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ABSTRACT

Ramp sequences occur when the average transla-
tional efficiency of codons near the 5′ end of highly
expressed genes is significantly lower than the rest
of the gene sequence, which counterintuitively in-
creases translational efficiency by decreasing down-
stream ribosomal collisions. Here, we show that the
relative codon adaptiveness within different tissues
changes the existence of a ramp sequence without
altering the underlying genetic code. We present the
first comprehensive analysis of tissue and cell type-
specific ramp sequences and report 3108 genes with
ramp sequences that change between tissues and
cell types, which corresponds with increased gene
expression within those tissues and cells. The Ramp
Atlas (https://ramps.byu.edu/) allows researchers to
query precomputed ramp sequences in 18 388 genes
across 62 tissues and 66 cell types and calculate
tissue-specific ramp sequences from user-uploaded
FASTA files through an intuitive web interface. We
used The Ramp Atlas to identify seven SARS-CoV-
2 genes and seven human SARS-CoV-2 entry fac-
tor genes with tissue-specific ramp sequences that
may help explain viral proliferation within those tis-
sues. We anticipate that The Ramp Atlas will facili-
tate personalized and creative tissue-specific ramp
sequence analyses for both human and viral genes
that will increase our ability to utilize this often-
overlooked regulatory region.

INTRODUCTION

Tissue-specific regulation and resource availability directly
affect gene transcription and translation, which results in
widespread tissue-specific differential gene expression (1–5)
that can be analyzed in the Human Protein Atlas (6), The
Genotype-Tissue Expression (GTEx) Project (7) and the
Functional Annotation of Mammalian Genomes (FAN-
TOM5) (8,9) and leveraged to identify disease biomarkers
(6,10–20) for a variety of diseases such as cancers (1–5),
drug resistance (18), cystic fibrosis (14), cardiovascular dis-
ease (16) and Alzheimer’s disease (20).

Since codon usage biases correlate with local tRNA
pools and tissue-specific RNA binding proteins (21,22),
codon usage biases often change between different tissues
(21,23). Variations in tRNA abundances affect gene expres-
sion by altering tRNA competition and codon optimality,
which changes the translational efficiency of various codons
(24,25). Therefore, although the mRNA transcript remains
unchanged between tissues, the efficiency at which those
codons can be translated differs between tissues and cell
types (22,26–30). While genome-wide codon usage biases
are highly correlated with genome-wide guanine-cytosine
(GC) content (31), translational selection may play an im-
portant role in maintaining gene-specific codon usage biases
(32–34) because codon usage biases alter translational effi-
ciency (32,35,36), gene expression (35,37,38), mRNA sec-
ondary structure (34,39), and protein structure and func-
tion (36). However, selection for tissue-specific codon adap-
tations in humans has been highly controversial: Doherty
and McInerney (40) and Chamary et al. (32) argue that
tRNA gene families undergo precise regulation to gener-
ate anticodon pools that directly correlate with available
mRNA, while Pouyet et al. (41) concludes that global GC-
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content biases affect meiotic recombination and preclude
tRNA optimization. Translational selection can also signif-
icantly shape codon usage biases across vertebrates, even
when high GC-content biases are present (42). Regardless
of selection or GC-content biases shaping the underlying
tRNA pool within each tissue, gene expression can be sig-
nificantly impacted by how well the mRNA codons are
adapted to that available tRNA pool.

Often, tissue-specific tRNA levels correlate with the
codon usage biases of highly expressed genes, suggesting
that tRNA abundances play a role in tissue-specific gene
and protein expression (21). The tRNA pools within tissues
and cell types can differ significantly (21,43–50), and unique
tRNA pools cluster into subsets of proliferating and differ-
entiating cells when characterized by cell type (30). These
cell types maintain tRNA levels that match the codon us-
age biases and increase the expression of genes that pro-
mote proliferation or differentiation (30). Similarly, cellular
tRNA levels may dynamically change to increase the expres-
sion of certain genes in response to stress. For example, het-
erologous protein overexpression, diminished growth rate,
and translational imbalances trigger tRNA pool readjust-
ments to increase expression of needed genes (51–55). Ad-
ditionally, cells significantly increase tRNA levels in the G2
phase of the cell cycle to temporarily increase the trans-
lational efficiency and expression of cycle-regulated genes
with non-optimal codon usage bias (56).

Various diseases also trigger tRNA pool alterations. For
example, the tRNA pool in breast cancer cells is altered to
increase expression of genes that promote metastasis (57)
and methionine misacylation increases in mammalian cells
when exposed to viruses or oxidative stress, which can have
a protective effect on the cells (58). The interplay between
tissue and cell type-specific codon usage biases, tissue and
cell type-specific tRNA abundances, and synonymous mu-
tations can have a significant effect on various human dis-
eases (30,43–45,57,59–64). During the later stages of infec-
tion, HIV-1 changes cellular tRNA levels to increase ex-
pression of viral genes with codon usage biases that are
poorly adapted to the original host tRNA pool (65), and
human protein SLFN11 counters virus-induced changes to
tRNA levels by interacting with tRNA in the host cell to
limit viral protein production (66). Similarly, viral genes in
SARS-CoV-2 alter tRNA levels and deprive tRNA from
normally highly-expressed host genes by monopolizing the
tRNA supply, thereby decreasing host gene expression and
inducing additional damage (67).

