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Abstract
Cancer cells are high in heterogeneity and versatility, which can easily adapt to the 
external stresses via both primary and secondary resistance. Targeting of tumour mi-
croenvironment (TME) is a new approach and an ideal therapeutic strategy especially 
for the multidrug resistant cancer. Recently, we invented AANG, a natural compound 
formula containing traditional Chinese medicine (TCM) derived Smad3 inhibitor 
Naringenin (NG) and Smad7 activator Asiatic Acid (AA), for rebalancing TGF- β/Smad 
signalling in the TME, and its implication on the multidrug resistance is still unex-
plored. Here, we observed that an equilibrium shift of the Smad signalling in patients 
with hepatocellular carcinoma (HCC), which was dramatically enhanced in the recur-
rent cases showing p- glycoprotein overexpression. We optimized the formula ratio 
and dosage of AANG that effectively inhibit the proliferation of our unique human 
multidrug resistant subclone R- HepG2. Mechanistically, we found that AANG not 
only inhibits Smad3 at post- transcriptional level, but also upregulates Smad7 at tran-
scriptional level in a synergistic manner in vitro. More importantly, AANG markedly 
suppressed the growth and p- glycoprotein expression of R- HepG2 xenografts in vivo. 
Thus, AANG may represent a novel and safe TCM- derived natural compound formula 
for overcoming HCC with p- glycoprotein- mediated multidrug resistance.
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1  |  INTRODUC TION

Cancer is still the top leading cause of death in Hong Kong and 
worldwide, but treatment remains ineffective with severe side ef-
fects. This may largely due to the heterogeneity of cancers and the 
development of secondary drug resistance. Increasing evidence 
shows that growth, invasion, metastasis and multidrug resistance are 
largely relied on the tumour microenvironments (TME)1,2; suggest-
ing therapeutics that can target protumoural microenvironments 
may represent as an effective approach for overcoming multidrug 
resistant cancer.

Increasing evidence shows transforming growth factor- β1 
(TGF- β1) is responsible for TME formation.3- 5 Interestingly, TGF- 
β1 is suggested to suppress carcinogenesis, but paradoxically 
supports cancer progression once TME has established.6- 9 For ex-
ample, cancer cell- derived TGF- β1 silences the host anti- tumour 
immunity by inducing regulatory T (Treg) cells,4 which results in 
cancer evasion from the host immune surveillance. TGF- β1 also 
acts as a cancer promoter by enhancing angiogenesis, epithelial- 
mesenchymal transition (EMT) and extracellular matrix (ECM) 
degradation in TME.6- 9 In hepatocellular carcinoma (HCC), TGF- β 
alters TGF- β receptors expression, Smads activation and induc-
tion to initiate oncogenes transcription for promoting cancer cell 
motility and EMT.10 In addition, TGF- β1 is reported to increase 
drug resistance via p- glycoprotein expression in cancer cells.11,12 
TGF- β1 signalling is a major pathway for promoting the progres-
sion of inflammatory diseases,1,13- 16 where Smad3 is the key 
pathogenic mediator by regulating disease development at tran-
scriptional level.16- 21 Indeed, Smad3- deficient mice were resis-
tant to chemical- induced skin carcinogenesis,22,23 and our group 
further demonstrated the important role of Smad3- dependent 
TME (Smad3- TME) in cancer progression on two syngeneic mouse 
cancer models bearing invasive lung carcinoma LLC and melanoma 
B16F10.21

