it will reduce the stochasticity of gradient

descent. All else being equal, the larger the batch size, the

more epochs that need to be trained to achieve the same

accuracy, whereas with a smaller batch size, more weight

updates can be performed per epoch. There are two

advantages here: First, the epoch can quickly identify local

minima; and second, it has better generalization capacities.

Thus, we used smaller batch sizes, such as 16, 8, or even 1.

The learning rate setting generally does not affect classification

performance but may lead to inconsistent convergence speeds. A

relatively large learning rate will speed up convergence but may

also risk skipping the optimal value. We set the candidate rates to

0.05, 0.01, 0.005, and 0.001, and the combination of a learning

rate of 0.001 and batch size of eight was found to be the best

choice.

To avoid the overfitting phenomenon, we used the dropout

strategy. The strategy aims to randomly remove neurons in the

network (except the output layer) according to a certain

probability during the training process. The use of dropout

prevents the parameters from being overly dependent on the

training data and increases the ability of the parameters to

generalize to the data set. After testing several values of 0.5,

0.6, 0.7, 0.8, and 0.9, we settled on a dropout parameter value of

0.9. We simultaneously used regularization to mitigate

overfitting. Regularization introduces a model complexity

metric into the loss function to weaken the noise of training

data using a weight matrix (Wi) with the formula

Loss � loss(Y, f(XnWn + bn)) + αp∑m
i�0
loss(Wi)

loss(Y, f(XnWn + bn)) . Is the loss function of all parameters in

the model, such as cross entropy. The hyperparameter α defines

the proportion of ∑m
i�0loss(Wi) over total loss, which is the

weight of the regularization, and m is the number of layers of

the neural network.

In addition, the neural network has two important

hyperparameters that control the network topology’s number

of layers and number of nodes per layer. The values of these

parameters must be specified when configuring the network. The

number of hidden layers cannot be too high, as we are dealing

with relatively small samples. Further, too shallow of a neural

network is detrimental to our complex classification task. With

the above considerations, we tested three to five hidden layers

(not including the gene layer). For the hidden neurons, we

followed the convention in deep learning to set the numbers

as powers from the input layer to the output layer, decreasing in

magnitude. In fact, the number of hidden nodes usually has a

rather small impact on the performance of a neural network

compared to other factors. In many cases, increasing the number

of hidden units needed simply slows down the training speed.

Compared with ordinary neural networks, the G-EDNN model

has certain unique features. The number of neurons in the gene

layer depends on the correlation with the SNP layer, as well as

within its own layer. For the other hidden layers, we tested

numbers from 256, 128, 64, 32 and 16. When the model included

a gene hidden layer, then two other hidden layers were selected,

with 128 and 16 nodes per hidden layer, respectively. If the model

did not include a hidden gene layer, then three hidden layers were

selected, with 256, 64, and 16 nodes per layer, respectively.

Results

Data sources and preprocessing

To validate this method, we used two data sets from the Gene

Expression Omnibus (GEO) database (Edgar ett al., 2002).

GSE28127 (Lamb et al., 2011) is a study of hepatocellular

carcinoma patient data, which uses the Illumina

HumanHap650Yv3 Genotyping BeadChip

(HumanHap650Yv3_A) chip to analyze DNA and expression

variants in 217 tumor cancer patients and 184 non-tumor cancer

patients. GSE95496 data (Vujkovic et al., 2017) were used to

conduct SNP analysis using Affymetrix 6.0 SNP arrays on

254 pairs of acute myeloid leukemia samples (remission or

diagnostic).

PPI network data were derived from Protein InteraCtion

KnowLedgebasE (PICKLE) (Gioutlakis et al., 2017). This

database is a meta-database of human protein interactions,
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integrating publicly available PPI interaction databases via

genetic information ontology.

The eQTL data originated from GTEx Analysis V7 (dbGaP

Accession phs000424. v7. p2) (Lonsdale et al., 2013). To preserve

the accuracy of data prediction and combat tissue idiosyncrasies,

we selected eQTL data that corresponded with our data. For

example, we selected hepatic eQTL data for the first data set, and

blood eQTL data for the second data set.

Data preprocessing mainly involved unifying SNP and

gene naming in various types of data and removing data with

missing values of more than 20% in SNP data. If less than 20%

of data was missing values, then we filled missing data with the

highest frequency value or with the average value and only

retained SNP s with a minor allele frequency (MAF) greater

than 0.05.