Viruses that infect humans often use similar codon usage
biases as highly expressed genes within the tissues that they
infect to facilitate co-opting available cellular machinery
(67–69). For example, genes in SARS-CoV-2 utilize codon
usage biases that match very highly expressed genes in lung
tissue, likely contributing to increased viral gene expression,
decreased host gene expression, and infection in the lungs
(67,70). In SARS-CoV-2, codon usage similarities between
viral genes and highly-expressed host genes likely improve
viral translation and replication, which may help predict
which human genes will be downregulated during an infec-
tion (71). Similarly, codon usage biases in Papillomavirus
genes promote gene expression in differentiated epithelial
cells to more effectively spread infection (72).

Although many tissue-specific codon usage biases have
previously been reported, the tissue-specific effects of ramp
sequences have yet to be characterized. Ramp sequences
increase overall translational efficiency by utilizing slowly-
translated codons at the beginning of genes to evenly space
ribosomes and reduce downstream ribosomal collisions.
Ramp sequences occur when 20–40 suboptimal codons
concentrate at the beginning (5′ end) of highly-expressed
gene sequences and occur in approximately 10% of genes
(73). Ramp sequences generally increase gene expression
by counterintuitively slowing initial translation so that ri-
bosomes can evenly distribute (21,49,73–76) and more ef-
ficiently translate the remaining transcript without riboso-
mal traffic jams (77,78). Increased translational efficiency
increases mRNA stability and gene and protein expression,
especially in genes that have higher ribosome density, higher
mRNA levels, and a strong correlation between mRNA and
protein expression (77,79). The correlation between ramp
sequences and increased gene expression has been shown in
several species. Park and Subramaniam (79) demonstrate in
Saccharomyces cerevisiae that ramp sequences increase gene
expression and mRNA stability by preventing ribosome
collisions at downstream stall sites (i.e. sequences within an
mRNA that slow or ‘stall’ ribosomes during translation)
that would otherwise halt translation, cleave the mRNA,
and decrease expression. Miller et al. (73) report that ramp
sequences exist in all domains of life, and highly expressed
genes have a greater proportion of ramp sequences than
genes with low expression in Drosophila melanogaster. They
later showed that ramp sequences are conserved in all do-
mains of life (80), but can change between different human
populations (81). Goodman et al. (82) show that ramp se-
quences in Escherichia coli increase gene expression ∼14-
fold. However, the mechanisms by which ramp sequences
affect gene expression have yet to be fully characterized.
Ramp sequences may increase protein expression by reduc-
ing mRNA secondary structure (82), or impact transcrip-
tional efficiency by requiring fewer hydrogen bonds in ds-
DNA to be broken (83). Regardless, orthologous ramp se-
quences are evolutionarily conserved across all domains of
life (82,84,85), which suggests that they play an important
functional role in regulating gene expression.

While ramp sequences have been analyzed across sev-
eral species (73,79) and populations (81) at a genomic level,
they have never previously been characterized within hu-
man tissues and cell types using single cell codon efficien-
cies. Because tissues and cell types have distinct tRNA lev-
els (21,43–50) and codon usage biases (21,23), we hypothe-
sized that they would also have distinct ramp sequences, de-
spite having no differences in the underlying genetic code.
We propose that characterizing ramp sequences in tissues
and cell types will more accurately describe ramp sequence
role in basic biology, ramp sequence prevalence and distri-
bution across all genes, their correlation with tissue and cell
type-specific gene expression, and aid in elucidating their
role in human health and disease.

Here, we present The Ramp Atlas, which is the first com-
prehensive analysis of tissue and cell type-specific ramp
sequences and how they relate to tissue-specific gene ex-
pression and SARS-CoV-2 infection. We identified 3108
genes with ramp sequences that were alternatively present,
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or absent, depending on the relative translational efficien-
cies in tissues and tissue-stratified cell types calculated from
gene expression in the Human Protein Atlas (86–88), GTEx
Project (7) and FANTOM5 datasets (8,9). We allow re-
searchers to query ramp sequences in 18 388 genes span-
ning 62 tissues and 66 cell types with embedded Tableau
charts that allow user-specific querying to facilitate targeted
ramp sequence analyses. We also present an online version
of our ramp sequence identification algorithm, ExtRamp
(73), to facilitate tissue-specific ramp sequence analyses on-
line through a user-friendly interface. To explore the role
of ramp sequences in disease, we used ExtRamp Online
to identify ramp sequences in seven SARS-CoV-2 genes
and seven human SARS-CoV-2 entry factor genes, both
present in a variety of tissues. The SARS-CoV-2 analyses in-
dicate that virus-specific ramp sequences may play an inte-
gral role in viral proliferation because ramp sequences were
present significantly more often in tissues that SARS-CoV-
2 is known to infect. We anticipate that The Ramp Atlas
will facilitate future ramp sequence analyses on tissue or cell
type-specific gene expression impacted by ramp sequences,
genetic variant effects on tissue-specific gene expression, vi-
ral adaptations to specific tissues or cell types, and therapeu-
tic developments that aim to modulate tissue-specific gene
expression.