We have developed natural compound formula AANG, which 
is derived from traditional Chinese medicine (TCM) and effectively 
inhibited Smad3- dependent cancer progression in mice via sup-
pressing Smad3 but reactivating Smad7 in the TME.24 Naringenin 
(NG) is a predominant flavanone isolated from Millettia reticulata 
Benth with pharmacology properties such as anticancer, antimu-
tagenic, anti- inflammatory and antiatherogenic activities.25 The 
cancer- inhibitory effects of NG have been linked to the regula-
tion of various signalling pathways, such as Nrf2, NF- κB, PI3K/
Akt/mTOR, Jnk, Erk and p38 MAPK.26,27 It also intervenes with 
the function of various signalling molecules, such as caspases, 
Bax, TNF- α, Bcl- 2 and VEGF.28 Asiatic acid (AA) is a triterpenoid 
component isolated from Centella asiatica, functions as a Smad7 
agonist shows pharmacological effects on anti- inflammation, an-
tioxidation, anti- tumour, neuroprotection, hepatoprotection and 
wound healing.29 AA largely suppressed cancer cell proliferation 
and survival by regulating multiple pathways through direct and 
indirect interactions, including the downregulation of NF- κB, 
the suppression of AP- 1 activity and various effects on the STAT 

proteins.30 Nevertheless, the therapeutic potential of AANG in 
cancer with secondary drug resistance is still unexplored.

In this study, we evaluated this novel TCM- derived natural com-
pound formula on human primary and recurrent hepatocellular 
carcinoma (HCC). The specificity, therapeutic dosage, anticancer ef-
ficacy and the safety of AANG were intensively defined by using our 
unique multidrug resistant HCC cell line R- HepG231 in vitro and in 
vivo. This work provided important rationales for further developing 
AANG as a novel therapeutic strategy for overcoming hepatocarci-
noma with P- glycoprotein mediated multidrug resistance.

2  |  MATERIAL S AND METHODS

2.1  |  Patient samples

Archival formalin- fixed paraffin- embedded (FFPE) tissue speci-
mens were retrieved from patients with hepatocarcinoma aged be-
tween 50 and 70 who underwent colectomy at the Prince of Wales 
Hospital, Hong Kong SAR. The study was conducted according to 
the principles expressed in the Declaration of Helsinki. Written 
informed consent was obtained from all the patients. This study 
was approved by the Clinical Research Ethics Committee of Joint 
Chinese University of Hong Kong- New Territories East Cluster (Ref. 
No. NTEC- 2017- 0546).

2.2  |  Animals and treatments

Nude (8-  to 10- week- old) mice were purchased from the Chinese 
University of Hong Kong Laboratory Animal Services Centre. All 
experimental procedures were approved by the Animal Ethics 
Experimental Committee of the Chinese University of Hong Kong.

Two Traditional Chinese Medicine (TCM)- based drugs were used 
in this study, including AA (97% HPLC purified, Sigma- Aldrich 464- 
92- 6) and NG (98% HPLC purified, Sigma- Aldrich 67604- 48- 2). Both 
drugs were dissolved in the DMSO as a solvent. Tumour- bearing 
mice were randomly divided into groups for control or treatment 
with AANG at a combined dose with AA (25 mg/kg) and NG (25 mg/
kg) daily via intraperitoneal injection.

2.3  |  Cell culture

HepG2 cells (ATCC HB- 8065) were selected with increasing con-
centrations of Doxorubicin (Dox, Selleckchem) from 0.1 to 100 μM 
during cell passages. After several rounds of selection, R- HepG2 
with MDR properties was obtained and then cultured with 1.2 μM 
Dox to maintain its drug resistance.31 R- HepG2 human cancer cells 
were then cultured in DMEM (Life Technologies), respectively, with 
10% heat- inactivated FBS (Life Technologies), 1% penicillin and 
streptomycin (Life Technologies) in 5% CO2 at 37°C. For in vitro 
assays, the R- HepG2 cells were treated with AA, NG or TGF- β1 
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(Gibco PHG9204). Cell lines were free of mycoplasma by cultured 
with antimicrobial reagent Normocin (InvivoGen) 2 weeks prior to 
experiments.

2.4  |  Histology and Immunofluorescence Staining

Mice organ sections were fixed in 4% paraformaldehyde, stained 
with the haematoxylin- eosin (H&E staining). Human liver and hepa-
tocellular carcinoma tissues were performed on 5 μm FFPE sections 
and stained with the antibody against p- Smad3, Smad7, TGF- β1 
and MDR1 (1:1000, Santa Cruz Biotechnology, Table S1). The pro-
tein expression on the TMA slides was calculated based on the his-
toscore (H- score) method. Samples were imaged on the Ni- u Light 
Microscope (Nikon) and analysed by Aperio ImageScope (Leica 
Biosystems).