Prediction analysis

The method in this paper is based on neural networks,

integrating prior information such as eQTL in the first layer,

and considering intergenic correlations in the hidden layer. We

selected the following additional methods for comparative

experiments:

1) General DNN. This method uses traditional deep learning

networks, various parameter settings, and activation function

selection. The process of feature selection through prior

information such as eQTL data is removed from the first

layer, and gene-related information is not considered in the

hidden layer.

2) E-DNN. Based on general DNN, SNPs are feature-filtered by

a first layer of eQTL data. This method evolved from the

feature selection method proposed by Chieh Lin et al. (Lin

et al., 2017), combined with SNP data characteristics. This

method does not consider intergenic correlations.

3) Graph-embedded deep feedforward network (GEDFN). Kong

et al. (Kong and Yu, 2018) proposed the GEDFN method,

which considers intergenic correlations and resolves sample

sizes being much smaller than the number of features by

integrating the gene network directly into the classifier. In the

GEDFNmethod, the SNP and gene layers are fully connected,

and only gene network information is incorporated into the

hidden layer for feature screening.

Two data sets, GSE28127 and GSE95496, were used to

compare the method of this paper with the above three

methods, and as it is a dichotomous problem, we could

illustrate the comparison with AUC values, as shown in Figure 2.

From the results of Figure 2, we can see that this method

performed better in both data sets compared to other methods.

The results of the G-EDNN method are significantly better than

those of the GEDFN method, which indicates that intra-omics

correlations should be integrated into the analysis process and

incorporated into the DNN to better align with biological reality.

The results of G-EDNN are better than those of the E-DNN

method, primarily owing to the addition of filtering the

correlation between SNPs and genes. This indicates that

FIGURE 2
Comparison of the performance of G-EDNNwith DNN, E-DNN, GEDFN, and other methods using receiver operating characteristics curves. (A)
shows the results for GSE28127, and (B) shows the results for GSE95496. The legend contains the AUC values of each method on the data sets. Our
method has the highest AUC value, indicating that our method outperforms the other methods.
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considering the relationship between SNPs and genes at the same

time as the foundational consideration of intergenic correlations

is more reflective of the actual biological system.

Both the E-DNN method and GEDFN method showed

advantages over the general DNN, which indicates that

incorporating either SNP–gene association or gene network

data can both effectively reduce feature dimensionality and

improve prediction accuracy.

Applying all four methods on the two data sets, we found that

the results of the first data set are significantly better than the

results of the second data set, mainly because of the large

difference in SNP numbers between the two data sets. The

number of SNPs in the first data set after preprocessing was

2065, while the number of SNPs in the second data set was 6,426.

The sample sizes of the two data sets were 501 and 508,

respectively. Thus, in the situation of nearly identical sample

sizes, the smaller the number of filtered features, the better the

results.

Sample sizes analysis

In genotype–phenotype association analysis and studies, the

sample size often has a certain degree of influence on results. For

example, for the NETAM method (Lee et al., 2016), its

performance was significantly better (larger area under the

curve) when the sample size N > 200, while the GSPLS

method (Guo et al., 2021) required a sample size of only a

few dozen.

To validate the effect of sample size on the present method,

we randomly selected sample sizes N = 500, 400, 300, 200, and

100 from the data set, and ensured that positive and control

samples were in the same proportion during the sample size

extraction process. Experiments with both data sets

(GSE28127 and GSE95496) showed that the overall trend of

AUC values decreased with decreasing sample size, as shown in

Figure 3. Comparing the experimental results of the two data sets,

we found that the experimental effect of GSE28127 was better

than that of GSE95496 with the same sample size; the primary

reason, as stated in the prediction analysis, is related to the

number of features. It was also found that when data set

GSE28127s sample size was less than 200, and data set

GSE95496s sample size was less than 300, adding various

methods to address the “overfit” problem (e.g., adding a

dropout layer, reducing the learning rate, and using other

optimizers) was unable to prevent overfit. This means that the

sample size that generates an overfitting phenomenon varies by

the number of features in the network. Therefore, with the

sample sizes being equal, the overfitting phenomenon is more

likely to occur for data with a larger number of features.

Pathway analysis

In contrast to other methods, this method can analyze the

pathway relationships between SNP, gene, and phenotype. The

G-EDNN method can obtain the weight relationship between

each SNP, related genes, and the disease connection. These two

FIGURE 3
Comparative receiver operating characteristics curves of G-EDNN performance for different sample sizes. The left side shows the results for
GSE28127, and the right side shows the results for GSE95496. The legend depicts the sample size and the AUC value for each sample size on the data.
As the sample size decreases, corresponding AUC values also decrease.