MATERIALS AND METHODS

Dataset selection

We used all available tissue and cell type expression data
in the Human Protein Atlas (87–89), as well as the GTEx
Project (7) and FANTOM5 (8,9) datasets, which were pre-
viously normalized to the Human Protein Atlas in a con-
sensus dataset. We chose these specific gene expression
databases because they report comprehensive gene expres-
sion profiles across various human tissues and cell types and
are widely used, which allows our findings to be directly in-
tegrated and interpreted in the context of other research ex-
ploring human genetics and disease.

Identifying ramp sequences

Ramp sequences are calculated by identifying statistical
outliers of codon efficiencies concentrated at the 5′ end
of gene coding sequences using the software package, Ex-
tRamp (73). Codon efficiencies are measured by the rela-
tive synonymous codon usage metric, which ranges from 0–
1 and is calculated by dividing the number of occurrences
for a specific codon by the number of occurrences for the
most common codon that encodes the same amino acid. We
calculated the relative synonymous codon usage values in
April 2021 from genes with high expression in 43 tissues in
the Human Protein Atlas (86–88), 34 tissues in the GTEx
Project (7), 45 tissues in the FANTOM5 datasets (8,9) and
62 tissues in the consensus dataset found in the Human
Protein Atlas, which combines gene expression from all
three databases. We also computed the relative synonymous
codon usages in 66 tissue-stratified cell types, which were
also downloaded in April 2021. For each tissue or cell type
in each data set, we separated genes into quartiles based
on their reported expression level (Q1: ‘not detected;’ Q2:

‘low;’ Q3: ‘medium;’ Q4: ‘high’). We used default param-
eters in ExtRamp to identify ramp sequences in each tis-
sue and cell type for 18 388 genes (including protein-coding
open reading frames), where all annotated gene isoforms
were required to have similar gene expression (i.e. gene ex-
pression was within the same quartile for each isoform). The
longest isoform from the GRCh38 reference genome was
considered representative for each gene sequence. Ramp se-
quence identification was performed for each tissue and
cell type separately. Two output files were generated for
each run: (i) ramp sequences identified by ExtRamp and
(ii) genes that did not contain a predicted ramp sequence
within the tissue or cell type. The original data files down-
loaded from the Human Protein Atlas were modified to
include an extra column, ‘Ramp presence,’ with values of
‘Ramp’ or ‘No ramp’ for each gene in each tissue and cell
type. These comma-separated values (CSV) files are avail-
able at https://ramps.byu.edu/Downloads. We also present
these data in Tableau charts on the ‘Search Database’ page
of The Ramp Atlas, which allows users to view tissues where
ramp sequences exist for a gene and compare the presence
or absence of a ramp sequence to the normalized gene ex-
pression for each tissue.

Chi-squared analysis: overall correlation between ramp se-
quences and gene expression

To determine if genes with ramp sequences tend to be highly
expressed, we first grouped all genes across all tissues by
whether or not they contained a ramp sequence (e.g. if gene
A had a ramp sequence in 30 tissues and did not have a ramp
sequence in 32 tissues, then it would be included 30 times in
the ‘ramp’ group and 32 times in the ‘no ramp’ group with
the corresponding gene expression for each tissue). We then
calculated the odds of having ‘medium’ or ‘high’ expression
versus ‘not detected’ or ‘low’ expression for each group. We
calculated the relative odds of having increased gene expres-
sion with a ramp by performing a chi-squared analysis of
the number of instances where a gene with a ramp sequence
had ‘medium’ or ‘high’ expression compared to the num-
ber of instances where a gene without a ramp sequence had
‘medium’ or ‘high’ expression. That test determined the ex-
tent to which the presence or absence of a ramp sequence, in
general, made a gene more likely to have ‘medium’ or ‘high’
expression compared to ‘not detected’ or ‘low’ expression.

Chi-squared analysis: tissue-specific correlation between vari-
able ramp sequences and gene expression

We performed the following calculations in each dataset to
determine the extent to which genes with a ramp sequence
in some tissues and not others are differentially expressed.
First, we ensured that each gene had a ramp sequence in at
least 5% of the tissues and did not have a ramp sequence
at least 5% of the tissues. The average gene expression (ge-
ometric mean) in the ‘ramps’ and ‘no ramps’ groups were
calculated for each gene separately to limit the potential ef-
fects of sampling. The expression bins were transformed to
follow a linear progression between ‘not detected’ and ‘high
expression’ (i.e. ‘not detected’ was given a weight of 1×, ‘low
expression’ was given a weight of 2×, ‘medium’ expression
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was given a weight of 3× and ‘high expression’ was given
a weight of 4×). The geometric mean was then calculated
across all tissues for each gene in each group (e.g. ‘ramps’
and ‘no ramps’) to determine the ‘average’ expression across
all tissues for a gene when it has a ramp sequence and when
it does not have a ramp sequence. The geometric mean was
used to limit the potential effects of a few higher values from
skewing the means while maintaining all data points in the
mean calculations. Finally, we counted the number of genes
that had a higher geometric mean of their gene expression
when they had a ramp sequence compared to when they
did not have a ramp sequence. We report the chi-square test
statistic and P for each dataset to determine if, on average,
variable ramp sequence presence within a gene corresponds
with increased gene expression within the tissues that have
ramp sequences.