Immunofluorescence was performed on 5 μm fresh tissue sec-
tions from human tumours, mouse tumours and spleen tissues and 
stained with antibodies against p- smad3, Smad7 and MDR1 per-
formed as previously described.24 Antibodies were diluted to be 
1:100 in staining buffer (eBioscience 00- 4222- 57) and applied on 
the samples at 4°C for overnight. The unbounded antibodies were 
washed out with PBST 3 times followed by detection with Alexa 
488- conjugated secondary antibodies (Life Technologies). The sam-
ples were sealed with DAPI mounting buffer (Invitrogen S36938). 
All stained samples were imaged under a fluorescence microscope 
(Axio Observer.Z1; Carl Zeiss19).

2.5  |  MTT assay

The MTT assay was used to determine the cytotoxicity of AANG 
on R- HepG2 cells in vitro. In brief, R- HepG2 cells (1 × 104 cells/
well) were seeded on a 96- well plate and serial dilutions of AA, NG 
or their combination with indicated concentration were added on 
the next day. After 24- h of treatment, 30 microlitres of methyl- 
thiazoldiphenyl tetrazolium (MTT) (5 mg/ml) was added to each well 
and incubated for 2 h at 37°C. The MTT solution was then replaced 
by 100 µl of dimethyl sulphoxide in each well and measured with a 
microtitre- plate reader (Bio- Rad) at 540 nm, and all data were calcu-
lated as percentage against the control.

2.6  |  Western blot analysis

Proteins in mouse tumour tissue were extracted by chilled ra-
dioimmunoprecipitation assay lysis buffer (RIPA, Pierce) and 
then examined by Western blot analysis with primary antibodies 
against, p- Smad3, Smad3, Smad7 (all at 1:1000 dilution) and glyc-
eraldehyde 3- phosphate dehydrogenase (GAPDH) (1:10,000 di-
lution, Table S1), followed by incubation with the corresponding 
IRDyeTM800- conjugated secondary antibodies (1:10,000, Rockland 
Immunochemical) performed as previously described.23 GAPDH 

was used as an internal control. Expression levels of the proteins 
were detected by using the LiCor/Odyssey infrared image system 
(LI- COR; Biosciences), and the band intensities were quantified with 
ImageJ software (version 1.48, NIH).

2.7  |  real- time PCR

Total RNA from the R- HepG2 cells was isolated by using TRIzol rea-
gent (Life Technologies) according to the manufacturer's instructions 
and quantified by using ND- 2000 Nanodrop (Thermo Scientific). 
Total RNA (1 μg) was used to synthesize the first strand of cDNA as 
described previously. Relative mRNA expression was measured using 
the iQTM SYBR Green Supremix on Opticon2 system (Bio- Rad). 
The primers used in this study, including mouse Smad3, Smad7 and 
GAPDH, have been previously described.32,33 The primers used in 
this study included MDR1 forward 5′- GTCGTGATGGAACTTGAA- 3′ 
and reverse 5′- GCTTTCTGTGGACACTTCTG- 3′. The relative ex-
pression levels of target genes were normalized with GAPDH and 
calculated using the 2−ΔΔCt method.

2.8  |  Enzyme- linked immunosorbent assay

Serum samples from tumour- bearing mice were collected to detect 
cytotoxicity indicators using the enzyme- linked immunosorbent 
assay (ELISA) kit as previously described.21 ALT (TR71121, Thermo 
scientific), AST (TR70121, Thermo scientific), LDH (J2380, Promega) 
and creatinine (ab65340, Abcam) were measured according to the 
instructions of the manufacturer.

2.9  |  Statistical analysis

Statistical analysis was performed in GraphPad Prism 5 (GraphPad 
Software). All data were presented as mean ± SEM. Statistical sig-
nificance was determined by p < 0.05 in the standard t test or one- 
way or two- way ANOVA.