Frontiers in Genetics frontiersin.org07

Guo et al. 10.3389/fgene.2022.921775

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.921775


layers of weights are multiplied together to obtain the pathway

weights (if no edge exists, the edge weights are set to 0), which we

name the pathway score (PS) to reflect its importance.

Taking data set GSE95496 as an example, we ranked the PS of

the associations between each -ome layer and isolated the top

20 strongest pathways for comparison with acute myeloid

leukemia related SNPs and genes in the PhenoScanner

database. (Staley et al., 2016). The PhenoScanner database

contains 137 genotype–phenotype association data sets, the

NHGRI-EBI GWAS catalog, and NHLBI GRASP and dbGaP

correlation catalogs. During this comparison process, we did not

normalize the weights, mainly because the PS is a two-tier weight

product, and normalization would affect the relative proportion

of the two weights in the overall PS.

Matching our results with the PhenoScanner database could

ascertain whether this paper’s proposed method could identify

confirmed key loci or genes. As seen in Table 1, SNPs or genes in

six of the top 10 pathways obtained by our sorting appeared in

the PhenoScanner database. Among the top 20 pathways

obtained by sequencing, nine of the SNPs or genes in the

pathway appeared in the PhenoScanner library.

Conclusion

This paper’s proposed G-EDNNmodel effectively generates

a reduced-dimension representation of input data by ensuring

smaller numbers of intermediate layer nodes than the number

of input values. Our implementation uses SNP data as input to

formulate a function that identifies correct gene associations

from values computed by the intermediate layer nodes. We

tested various architectures of such networks, including

structures obtained from different SNP–gene correlation data

and intergene correlation data. As our results show, the learned

network captured several biologically important pathways

within the data. We classified SNP data using the values

produced by the neural network’s intermediate layers and

compared these values with various other unsupervised

methods as well as previous methods of GWAS

classification. We conclude that integrating SNP–gene and

gene–gene correlation data improves classification

performance.

Discussion and future work

In the process of establishing SNP–gene relationships, we

use not only eQTL data, but also the positional relationships

between SNP and the gene. Specifically, if the position of the

SNP is in the same delimited area as the gene’s position, we

believe that there may be an association between that SNP and

that gene. There are two main reasons for this approach. First,

SNP data are extremely large and plentiful, while the amount of

eQTL data containing SNP data is relatively small; considering

only eQTL data may lead to sparse results and potentially miss

undiscovered relationships. Second, we use both SNP–gene

relationships and the gene’s own network data for filtering;

without eQTL data mapped to specific gene correlations,

analysis may miss certain gene clusters.

In terms of the model’s generalizability, other models are

often tested on simulated data, but this paper’s model was not,

and while SNP, gene, eQTL and PPI data networks are all

correlated, the potential relationships between them were not

reflected in simulated data. For example, when we simulated SNP

and gene data, eQTL data could not be generated randomly

because the related genes in the network might affect their

counterpart eQTL data. Therefore, although we initially

intended to use simulated data to reflect our method’s

generalizability, owing to the above issue, only real data were

used to validate our method.

As this method involves setting multiple hyperparameters,

the results are sensitive to individual parameters (e.g.,

hyperparameter α in the loss function); thus, the resultant

AUC still has much room for improvement. Therefore, we

believe this method may provide a useful foundation for

future studies to incorporate inter-phenotype correlations

relationships, such as adding prior data on known disease

pathways and associations between diseases to analyze

potential relationships between known diseases and other

diseases.

TABLE 1 PS values of the top 20 pathways.

SNP Gene PS Presence in PhenoScanner

1 rs6564261 CFDP1 383.11 Yes

2 rs11915851 ITIH3 341.02 No

3 rs17304995 RFT1 302.16 Yes

4 rs35671032 PRKCD 274.37 No

5 rs1178032 CENPB 270.12 No

6 rs59895335 PRKCE 259.24 Yes

7 rs10781976 BCAR1 257.39 Yes

8 rs113487987 DPYD 252.41 Yes

9 rs76214357 ITIH1 250.26 Yes

10 rs8100824 LRRC25 243.75 No

11 rs116793674 MYL7 243.05 No

12 rs12652555 ERAP1 238.23 No

13 rs56063308 MAP3K7 238.05 Yes

14 rs217361 TMED4 237.97 No

15 rs118052674 CENPB 225.43 No

16 rs72697033 RFX3 223.58 Yes

17 rs1041608 WDR5 221.85 No

18 rs117104394 NISCH 220.17 No

19 rs1471483 MMRN1 220.02 No

20 rs117259301 VPS16 218.36 Yes
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