Comparing ramp presence between tissues and cell types

We present an interactive, online comparison of the pro-
portion of genes with ramp sequences across different tis-
sues or cell types for each dataset (e.g. FANTOM5, GTEx,
Human Protein Atlas, consensus, and Human Protein Atlas
cell types), and we determined if the same genes always con-
tained ramp sequences. We conducted a single chi-squared
test for each dataset to determine the extent to which ramp
sequences are distributed across tissue and cell types. Each
tissue contained at least 2425 ramp sequences (i.e. 14% of
sampled genes) and each cell type contained at least 1521
ramp sequences (i.e. 15% of sampled genes), which was a
large enough sample size to adequately assess the distribu-
tion using the chi-squared test.

We followed these dataset-wide chi-squared tests with
more specific pairwise, two-proportion z-tests between each
tissue type to identify which tissues contained the most
unique ramp sequences. Unlike the chi-squared test, the
two-proportion z-test is a parametric test that assumes nor-
mality. However, z-tests are generally robust to small de-
viations from that assumption, especially when the sample
size is large. Nevertheless, we tested each group for normal-
ity using the Shapiro-Wilk test and show the distributions
of each group at https://github.com/ridgelab/rampAtlas/
tree/main/histograms. We applied a Bonferroni correction
for multiple testing (FANTOM5 alpha = 5.05 × 10–5,
GTEx alpha = 8.91 × 10–5, Human Protein Atlas al-
pha = 5.54 × 10–5, consensus alpha = 2.64 × 10–5, cell type
alpha = 2.33 × 10–5). Online Tableau charts are available
for users to query bar charts depicting the total number of
significant tests for each tissue/cell type with highlighted
tissues/cell types containing more unique proportions of
ramp sequences.

Data visualization

We used Tableau Software (www.tableau.com) to create The
Ramp Atlas, which generates interactive graphics for users
to query ramp sequence data across tissues and cell types.
All Tableau charts are available at https://ramps.byu.edu/
SearchDatabase. The bulk data files used to generate these
Tableau charts are available for download at https://ramps.

byu.edu/Downloads and the code used for all the analy-
ses is publicly available on GitHub at https://github.com/
ridgelab/rampAtlas.

SARS-CoV-2 ramp sequence analysis

We downloaded all SARS-CoV-2 nucleotide coding se-
quences from the National Center for Biotechnology In-
formation (NCBI) SARS-CoV-2 Resources in November
2020, and we analyzed 406 882 available SARS-CoV-2 gene
sequences and overlapping gene bodies. Since SARS-CoV-
2 utilizes the host machinery for translation, the optimal
codon usage for SARS-CoV-2 should be based on the rela-
tive synonymous codon usage of the host tissue. Therefore,
we used ExtRamp coupled with the relative synonymous
codon usage values calculated from 62 tissue-specific highly
expressed genes in the Human Protein Atlas, GTEx, FAN-
TOM5, and consensus datasets to determine the extent to
which ramp sequences were present in SARS-CoV-2 genes
for each dataset. We then determined the frequency of ramp
sequences in SARS-CoV-2 genes across each tissue and
identified the number of ramp sequences shared between
any two tissues. We also identified tissue-specific ramp se-
quences in human genes that encode for SARS-CoV-2 en-
try factors, as reported in Singh et al. (90). We then ranked
all tissues according to the total number of ramp sequences
present in both SARS-CoV-2 and associated human entry
factor genes. Using these data, we performed a one-tailed
t-test to compare the mean number of SARS-CoV-2 and
human entry factor genes with ramp sequences in tissues
that show high SARS-CoV-2 proliferation (91,92) against
those tissues that do not show high SARS-CoV-2 prolifera-
tion because ramp sequences are predicted to increase gene
expression. All analyses are freely available and distributed
using an ASP.NET web server hosted at Brigham Young
University (https://ramps.byu.edu).

ExtRamp online

We developed an online web interface to facilitate tissue-
specific ramp sequence calculations utilizing ExtRamp by
using an ASP.NET Core 3.1 (https://dotnet.microsoft.com/
apps/aspnet) framework on a Microsoft Windows server
hosted at Brigham Young University. ExtRamp Online runs
a modified version of ExtRamp within the web browser us-
ing Pyodide (https://pyodide.org/en/stable/). All parameters
are customizable and preset to a default test case that al-
lows users to see the expected output. Additionally, scroll-
over hints teach users how to change parameters and effec-
tively use those parameters in ramp sequence calculations.
All associated scripts and information about the website
are available at https://github.com/ridgelab/rampAtlas/tree/
main/ExtRampOnline.

RESULTS

The Ramp Atlas (https://ramps.byu.edu) is a comprehen-
sive online repository of tissue and cell type-specific ramp
sequences spanning 18 388 human genes in 62 tissues and 66
cell types with additional interactive comparisons of SARS-
CoV-2 ramp sequences and human entry factors. This re-
source provides a template for conducting ramp sequence
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Table 1. Odds of ramp sequence presence correlating with increased gene
expression

Dataset Chi-square P-value (P) Odds ratio

FANTOM5 459.3981 3.00 × 10–99 1.1152
GTEx 715.4278 9.48 × 10–155 1.1578
Human Protein Atlas 1415.5104 1.27 × 10–306 1.1947
Consensus 1176.3328 1.00 × 10–254 1.1477
Human Protein Atlas
Tissue-stratified Cell
Types

115.3698 6.53 × 10–27 1.0407

For each dataset, the chi-squared value and P-value (P) for increased ex-
pression if a gene has a ramp sequence as well as the odds of having higher
expression if ramp sequence present vs not present. The odds ratio shows
a significant difference in gene expression if a gene has a ramp sequence.

analyses on viruses and identifying ramp sequences that are
correlated with tissue or cell type-specific differential gene
expression. Interactive graphics enable comprehensive user-
specific analyses that can be integrated into a variety of
downstream genetic analyses.