3  |  RESULTS

3.1  |  Equilibrium shift of Smad signalling in 
recurrent HCC

As Smad signalling is important for cancer progression,5,21 but its 
contribution in HCC is still largely unclear, especially on the recurrent 
cases. Therefore, we investigated the equilibrium of Smad signalling 
in both primary and recurrent HCC via immunohistochemistry assay. 
In line with our notion, we detected a hyperactivation of Smad3 
but inhibition of Smad7 in the primary HCC compared to the paired 
non- tumour liver tissue (Figure 1A). Interestingly, a dramatic equilib-
rium shift of Smad3/Smad7 signalling was observed in the recurrent 
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cases compared to the biopsies of primary HCC and normal liver 
(Figure 1B,C), highlighting the importance of Smad signalling in HCC 
progression. More surprisingly, we unexpectedly found the induc-
tion of multidrug resistance gene MDR1, p- glycoprotein, is strongly 
associated with the imbalance of Smad3/Smad7 signalling in both 
the primary and recurrent HCC (Figure S1), implying a potential role 
of Smad signalling in the development of HCC multidrug resistance.

3.2  |  AANG synergistically inhibits multidrug 
resistant HCC cells in vitro

According to our previous works, AANG works in a disease and cell 
type specific manner.24,34 Therefore, we evaluate the optimal dose 
and ratio of AANG by using our unique multidrug resistant human 
HCC cell line R- HepG2 with strong p- glycoprotein expression.31 
AA, NG and their combination in 1:1 ratio were applied on the R- 
HepG2 cells with a dosage range (0 to 400 µM) for 24 and 48 h. 
Encouragingly, we found that combination of AA and NG synergisti-
cally inhibited the proliferation of R- HepG2 cells with IC50 value at 
50 µM in vitro, whereas 300 µM and 250 µM were needed for AA 
and NG respectively (Figure 2A and Figure S2). In contrast, there 
was no significant cytotoxicity detected in the groups received AA 
or NG alone compared to the solvent control (Figure 2B). To test 
the specificity of AANG on the Smad signalling, we treated the R- 
HepG2 cells with AA, NG or their combination at 50 µM for 24 h and 
then submitted for Western blot analysis. As shown in Figure 2C- E, 

AANG effectively altered both Smad3 and Smad7 in the R- HepG2 
cells in vitro, which cannot be achieved by using either AA or NG 
alone. To note, we found that AANG markedly increased the tran-
scription of Smad7 but not Smad3 of in the R- HepG2 cells in vitro, 
suggesting the inhibitory effect of AANG on Smad3 is mainly due to 
post- transcriptional regulation (Figure 2E). These findings suggested 
a therapeutic potential of AANG for multidrug resistant HCC via re-
balancing the Smad signalling in a synergistic manner.

3.3  |  AANG effectively blocks progression of R- 
HepG2 xenografts in vivo

Therefore, we further evaluated the therapeutic potential and safety 
of AANG in nude mice bearing the R- HepG2 xenograft which rep-
resenting the human multidrug resistant HCC. According to the 
growth curve of R- HepG2 xenograft, our results demonstrated that 
AANG effectively suppressed the growth of R- HepG2 xenograft on 
nude mice compared to the control group (Figure 3A,B). To note, the 
tumour size and weight were significantly reduced by AANG therapy 
at Day30 (Figure 3C,D). Furthermore, we confirmed that AANG ef-
fectively rebalanced the Smad signalling of the R- HepG2 xenograft, 
showing by a significant inactivation of Smad3 but increment of 
Smad7 (Figure 3E). More importantly, AANG showed no significant 
side effects to the important organs of cancer host, confirming by 
histological observation on the spleen, kidney, liver and heart tissues 
(Figure 4A) and enzymatic analysis of the alanine aminotransaminase 