Table 1 shows that the presence of a ramp sequence sig-
nificantly correlates with higher gene expression in each
dataset: FANTOM5 (odds = 1.1152; P = 3.00 × 10–99),
GTEx (odds = 1.1578; P = 9.48 × 10–155), Human Pro-
tein Atlas (odds = 1.1947; P = 1.27 × 10–306), consen-
sus (odds = 1.1477; P = 1.00 × 10–254), and Human
Protein Atlas tissue-stratified cell types (odds = 1.0407;
P = 6.53 × 10–27). Table 2 shows that genes with tissue-
specific ramp sequences (i.e. ramp sequences that were
present in only some tissues) were also significantly more
likely to increase gene expression in the consensus dataset
(odds: 1.1937; P = 5.56 × 10–5), FANTOM5 (odds: 1.1314;
P = 0.00589), and the Human Protein Atlas (odds: 1.1897;
P = 2.74 × 10–5), although the difference was not significant
in the GTEx dataset (odds: 0.9242; P = 0.15236). Notably,
GTEx contains fewer tissue samples than all other datasets,
with only 34 tissues compared to 43 in the Human Protein
Atlas, 45 in FANTOM5, and 62 in the consensus dataset.
Additionally, low-level basal contamination has previously
been identified in approximately 40% of GTEx samples (93).

A chi-squared test shows that ramp sequence prevalence
differs significantly across all tissue types in every dataset
(FANTOM5 P < 2.23 × 10–308, GTEx P = 8.52 × 10–81,
Human Protein Atlas P < 2.23 × 10–308, consensus
P < 2.23 × 10–308, cell type P = 6.06 × 10–20). Pairwise two-
proportion z-tests that correct for multiple testing in each
dataset showed that the proportion of genes with ramp se-
quences also differed significantly in many pairwise tissue
comparisons: 43.99% of tissue comparisons in the consen-
sus dataset, 50.51% of comparisons in FANTOM5, 35.65%
of comparisons in GTEx, and 62.57% of comparisons in the
Human Protein Atlas. Similarly, pairwise two-proportion
z-tests in the Human Protein Atlas cell type dataset show
that proportions of ramp sequences differed significantly in
4.34% of tissue-stratified cell type comparisons after cor-
recting for multiple tests. The proportion of unique ramp
sequences in the thymus, rectum, and total peripheral blood
mononuclear cells (PBMC) were the highest compared to
all other tissues (see Figure 1). We found that all 66 tissue-
stratified cell types had at least one significant z-test result.

Ramp sequence presence is most likely to differ in the semi-
niferous ducts in testis, cells in the white pulp in the spleen,
and glandular cells in the parathyroid gland. Cells in the
white pulp in the spleen use fewer ramp sequences than av-
erage, while the glandular and parathyroid gland cell types
have more ramp sequences than average (see Figure 2). Fig-
ure 3 shows the percentage of ramp sequences shared be-
tween each tissue in the consensus dataset. The average per-
centage of ramp sequences shared between the urinary blad-
der and all other tissues is the highest (87.46%), while the
rectum has is the fewest overlapping ramp sequences with
other tissues (57.26%). Figure 4 shows ramp sequence over-
lap between different cell types from the Human Protein
Atlas tissue-stratified cell types. Trophoblast cells in the pla-
centa have the highest percentage of shared ramp sequences
with other tissue-stratified cell types (94.96%), while cells
in the seminiferous cells in the testes have the lowest
(76.89%).

The ‘Search Database’ page on The Ramp Atlas con-
tains several interactive Tableau charts that allow users to
query 18 388 genes for ramp sequences and explore differ-
ences between each dataset. For convenience, users can view
ramp sequence results for multiple genes and datasets side-
by-side. These interactive Tableau charts also display nor-
malized gene expression levels across tissues, cell types, and
datasets. Users can quickly view the extent to which ramp
sequences differ between different tissues and visually de-
termine if ramp sequences potentially affect gene expres-
sion. Interactive versions of Figures 1-4 (introduced above)
are also available on the ‘Search Database’ page, which en-
able users to view tissue and cell type differences in ramp
sequence presence in more detail. These ramp sequence re-
sults are also available for bulk download on the ‘Down-
loads’ page (https://ramps.byu.edu/Downloads).

SARS-CoV-2 ramp sequence analysis

We identified ramp sequences in seven SARS-CoV-2
genes: the 2′-O-RNA methyltransferase, the leader pro-
tein (non-structural protein 1), non-structural protein 6,
the nucleocapsid phosphoprotein, the ORF3a protein, the
ORF7a Nanoluciferase protein, and the surface glyco-
protein. Ramp sequences in all but two of these genes
(non-structural protein 6 and the surface glycoprotein)
are tissue-specific (see Figure 5). Similarly, seven of the
26 analyzed human genes that encode SARS-CoV-2 entry
factors (90) show tissue-specificity: Transmembrane pro-
tease, serine 2 (TMPRSS2); Membrane alanyl aminopep-
tidase (ANPEP); Charged Multivesicular Body Protein 2A
(CHMP2A); Cathepsin L (CTSL); Furin, Paired Basic
Amino Acid Cleaving Enzyme (FURIN); RAB1A, Mem-
ber RAS Oncogene Family (RAB1A); and Transmembrane
Anterior Posterior Transformation 1 (TAPT1) (see Figure
6). By combining these two analyses, we ranked tissues by
ramp sequence prevalence in both SARS-CoV-2 and hu-
man entry factor genes (see Figure 7). We show that tis-
sues with high SARS-CoV-2 proliferation have significantly
more SARS-CoV-2 and human entry factor genes with
ramp sequences than tissues that show less SARS-CoV-2
proliferation (P = 0.009918). Both the rectum and duo-
denum (tissues with high SARS-CoV-2 proliferation (91))