F I G U R E  1  Imbalance of Smads 
signalling in primary and recurrent 
hepatocellular carcinoma (HCC) patients. 
Equilibrium shift of Smads signalling was 
detected in both primary and recurrent 
HCC. (A) Immunohistochemistry revealed 
the activation of Smad3 but suppression 
of Smad7 in primary HCC compared to the 
normal liver, which was further enhanced 
in the recurrent cases showing by the 
quantifications of (B) Smad3 activation 
and (C) Smad7 expression. Results are 
representative images of 5 biopsies. 
**p < 0.01, ***p < 0.001 vs. Normal, 
###p < 0.001 vs. HCC group, n = 5, one- 
way ANOVA. Scale bars (A) 50 μm
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(ALT), aspartate aminotransaminase (AST), lactate dehydrogenase 
(LDH) and creatinine (Figure 4B).

3.4  |  AANG overcomes multidrug resistance by 
targeting a Smad3/MDR1 axis

Multidrug resistance is an unsolved clinical problem of HCC, where 
ATP- binding cassette (ABC) transporter p- glycoprotein is one of the 
well- documented therapeutic targets.35 We observed that overex-
pression of p- glycoprotein was closely associated with the activation 
of TGF- β1/Smad3 signalling in the recurrent HCC (Figure 5A). As 
shown in Figure 5B, by conducting bioinformatic analysis with ECR 
browser as our previous studies,15,16,20 we revealed a direct Smad3 
binding site on the 5′ untranslated region of p- glycoprotein genomic 
sequence (gene name MDR1 or ABCB1). In addition, we demon-
strated that transcription of MDR1 was significantly increased in 
the R- HepG2 cells by TGF- β1 stimulation in a dose- dependent man-
ner (Figure 5C), implying a regulatory role of TGF- β1/Smad3 sig-
nalling in p- glycoprotein expression at transcriptional level. More 

importantly, we found that AANG therapy dramatically suppressed 
p- glycoprotein expression in the R- HepG2 xenograft compared 
to the control group in vivo (Figure 5D). In addition, AANG effec-
tively converted the protumoural TME into anticancer showing by 
a marked reduction in angiogenesis but increment of NK cells in the 
R- HepG2 xenografts of treated mice (Figure S3). Thus, AANG may 
represent a novel, effective and safe TCM- based natural compound 
formula for HCC especially with p- glycoprotein mediated multidrug 
resistance.

4  |  DISCUSSION

Multidrug resistance is an important barrier in cancer especially 
HCC due to the detoxification characteristic of its origin organ 
liver.35 Increasing evidence suggested a regulatory role of TGF- β1/
Smad signalling in the p- glycoprotein mediated multidrug resist-
ance11,12 and the tumour microenvironment driven cancer progres-
sion.5,21 We have developed a natural compound formula AANG for 
correcting the imbalance of TGF- β1/Smad signalling under tissue 

FIGURE 2 Combination of AANG 
inhibits multidrug resistant hepatocellular 
carcinoma (HCC) in vitro. (A) The 
inhibitory effect of AA, NG or their 
combination AANG on the proliferation of 
multidrug resistant human HCC cell line 
R- HepG2 were detected by MTT assay 
at 24 h in vitro. (B) Interestingly, AANG 
(50 mM of AA +50 mM of NG) effectively 
suppressed the growth of R- HepG2 cells 
at 24 h, whereas no significant effect was 
found in the groups treated with 50 mM 
of AA or NG in vitro. (C- E) Western 
blotting and real- time PCR showed 
that AANG synergistically suppressed 
Smad3 phosphorylation but triggered 
Smad7 expression in R- HepG2 cell at 
24 h, compared to the mono- treatments 
with AA or NG. ***p < 0.001 vs. Control, 
###p < 0.001 vs. NG, &&&p < 0.001 vs. AA
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F I G U R E  3  AANG effectively inhibits 
the progression of R- HepG2 xenograft 
in vivo. (A- D) Treatment with AANG 
significantly suppressed the growth of 
human hepatocellular carcinoma (HCC) 
xenograft R- HepG2 in nude mice, showing 
by a significant reduction in the (A) 
tumour growth rate, (B- C) size and (D) 
weight on day 30. (E) Additionally, AANG 
treatment effectively rebalanced the 
Smad signalling in the R- HepG2 xenograft 
in vivo, showing by the markedly 
inactivation of Smad3 but up- regulation 
of Smad7 in the treated mice compared to 
their control group. *p < 0.05, **p < 0.01, 
***p < 0.001 vs. Control, n = 5, one- way 
ANOVA. Scale bars (E) 50 μm
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F I G U R E  4  AANG is a safe anticancer 
therapy without significant side effects. 
The safety of AANG was evaluated with 
the serum and important organs collected 
from the R- HepG2 xenograft bearing 
mice. Encouragingly, (A) no pathological 
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organs of the AANG- treated mice on 
Day 30 showing by H&E staining. (B) The 
safety of AANG was further confirmed 
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inflammation.24,34 This is the first study to explore the therapeutic 
potential of AANG for multidrug resistant HCC. We evidenced the 
imbalance of Smad3 and Smad7 equilibrium in HCC patient biopsies, 
which was markedly enhanced in the recurrent cases associated with 
the p- glycoprotein expression. We optimized the ratio and dosage of 
AANG by using a well- documented multidrug resistant human HCC 
cell line R- HepG2.31,36 Encouragingly, the optimal AANG formula 
effectively inhibited the growth of R- HepG2 xenograft and their p- 
glycoprotein expression in the nude mice. Importantly, no side effect 
was detected in the R- HepG2 xenograft bearing mice after AANG 
therapy. Thus, AANG is a novel, specific, effective and highly safe 
TCM- based natural compound formula for human cancer even with 
multidrug resistance.

Cancer is still a leading cause of death worldwide due to its lack 
of effective treatment especially for the recurrent cases. TME is a 
new therapeutic target for cancer due to its importance for pro-
moting cancer growth, invasion, metastasis and drug resistance.1,2 
Recently, we discovered the essentialness of Smad3 in the micro-
environment for developing inflammatory diseases including can-
cer.1,5,13,21 Smad3 deficiency protected mice against tumour growth, 
invasion and metastasis, where a markedly reduction in angiogene-
sis (CD31, VEGF), invasion and metastasis (MMPs), and immunosup-
pression (decrease in Foxp3+ Treg but increase in NKp46+ NK cells) 
were found in the Smad3- KO mice compared to the wildtype mice, 
revealing the important role of Smad3 signalling in the protumoural 
TME.21 Encouragingly, in this study, we also detected that AANG 
markedly suppressed our reported Smad3- mediated NK immunity 

suppression in the R- HepG2 xenografts in vivo,21 thereby blocking 
the TME- driven cancer development and progression in mice.

In fact, Smad7 suppression is associated with and resulted in 
Smad3 activation in inflammatory diseases including cancer.37 
Besides targeting Smad3, overexpression of Smad7 also effectively 
inhibit cancer in animal models.38 Smad7 is a negative regulator of 
TGF- β/Smad3 signalling pathway.39 Despite targeting Smad3- TME,15 
overexpression of Smad7 also inhibits primary tumour growth and 
metastasis in a number of cancer models.24,38 Dramatic reduction in 
Smad7 but activation of Smad3 occurs in many inflammatory disease 
conditions including cancer.17,19 Based on these evidence- based 
observations, Smad3 may play a pathogenic promoter in cancer, 
whereas Smad7 may be protective. Thus, correcting the equilibrium 
of Smad3/Smad7 in the TME may produce a synergetic anticancer 
outcome. Indeed, our data also showed that AANG synergistically 
increased the expression of Smad7 in R- HepG2 at transcriptional 
level and in the TME of R- HepG2 xenografts in vivo. AANG may rep-
resent an ideal therapeutic strategy for cancers showing unbalanced 
Smad signalling in the TME.