https://ramps.byu.edu/Downloads
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Table 2. Odds of ramp sequence presence correlating with tissue-specific gene expression

Dataset

Genes with
decreased
tissue
expression

Genes with
increased
tissue
expression

Genes with no
change in
tissue
expression Chi-square P-value (P) Odds ratio

FANTOM5 1097 1282 32 14.3863 1.49 × 10–4 1.1686
GTEx 817 769 62 1.4527 0.2281 0.9412
Human Protein Atlas 1319 1550 41 18.5992 1.61 × 10–5 1.1751
Consensus 1134 1369 49 22.0635 2.64 × 10–6 1.2072
Human Protein Atlas
Tissue-stratified Cell
Types

265 366 39 16.1664 5.80 × 10–5 1.3811

For each dataset, the chi-squared statistic and P-value (P) for expression if a gene has a ramp sequence as well as the odds of having higher expression in
a tissue where a ramp sequence is present. This odds ratio shows a significant difference in tissue-specific gene expression if a gene has a ramp sequence in
that specific tissue.

Figure 1. Percentage of significant chi-square pairs in tissue types. We performed chi-square pair comparisons of ramp sequences across all tissues in each
dataset and then pairwise two-proportion z-tests to identify which tissues have the most unique proportions of ramp sequences per gene. This figure shows,
for each tissue, the percentage of pairwise z-tests that are significant, averaged across all datasets. Each tissue bar is colored based on the difference between
the proportion of genes with ramp sequences and the average proportion of genes with ramp sequences across all tissues. Blue colored tissues have more
ramp sequences than average while red colored tissues have fewer ramp sequences than average.

showed the most unique ramp sequence usage (see Figure
8).

Users can interactively query Tableau charts on the
‘SARS-CoV-2’ page of The Ramp Atlas to thoroughly ex-
plore ramp sequences within the SARS-CoV-2 genome as
well as in seven human entry factors for SARS-CoV-2. An
interactive heat map at the top of the page shows the per-

centage of SARS-CoV-2 ramp sequences that are shared
between different tissues in the consensus dataset. Below,
another interactive chart presents data on the presence of
ramp sequences in different SARS-CoV-2 genes and across
the 62 tissues in the consensus dataset. Under the ‘Ramp Se-
quences in Human Entry Factors’ section of the webpage,
an interactive Tableau chart presents data for the presence
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Figure 2. Percentage of significant chi-square pairs in tissue-stratified cell types. We performed chi-square pair comparisons of ramp sequences across all
tissue-stratified cell types in each dataset and then pairwise two-proportion z-tests to identify which cell types have the most unique proportions of ramp
sequences per gene. This figure shows, for each cell type, the percentage of pairwise z-tests that are significant, averaged across all datasets. Each tissue-
stratified cell type bar is colored based on the difference between the proportion of genes with ramp sequences in the cell type and the average proportion
of genes with ramp sequences across all cell types. Blue colored tissue-stratified cell types have more ramp sequences than average while red colored cell
types have fewer ramp sequences than average.

of ramp sequences in SARS-CoV-2 human entry factors
across all tissues in the consensus dataset. These interactive
charts allow users to thoroughly explore ramp sequences in
SARS-CoV-2.

ExtRamp online

We present an online implementation of the ExtRamp algo-
rithm to facilitate wider adoption and application of ramp
sequences for non-programmers, along with a significant
improvement to the underlying algorithm to calculate tis-
sue and cell type-specific ramp sequences (https://ramps.
byu.edu/ExtRampOnline). To run ExtRamp Online, users
can either paste a FASTA formatted gene header and se-
quence into a text box or upload a small FASTA file of
coding sequences. The FASTA file must contain only cod-
ing sequences (i.e. non-translated regions are removed), and

the coding sequences must contain all codons from the
start codon to the stop codon, inclusively. Because ramp se-
quences are computed using tRNA abundances and codon
usage biases, users can upload species-specific tRNA adap-
tation index values or use provided tissue or cell type-
specific relative synonymous codon usage values provided
in a simple drop-down menu. By default, relative synony-
mous codon usage values are calculated from the human
reference genome GRCh38, but users can upload any refer-
ence genome. ExtRamp Online contains all options avail-
able in the original ExtRamp algorithm with additional
pre-set default values to enable researchers to calculate hu-
man tissue-specific or genome-wide ramp sequences on-
line. Hover-over hints provide users with detailed informa-
tion on all available options, which will help facilitate fu-
ture creative analyses using ramp sequences. ExtRamp On-
line generates a variety of output files, including a FASTA

https://ramps.byu.edu/ExtRampOnline
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Figure 3. Heat map of percent of ramp sequences shared between tissues. The percent of ramp sequences present in one tissue that are also present in
another in the consensus dataset. Red indicates fewer shared ramp sequences and thus a more tissue-specific usage of ramp sequences. Tissue comparisons
that are blue have more shared ramp sequences.

file containing the identified ramp sequences, a list or CSV
of codon efficiency values, the headers of genes that did
not contain a ramp sequence, the headers of genes that
could not be processed by ExtRamp, and the segments of
genes after identified ramp sequences. Examples of these
files are available at ExtRamp Online, with checkboxes al-
lowing users to select which files are downloaded. Addi-
tionally, The Ramp Atlas includes step-by-step instructions
for running ExtRamp as well as descriptions of how to in-
terpret output files. Because ExtRamp Online runs within
the browser, the computer specifications of the user, Inter-
net connection, and web browser may affect performance.
For more intensive calculations (e.g. parallel comparisons
or genome-wide analyses), we provide an automatic com-
mand generator that provides users with the command to

run ExtRamp from the command line on their own ma-
chines in either a Linux, Mac, or Windows environment.

DISCUSSION

Unique and novel contributions of the ramp atlas

The Ramp Atlas allows researchers to query translational
ramp sequences across human tissues and cell types through
interactive tables and graphics online. These data are pre-
computed and available instantaneously for analysis. Tis-
sue and cell type-specific ramp sequence data are presented
alongside gene expression data, enabling users to further
investigate the role of ramp sequences on expression. Ad-
ditionally, we present analyses of ramp sequences in SARS-
CoV-2 and associated human entry factors. This manuscript
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Figure 4. Heat map of percent of ramp sequences shared between tissue-stratified cell types. The percent of ramp sequences present in one tissue-stratified
cell type that are also present in another cell type. Red indicates fewer shared ramp sequences (i.e. more cell type-specific usage of ramp sequences).
Tissue-stratified cell type comparisons that are blue have more shared ramp sequences.

represents the first time that ramp sequences have been iden-
tified in SARS-CoV-2, and we show that the tissues with
ramp sequences significantly intersect with tissues known
to have higher rates of viral infection and proliferation.
ExtRamp Online allows users to identify ramp sequences
through a user-friendly interface. Additionally, precom-
puted tissue and cell type-specific input files are available
to facilitate future single cell ramp analyses tailored toward
unique user researcher questions. These novel contributions
are unique to The Ramp Atlas and are an integral part of
facilitating widespread ramp sequence research online and
in single cells. We anticipate that The Ramp Atlas will al-
low future studies to identify how specific ramp sequences
within single transcripts contribute to single cell gene ex-
pression. We also anticipate a wider adaption of ramp se-
quences in viral and disease research that are facilitated on-
line through The Ramp Atlas.

Tissue-specific ramp sequence regulation

This study is the first comprehensive analysis of variable
ramp sequences and presents a framework for conducting
future tissue and cell type-specific ramp sequence analyses
online. We recognize that the strength of the ramp sequence
(i.e. the relative difference between translational efficiency
at the 5′ end of the gene compared to the 3′ end of the
gene) might play a significant role in determining transcript-
specific affects in gene or protein levels. Although ramp se-
quences represent a true outlier region of decreased codon
efficiency, some ramp sequences have a much higher differ-
ence between the harmonic mean of the codon efficiency
within the ramp sequence and the harmonic mean of the
codon efficiency following the ramp sequence. Those dif-
ferences warrant future study to determine the extent to
which transcript expression can be predicted based on the



10 NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 2

Figure 5. Percentage of tissues with a ramp sequence in SARS-CoV-2 genes. The percentage of 62 tissues in the consensus dataset in which seven SARS-
CoV-2 genes have a ramp sequence. Error bars show the standard error between the four different datasets. In genes marked with an asterisk, less than
one percent of all variants contained a ramp sequence. Notably, the other four genes had a ramp sequence in the one and only variant provided in the
SARS-CoV-2 genome dataset. More exact data are available on The Ramp Atlas SARS-CoV-2 page: https://ramps.byu.edu/Covid.

Figure 6. Percentage of tissues with a ramp sequence in human genes for SARS-CoV-2 entry factors. The percentage of the 62 tissues in the consensus
dataset in which human genes that code for SARS-CoV-2 entry factors have a ramp sequence. Error bars show the standard error between the four different
datasets.

https://ramps.byu.edu/Covid
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Figure 7. The total number of SARS-CoV-2 and associated human entry factor genes with a ramp sequence in 62 human tissues. An aggregation of the
data presented in Figures 5 and 6, organized by tissue, and showing the total number of genes, both in the SARS-CoV-2 genome and associated human
entry factors, with ramp sequences. Tissues where SARS-CoV-2 is found in higher amounts are marked in red boxes. These tissues had a significantly
greater number of genes with ramp sequences (P = 0.0099).

magnitude of the ramp sequence. The Ramp Atlas shows
for the first time that ramp sequences within genes change
based on the relative codon adaptiveness within a specific
tissue or cell type, which often results in a ramp sequence
being present in some tissues or cell types and not present
in others even though the underlying genetic code does not
change. Additionally, we show that tissue and cell type-
specific ramp sequences are highly associated with increased
gene expression when a ramp sequence is present. We pro-
pose that future ramp sequence calculations should con-
sider ramp sequence variability that may occur within an
organism based on tissue-specific codon optimality. We also
propose that variable ramp sequences might be an addi-
tional mechanism for regulating tissue and cell type-specific
differential gene expression that warrants further explo-
ration.