TGF- β1 is crucial for the development of TME, which largely 
promotes regulatory T- cell infiltration, angiogenesis, epithelial- 
mesenchymal transition (EMT) etc.3,4 Unexpectedly, TGF- β1 also 
triggers the expression of multidrug resistance p- glycoprotein ex-
pression in blood- brain barrier and cancer cells.11,12 Thus, targeting 
of TGF- β receptors with soluble TGF- β receptor II, small molecule 
ALK5 kinase inhibitors, or neutralizing TGF- β1 antibodies have been 
reported to exhibit some therapeutic effect on cancer.2 However, 

F I G U R E  5  AANG overcomes p- 
glycoprotein mediated multidrug 
resistance of hepatocellular carcinoma 
(HCC). (A) Expression of multidrug 
resistance mediator p- glycoprotein was 
highly associated with the activation of 
TGF- β1/Smad3 signalling in the recurrent 
HCC (n = 10). (B) A Smad3 binding site 
(red) at the 5′ UTR of p- glycoprotein (gene 
name ABCB1 or MDR1) on the human and 
mouse evolutionarily conserved genomic 
region was detected by ECR browser 
bioinformatic platform. (C) Real- time PCR 
shows that TGF- β1 significantly triggers 
mRNA expression of p- glycoprotein 
in R- HepG2 cells in dose- dependent 
manner in vitro. (D) More importantly, 
AANG therapy successfully cancelled 
p- glycoprotein expression in the R- HepG2 
xenograft bearing mice compared to 
their control group in vivo. **p < 0.01, 
***p < 0.01 vs. Control, n = 5, one- way 
ANOVA. Scale bars (D), 50 μm
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as TGF- β1 is a fundamental anti- inflammatory cytokine and immune 
regulator, blockade of TGF- β1 since receptor level will cause auto-
immune diseases. In this study, high level of TGF- β1 was observed 
in the biopsies of cancer patients with hepatoma, which was as-
sociated with Smad3 hyperactivation but Smad7 reduction in the 
TME. Therefore, identification of a more specific therapeutic for 
targeting in the downstream of TGF- β1 signalling is in urgent need. 
AANG caused no damage to the main organs of the cancer host 
including heart, liver, spleen and kidney. Besides, both AA and NG 
have several clinical studies such as using NG in hypercholesterolae-
mic and overweight human subjects and using AA in patients with 
Alzheimer's disease, both AA and NG show no adverse effects in the 
studies40- 42; highlighting its translational potential for targeting the 
TGF- β1 signalling in cancer.

We have recently reported that AA is a Smad7 agonist and NG 
is a Smad3 inhibitor in lung carcinoma.24 However, AA and NG using 
alone could not effectively regulate the Smad7 and Smad3 expres-
sion in HCC. Interestingly, our data revealed that AANG can syner-
gistically trigger Smad7 expression in the R- HepG2 cells compared 
to the monotherapy with AA or NG only, resulting in a better an-
ticancer effect in vitro. To note, Smad7 is a negative regulator of 
NF- κB signalling pathway,1,5,17,39 which NF- κB is highly activated in 
cancer and regulates the p- glycoprotein expression in HCC.43 Our 
experiment showed that AANG effectively inhibits the cancer pro-
gression of R- HepG2 bearing mice associated with a dramatic re-
duction of p- glycoprotein in the HCC xenografts. This encouraging 
data revealed the therapeutic potential of AANG for blocking the 
NF- κB- driven p- glycoprotein mediated multidrug resistance via up-
regulating Smad7 in a synergistic manner.

To conclude, it is the first study systematically evidenced the im-
balance of Smad signalling in the TME of HCC especially in the recur-
rent cases with high p- glycoprotein expression level. We successfully 
optimized our TCM- derived natural compound formula AANG for the 
multidrug resistant HCC, which specifically inhibited Smad3 activa-
tion but up- regulated Smad7 expression in both cancer cells and the 
TME in vitro and in vivo. Importantly, AANG effectively blocked the 
progression of multidrug resistant HCC without detectable side ef-
fects in mice. Thus, AANG may represent a novel, safe and effective 
therapeutic strategy for HCC with p- glycoprotein mediated multidrug 
resistance.
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