Predicted SARS-CoV-2 tissue-specific ramp sequence opti-
mization

Ramp sequences may play a significant role in determining
tissue-specific SARS-CoV-2 infection and proliferation be-
cause tissues that experience higher rates of SARS-CoV-2
infection have significantly more ramp sequences in SARS-
CoV-2 and associated human entry factor genes. These
tissue-specific ramp sequences are predicted to increase ex-
pression of SARS-CoV-2 genes as well as the human genes
that facilitate SARS-CoV-2 entry into host cells, result-
ing in tissue-specific increased rates of infection and pro-

liferation. Specifically, tissues and tissue-stratified cell types
with increased expression of human entry factors ACE2,
TMPRSS2, and CTSL show increased SARS-CoV-2 infec-
tion (91,94–97). While both TMPRSS2 and CTSL contain
ramp sequences, only ramp sequences in TMPRSS2 are
tissue-specific and therefore may influence which tissues are
most infected by SARS-CoV-2. Additionally, tissue-specific
ramp sequences in the SARS-CoV-2 leader protein, which
inhibits host gene expression (98,99) and helps the virus es-
cape type-1 interferon cellular responses (98–100), may also
influence tissue-specific infection and proliferation. Similar
to how SARS-CoV-2 genes leverage tissue-specific codon
usage biases to increase infection in lung tissue (67,70), we
suggest that SARS-CoV-2 also utilizes tissue-specific ramp
sequences to further improve its adaptiveness to the rela-
tive tRNA pool. Although we show a strong correlation be-
tween ramp sequence presence and SARS-CoV-2 prolifera-
tion, other biological mechanisms may also be responsible
for this correlation, and further validation is required to de-
termine if ramp sequences meaningfully affect SARS-CoV-
2 viral proliferation.

In addition to potentially contributing to SARS-CoV-2
tissue-specific infection and proliferation, ramp sequences
may also influence other fatal complications commonly
found in SARS-CoV-2 patients. SARS-CoV-2 genes ORF3
and non-structural protein 1 (NSP1), respectively upregu-
late and downregulate APOB expression (101), whose ex-
pression is positively associated with atherosclerosis (102)
that contributes to the severity of SARS-CoV-2 infection
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Figure 8. Heat map of percentage of SARS-CoV-2 ramp sequences shared between tissues. The percentage of ramp sequences in SARS-CoV-2 genes that
are present in both tissues being compared. Calculated using the consensus dataset. The redder the tissue comparison, the smaller the percentage of ramp
sequences were present in both tissues. The bluer the comparison, the higher percentage of shared ramp sequences.

(101,103). We show that both ORF3 and NSP1 have ramp
sequences specifically in the liver and small intestine, which
is also where APOB expression is highest (86,104). We pro-
pose that these ramp sequences may affect ORF3 and NSP1
expression within the liver and small intestine, which likely
alters APOB expression. While ORF3 and NSP1 have op-
posite effects on APOB expression, ramp sequences may
play a role in determining the magnitude of those effects and
the subsequent complications of atherosclerosis associated
with increased APOB expression. These analyses constitute
an important first step in characterizing variable, transla-
tional ramp sequences in SARS-CoV-2 genes and associ-
ated human entry factors as well as an exploration of their
potential effects. Although these analyses provide only cor-
relations between ramp sequences and SARS-CoV-2 prolif-
eration, they indicate that future research into the effects of

ramp sequences on viral proliferation might be warranted.
The Ramp Atlas provides a framework to analyze ramp se-
quences in SARS-CoV-2 genes and perform similar anal-
yses on novel viral strains to identify tissues where ramp
sequences may aid viral proliferation.

CONCLUSION

The Ramp Atlas is the first comprehensive analysis of
tissue and cell type-specific ramp sequences. We identi-
fied ramp sequences in SARS-CoV-2 that likely contribute
to its widespread proliferation, and we show that those
ramp sequences are most likely to occur in tissues known
to be affected by SARS-CoV-2. Additionally, we provide
a template for conducting similar ramp sequence anal-
yses using a web resource to facilitate the widespread
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adaptation of ramp sequences in a variety of future
applications.

The Ramp Atlas will help researchers better understand
how ramp sequences affect gene expression, which may
lead to more specific, targeted therapeutics. For example,
tissue-specific gene and protein expression can affect tissue-
specific responses to drug therapies (105,106), and protein
expression profiles collected from tumor tissue samples can
accurately predict patient responses to different cancer ther-
apies (107–112). Because ramp sequence usage differs sig-
nificantly between tissues and can be highly correlated with
local gene expression, genetic variation affecting ramp se-
quences may also affect drug response and overall gene ex-
pression. Therefore, future ramp sequence analyses should
consider local codon adaptation within different tissues and
cell types before identifying ramp sequences. Since tissue-
specific ramp sequences are highly correlated with increased
gene expression, it is likely that future targeted genetic ther-
apeutics that change ramp sequences may also have a tissue-
specific effect on gene expression. The Ramp Atlas is a
hypothesis-generating platform that provides a framework
for researchers to conduct these sorts of analyses and cre-
atively incorporate ramp sequences in their own research.
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